FUTURE DIRECTIONS IN PROGRAMMING LANGUAGES

Samuel A. DiNitto, Jr.

Rome Air Development Center

Griffiss Air Force Base,

Abstract; This
possibilities for the
languages of the next century.
Projections are based on what has and
has not been accomplished in the last
four decades and the programming tools
proposed for the next decade.
Influencing programming language
directions at both the high levels of
software development (e.g., problem
decomposition) and at the lower levels
(e.g., algorithm implementation) will
be parallel execution. There could
(finally) come a seriGus break with the
traditional 1languages such as Fortran,
Algol, PL-1, Pascal, C, and Ada. Very
High Level Languages could take over in
popularity. Within an increasing
number of domains, the programming, in
addition to man-machine interfaces,
will be accomplished through multiple
media (VHLL, speech, natural language,
mouse, menus, touch screen, etc.).

paper explores some

programming

I. Introduction

This paper explores some strong (at

least in the author's opinion)
candidates for the programming
languages that we will see in the next
century. For this purpose,
"programming language" is defined as
any language used to create a set of
instructions for a computer to follow
in carrying out a task, or a framework
to use in solving a problem, when that
solution is storable for future use.

It attempts to do this by reviewing how
we have arrived at today's popular
programming languages, and identifying
the relevant practical experience
gained from that history. The history
will be used with the state of today's
research and expected future successes
to temper the ideals for the next

generation of programming languages.

believes
programming

This pragmatic author
that, with regard to a

U.S. Government Work. Not protected by
U.S. copyright.

169

New York

language's success, it is more often
the inertia and politics of its
competitors that must be overcome
rather than its relative merits. In
the world of programming languages,
inertia is measured in the amount of
software already built in a language
and still in use, the number of people
trained and actively using the
language, the number of popular
language sensitive software development
tools for the language, the
requirements (both past and current)
for the use of the language in specific
applications, and other such culture
considerations. Similarly, "politics™"
is concerned with such things as
authority and scope of authority of
those who require the use of a
language, the stature of those who
endorse the language, and the power
(often measured as
"share~of-the-market") of those
responsible for the origination of the
language.
Thus, "inertia" covers those items
that must be overcome, and "politics"
covers those that must be obtained to
begin building significant inertia. As
examples, FORTRAN and COBOL have much
inertia and in the past have had strong
political backing by Government and
Industry; in the past, Pascal has
received strong academic political
endorsement but has developed little
inertia; and Ada has seen mixed
political endorsement, but is now
enjoying a rapid buildup of inertia.

form, the present
simply this: The
imperative)

In synopsized
state-of-affairs is
procedure oriented (or
style of languages (FORTRAN, Pascal, C,
ALGOL, PL-1, BASIC, Ada, etc.) still
rule the roost with regard to
popularity, and most of these languages
(when we include all their dialects)
are still increasing their inertia,
although the relative share of the
market is decreasing for some (e.g..
the various dialects of ALGOL, PL-1,
FORTRAN, etc.). The functional (or

applicative) styles, such as LISP, and
the logic styles, such as Prolog, are
seeing a resurgence of activity (at
least in the R&D world) due to the
renewed interest in artificial
intelligence in the last decade and the
so-called Fifth Generation and
Strategic Computing thrusts. We see
some successes for the application
specific, or very high-level languages
(VHLLs) , styles in business
applications, tooling, automated test
equipment applications, and even
AI/expert systems applications; but in
the big picture, the use of such

languages is not universal, even within
their narrow domains, so they have not
really caught on yet.

If one accepts the above view of
where we are, let's now try to
establish how we got here. This may

allow us to determine what we can learn
from a historical perspective that may
be relevant for our future projections.

Most people acknowledge that it was

really the 1language FORTRAN, in the
1956 timeframe, that seriously kicked
things off for the computing world in
general. In the next five years,
almost everyone in the computing
community had at least heard of COBOL,

ALGOL, LISP, and possible NELIAC, but
how about the other five dozen
languages? Five years after that
(i.e., 1966), in addition to the
numerous dialects of the previously
named languages, computer people at
least heard of PL-1, SNOBOL, JOVIAL,
and BASIC, but not too many heard of
the other eight dozen languages
available [SAMM 72, pgs 606, 607].

Let's stop here for awhile to make

some observations about the languages
being used to build so-called "fielded"
systems, ignoring the fact that, at

that time and for at least ten and more

years, most sof tware would be
implemented in assembly language.
Computers were expensive at that time,
and the programmer who could implement
sof tware in the fewest (however
measured) number of words of storage
was golden. Recursion and block
structure were elegant, but both,
especially the former, chewed up
storage and machine cycles. The need

for the programmer to stay close to the
machine's own instructions was evident
by the above and the need to debug from

so~-called "core dumps" of the binary
state~of~-the machine's memnory and
registers at selected points. Finally,
only FORTRAN and COBOL were being
taught en masse to the people actually
building the fielded systems, and I
might add by some very innovative

170

approaches like John
Autocoder for FORTRAN.

McCracken's

During these times, very few places
had more than one computer system or
had the means or inclination to fund
more than one. Also, applications were
becoming more and more diverse. .This
meant there was a need for a practical,
general-purpose language to span the
scientific, business, and real-time
(largely for DOD applications)
communities. However, the world did
not 1leap at a very good one for the
times, namely, JOVIAL, whose
implementations came on the scene in
the early 1960's [SAMM 69, pg. 530].

JOVIAL, for Jules' Own Version of
the International Algebraic Language,
built on the structure and controls in
Algol-58. It added tables and arrays,
capable of being packed at the bit
level by programmers, or at the bit,
byte, and word level by the compiler.
Status, literal, Boolean, and user
specified fixed-point data types were
also added. The language enforced its
typing rules, but on a case-by-case
basis a programmer could alter them.
The DEFINE facility allowed one to
isolate machine dependent parameters
for easy redefinition when porting to
another machine. COMPOOLS of shared
data, programs, and their
specifications allowed the compiler to
correctly integrate and/or help debug

sof tware developed by multiple
programmers. Finally, if all else
failed, the language allowed one to
fall directly into assembly language to
accomplish what could not be
efficiently handled at the source

level. What more could a programmer of
the 1960's ask for?! What went wrong?.

Well, for one thing, while
of the large mainframers, such as IBM,
UNIVAC, and CDC had some efficient
compilers for JOVIAL (most directly or
indirectly funded by the Air Force);
while several large, complex, real-time
and successful Air Force and FAA
systems were implemented in JOVIAL;:;
while even cammercial applications did
show up (airline reservations); and
while the UK's Ministry of Defence
copied the JOVIAL style and philosophy
in CORAL-66, there was no perceived
support or long-term commitment. After
all, the newer, more modern PL-1 was
being supported by the company with
over two-thirds of the worldwide
marketplace. Merit and track record
just did not count for much. People
using Fortran, COBOL, and/or assembly
language were content to wait until
PL~1 came around, with all the support
and backing that only the large

several

mainframers could supply,
by the mid~1960's
software houses (e.g.,
fielding and
compilers, training,
software {(including a
time-sharing system).

even though
the most respected
SDC, CSC) were
suppor ting JOVIAL
and JOVIAL systems
working

Three points can be made at this

time. First, a language wasn't going
to leave the R&D community unless it
made efficient use of resources.
Second, without readily available
training, there was little possibility
of a language gaining popularity.
Third, without at least perceived
backing of the hardware vendor(s), a

language was doomed. The limited but
significant success of CORAL-66 in the
UK and the promising future of Ada are
built on these points.

Other points that became readily
accepted by the community were that
people strongly resisted switching to
another programming language if they
considered themselves proficient in
one, and the first language you learned
forced you into a style of programming
and a perception of computation that
was difficult to change. Anyone who
doubts the above should try to teach
seasoned FORTRAN IV programmers ALGOL,
Pascal, or Ada (just wait till you get
to recursion).

The years 1966 to the present are
characterized by the introduction of
many new languages, most of which died

in the research canmunity, or never
gained critical vendor support. The
focus with the imperative languages

switched in the early 1970's from "give
the programmer the power to do anything
he might possibly want without
encumbrances, such as strong typing or
the requirement to learn and understand
the whole language" (PL-1, Algol 68);
to "give him a small, efficiently
implemented, well-defined language and
protect him from his human frailties
with regard to programming and those of
other programmers" (Pascal, ALGOL-W),
to "give him a large, powerful
efficiently implemented language with
protection mechanisms” (Ada). From
other perspectives, we saw attention
being paid to languages (Euclid) or
language features (aliasing) that
respectively helped or hindered formal

verification. We saw various attempts
at dealing with mass storage
(pointers), concurrency (semaphores,
monitors, tasking)., real-time

(interrupts), flexibility (generic data
types), etc., etc., etc. The bottom
line is that, like it or not, in over
thirty yvears, we have merely tweaked in

an evolutionary way, the basic approach

171

to programming the von Neumann
computer, and, in this author's
opinion, jin practice, we have not made
that overwhelming improvement in

productivity or quality that has been
promised with the introduction of each
new programming language in this style.
If you doubt this, try to develop and
corduct an experiment that will prove
the advantages of one imperative
language over another to the majority's
satisfaction.

The case for the applicative style
of language on the surface is not much
different. The past twenty-eight
years, since McCarthy's early papers,
have witnessed a gradual inclusion of
the more complex features that students
have for years implemented as exercises
(e.g., APPEND) and the borrowing of
some features from the imperative style
(e.g., CASE, DO-WHILE, etc.) much
earlier than for the imperative styles,
the various dialects of LISP have built
up impressive, almost standard,
software engineering environments
(e.g., Allegro Common-LISP, INTERLISP,
LISP Machine Environment). If we probe
deeper into the LISP family, we see
that, in comparison with the imperative
languages, the LISP dialects have
achieved much more along the 1lines of
reusability, truly integrated support
environments, and a higher 1level of
expressability that improves both
quality and productivity in terms of
software development.

aren't we all LISP
programmers? For one thing, there is
still no real support from the big
vendors, and the small hardware
vendors, who do seriously support LISP,
do not have a significant share of the
market. For another, there is an even
bigger challenge to turn FORTRAN and
COBOL programmers to the applicative
style than to Ada. In addition, the
applicative languages don't yet make
efficient use of the computer hardware
that is designed to execute them, let
alone the classic Von Neumann
computers. Outside of possibly the
best endowed computer science labs and
those who still believe that right
around the corner are all the storage
and machine cycles per second we will
ever need, at a fraction of our budget.

So why

this efficiency concern is still with
us. While it is easier to demonstrate
progress with applicative languages.,

this author's verdict is that progress
cannot hold up to the demands for
efficiency, productivity, and quality
in the market place.

The problem or application oriented
languages in popular use today can only

be described as "loosing ground" with
respect to productivity and quality.
While they tend to make some very
definite headway when first employed,
their development tends to stagnate
rapidly and they become more or less
frozen in terms of expressability and

hence productivity. The problem is
that they are effectively only a
shor thand notation or macro to be

simply translated to a routine set of
assembly or higher level programming
statements, and they give little or no
assistance beyond that point. This
doesn't have to be the case, but the
further refinement of these languages
would cost more sophistication and
complexity in their implementations
than their vendors will risk.

The logic style languages, although
fifteen years old, are still in their
infancy. Without the interest of
Japan's Fifth Generation project and
more recently the interest of the
Defence Advanced Research Projects
Agency (DARPA), these languages would
be largely unknown. There are a few of
us (this author included) who think the
potential for this style has just been
scratched. There are fewer yet (but,
again, include this author in the few)
that think the merger of the logic and
applicative styles offers even greater
advantages. While such a smooth and
aesthetically pleasing language called
SUPER (for Syracuse University Parallel
Expression Reducer) exists, the
hardware to efficiently execute it is
not yet in the breadboard stage.

II. "Drivers" for the Next Generation
of Programming Languages

If it is truly to be a next
generation of languages, the new
generation must catapult us out of this
slow evolutionary improvement cycle we
are in. The slow addition of
evolutionary features, an addition
usually thinly disguised by the
"syntactic sugar" of a "new" language,
will mean that the next century's early
languages will mostly be today's
languages. In 1972, Jean Sammett [SAMM
72, P9 609] pegged FORTRAN's and
COBOL's life span at "..... at least
five and probably ten more years." Is
there any among us who doubts they will
disappear before the year 2000? This
author wrote his last line of FORTRAN
in 1969, threw rocks all during the
1970's at those proposing that FORTRAN
v be the language for portable
software, and finally gave up when in
1985 one of the research products under
his control was written in FORTRAN 77
to guarantee maximum availability -
even though the product analyzes Ada

172

software! Now we are on the verge of
FORTRAN 88! One doesn't become a
pragmatist (or a cynic) overnight.

So, what are the drivers for a
truly next generation of languages? We
have been hearing this for at least
fifteen years, but parallelism (both
synchronous and asynchronous) must be
handled directly (and safely) within
the next generation languages. Even
with projected successes in hardware
technology, it will still fall on
parallelism to provide the computing
horsepower for many applications.

Certain of today's compilers for
the non-explicitly parallel languages
detect the obvious forms of parallelism
(nested loops of independent
operations), but they usually assume
{(because they can't always detect it)
no side effects or aliasing. The
parallelism is not invoked at the hint
of a problem (e.g., a subroutine call).

The explicitly parallel languages

for the programmer's declaration
of the parallel sections of the
program. While this allows for more
parallelism than can be achieved for
the nonexplicitly parallel languages,
and thus potentially more efficient use
of the resources, the languages count
on the programmer knowing what he is
doing; their compilers cannot detect
all programmer induced deadlocks and
races., This problem is of course
compounded because such problems don't
always show up in testing, and cannot
always be reproduced in fol low-up
testing once they have occurred during
operation. A truly future generation
of parallel programming languages and
their implementations must overcome
these problems and limitations.

allow

Object-oriented design
implemtation has created as
not more, enthusiasm than structured
programming did in the early 1970's
[Broo 87, pg 141. While certain of
today's more popular programming
languages support some of the essential
ingredients for object-oriented design
and programming, namely, encapsulation,
message passing, late binding, and
inheritance, [WILS 87, pg 53 ff], they
don't supply them all, or not all to
the degree necessary. Usually, today's
approach to object-oriented software is
to design in the object-oriented style,
but to implement the object orientation
through "project discipline," as no
current language implementation
provides efficient support for this
paradigm.

and
much, if

Another driver for truly new

languages is that the role of the
"pure" programmer is rapidly
disappearing. More and more,
businessmen, engineers, scientists,

etc., are developing or modifying their
own software rather than deal with a
programmer they probably can't
communicate with, because the
programmer doesn't really understand
the application in enough depth. These
people, while computer literate, are
not software engineers capable, nor
inclined, to put together large
sof tware systems, of tens to hundreds
of thousands of 1lines of FORTRAN,
COBOL, Ada, or any other similar
language, requiring dozens of manyears
of effort and large teams. They need
powerful languages capable of
expressing solutions and ignoring
implementation details. They need to
go beyond today's level of application

specific languages which stop at
reusing macros and subroutine
libraries. They need reuse, but reuse
of generalities in addition to

gspecifics. They need prompting, easy
interfaces, protection from obvious and

subtle mistakes, etc. In short, they
need reuse of knowledge. Here, the
line between language and applications

package may seem gray; but if a series
of high-level operations is created and
stored for reuse, how can one argue
that's not a program created with a

programming language?

On yet another scale, the software
and/or system engineers need higher
levels of expressability if we are to
put together the large complex systems
of the Twenty-First Century, in a
reliable manner. Today., we have design
languages, requirements languages, and
even fledgling prototyping languages.
However, what is missing is the
mechanical translation from any one of
these forms of the software to the next
phase. We have enough trouble getting
people to learn one new language, let
alone one {or more) to deal with each
phase of the software's 1life cycle.
For years, we have argued that we must
keep the human away from the
implementation details with the kind of
systems we need (and plan) to build;
that means much more than shielding the
human from the code generated by a
"CASE" statement.

To amplify the above, we are also
witnessing a phenomenon that will
become even more of a problem in the
future, namely, the proper development
and maintenance of even the concept for
a system. Consider the number of
distinct areas of science and
engineering involved with placing and
maintaining a manned space station into

173

space; the amount of <change in the
concept from birth to fielding such a
system (three decades brings a 1lot of
change); the number of people that will
pass through such a project (loss of
corporate memory); and even the
advancement (favorable or unfavorable)
of technology during the development of
the system. How can we expect to have
a "good handle" on such a concept,
evaluate the thousands of alternatives
for interrelated functions of systems,
subsystems, sub-subsystems, etc., and
communicate these concepts to the
hundreds of companies that would be
involved in building the software. A
tool, or one would argue a
general-purpose "language," is needed
to create and maintain an ever evolving
executable conceptual model of
long~term complex systems.

III. This Author's Prognosis for the
Future.
With regard to a truly new

generation of programming languages in
wide wuse to support parallelism by the
year 2000, the chances are very slim.
While there may be better places to
start augmenting languages, (e.g..,
Occam), features to explicitly support
parallelism will continue to be added
to FORTRAN, Pascal, Ada, C, etc. It is
extremely doubtful a more complete set
of protection mechanisms, to prevent or
detect the "overparallelization" of a

program, can or will be developed,
fielded, and massively supported in
this century. Remember that Ada is

really a 1970's vintage language and,
only because of huge investments by DOD

and Industry, and unabashed arm
twisting by the DOD and other NATO
defense organizations, is Ada now
(thirteen years later) a prominent
language. Thus, if the perfect
parallel language was already on the

drawing board, it 1is doubtful if it

would make it by 2000. While some
people argue that efficient Ada
implementations (in terms of run-~time)
are still difficult today, we can argue
those implementations are almost all
for the same «class of machine, the
single instruction - single data
architecture. The complication in
getting efficient implementations of a

new parallel language, and its run-time
package on several different parallel
architectures, is much higher than for
an efficient Ada compiler strategy for
the simple Von Neumann computer.

This next projection 1is easy.
The author has no doubts there will be
a set of efficiently implemented and
efficiently executing implementations
of object-oriented languages along the

lines of Smalltalk. Unfortunately if
the history repeats itself, we will
also see even more efficiently
implemented and efficiently executing
variants of today's imperative
languages that don't quite do the job.
(Like FORTRAN-77 supported structured
programming, maybe there will be a
FORTRAN--99 for object-oriented
programming.) However, vendors appear
to be latching on to varients of
Smalltalk, so there is some hope we
won't repeat the past too faithfully.

The application specific
languages are finally going to make
some real headway by the next century.

a little more cammitment and some
by the hardware

With
adventuresome spirit
and software vendors, there could be a
rash of intelligent wvery high~level
languages for everything from machine
tooling to prototyping or even fielding
and maintaining C3I systems or
subsystem components.

Of course it is knowledge Dbased
systems technology that will allow this
to happen. The "knowledge" built into
the analogy to today's compilation
process will allow for truly "typeless"
language in specific application areas.
It will allow for the "skeletal
routines" purported in the mid-1970's
as a way of leveraging productivity and
quality by having generic subroutines
tailorable to specific requirements,
although the tailoring will be done by
the intelligent compiler, and not by
the "programmer, " as originally
conceived.

The technology is almost here to
allow for a mixture of communication
media between man and machine (speech,
natural language, mouse, menues, etc.)
in narrow domains. While a pragmatist
should not project until the technology
is well in hand, in this case, it will
definitely be a case of "keeping up
with the Jones" after the first such
system is fielded; the difference in
having it or not having it is not as
subtle as whe ther or not a
hardware-sof tware combination supports
bit-map displays or the hardware can
support 1.2 vs. 1.0 MIPS. By the year
2000, if you don't support capabilities
like an informal interface, "smart"
assistance, and "intelligent"
monitoring of execution, you will be
closed out of certain application
areas.

The role the hardware will play
in supporting these projections cannot

be ignored either. The cost of
workstations that c¢an handle full-up
expert systems engineering tools is

174

dropping rapidly. A card, not yet on
the open market, can be added to a
PC-AT to recognize 10,000 spoken words.
In the next five to ten years, it is a
safe bet that hardware of the class of
today's best AI workstations, outfitted
with the equivalent boards similar to

the above, will be in the $10K range.
In narrow domains, if we make efficient
use of the resources, the application

specific
off" and

languages can really "take
fulfill the productivity and

quality promises of the 1last fifteen
years.

With regard to the
general-purpose languages to put
together large systems (the current in
vogue term is Very High-Level, Wide
Spectrum Languages), it is almost
certain that, although direly needed,

the pragmatic view is that they will

not be available in the early
twenty-first century. However, for the
moment, even though history is against
us in programming languages, let's
recognize that in other disciplines,
technology projections are wusually
overoptimistic relative to actual

progress in the first five years, but
pessimistic relative to actual progress
made in the five-to~-fifteen vyear
bracket of the future. Taking that

view, there are so many pieces of the
theory and technology puzzle being
worked throughout the world that an

optimist would have to argue all we
need is more funding and more focus to
pull off these Very High-Level, Wide
Spectrum Languages.

Some pieces of the problem could
be solved (at least partially) with the
logic-oriented style of languages.
Concept modeling requirements analysis
and prototyping have already been
demonstrated with this style [DAY 87].
If the goals of the Fifth Generation
thrust in Japan are successful, that
hardware, coupled with this style, may
be all that's needed as the seed corn
for a wide class of applications.

The Knowledge~Based Software
Assistant (KBSA) [Green 83] attempts an
evolutionary approach to a
revolutionary paradigm for developing
and supporting large software systems.
The approach is to wunite a set of
intelligent knowledge-based tools
visible to the user (requirements
assistant, specification assistant,
performance assistant, project
management assistant, etc.) with each
other and some tools not so visible to
the user (activities coordinator,
project data-base builder). The
unification would produce a single tool
which assists in all aspects of the

sof tware development and captures

knowledge, about the specific software
system being built, that normally
disappears (design decisions, algorithm
selection and implementation strategy,
etc.). This knowledge is invaluable
for that system's future maintenance
and upgrades, for reducing the work

necessary to build similar
the future,

systems in
and for accommodating the
inevitable personnel turnovers on a
long-term project. If successful,
someday (not in this century) for a
specific class of very complex systems,
such as air traffic control, one may
only need to specify requirements for
the grandson of a system previously
built with this paradigm and have a
KBSA do the rest. This would be the
ultimate in high-level languages.

To reach the ultimate goal of the
KBSA is obviously very ambitious and,
while various compoents are proving out
today (Project Mangement, Requirements
Assistant, Specification Assistant,
Performacne Assistant, and even a
rudimentary framework to connect the
independent components or "facets" in
KBSA terms), much more work needs to be
done. However, there appears to be
renewed interest on both sides of the
Atlantic in one of the key areas,
formal (or mechanical) translation.
Some other keys to the KBSA paradigm
(e.g., distributed knowledge
acquisition, truth maintenance) are
necessary for many other applications
in knowledge-based systems and are also
being worked. It is hoped we can
revisit the success this new paradigm
in fifteen-to-twenty years

IV. Conclusion

History is against rapid change in
programming languages. However, to
meet the software challenges of the
next century, challenges which are
inseparable from and required for
advancements in many fields, we must
make some revolutionary changes. If we
really put our minds to it and focus
our attention on furthering
advancements, rather than succumbing to
temptation and dissipating our
intellectual and financial resources by
trying to accommodate each step forward
in almost every existing programming
language, we can orchestrate and field
this very necessary revolution.

175

BIBLIOGRAPHY

1. [BIRD 87] Bird, Richard, "A
Calculus of Functions for Program
Deviation," Technical Monograph PRG-64,
December 1967, Oxford University.

2. [BROO 87] Brooks, Frederick P.,
"No Silver Bullet: Essence and
Accidents of Software Engineering,"

Computer, April 1987, pp 10-19.
3. [DAY 871 Day, William, et al,
Logic Programming Applied to
Requirements and Specifications,
RADC~TR~-87~-260, December 1987.

William S.,
Engineering,"
Number 7, July

4. [FAUG 861 Faught,
"Applications of AI in
Computer, Volume 19,
1986, pp 17-27.
5. [GENE 85]

Geneserth, Michael R.

and Mathew L. Ginsberg, "Logic
Programming, " Communications of the
ACM, September 1985, Volume 28, Number

9, pp 933-941.

6. [GREE 83] Green, Cordell, et al,
Report on a Knowledge-Based Software
Assistant, RADC-TR-83-195, August 1983.

Hoare, C. A. R., "An
Some Formal Methods for

7. [HOAR 87]
Overview of

Program Design," Computer, September
1987, pp 85-91.
8. [HWAN 871 Hwang, Kai, et al,

"Computer Architectures for AI
Processing.,” Computer, Volume 20,

Number 1, January 1987, pp 19-27.
9. [INGA 78] Ingals, Daniel, "The
Smalltalk - 76 Programming System,”
Conference Record of the Fifth Annual
ACM Symposium on Principles of
Programming Languages, January 23-25,
1978

10. [MATT 87]
"Single Chip

Enviromments, "
1987, pp 69~76.

Matthews, Gene, et al,
Processor Runs LISP
Computer Design, May 1,

11. [saMM 69] Sammet, Jean E..,
Programming Languages: History and
Fundamentals, 1969, Prentice-Hall.

12. [sAaMM 72] Sammet, Jean E.,
“"Programming Languages: History and

Future," Communications of the ACM,
July 1972, Volume 15, Number 7, pp
601-610.

13. [TICH 87] Tichy, Walter F., "What

Can Software Engineers Learn from
Artificial Intelligence?", Computer,
November 1987, pp 43-54.

14. [UNGA 87] Ungar, David and David
Patterson, "What Price Smalltalk,"
Computer, Volume 20, Number 1, January
1987, pp 67~74.

15. [WIL 871 Wilson, Ron,
"Object-oriented Languages Reorient
Programming Techniques," Computer

Design, November 1, 1987, pp 52-62.

16. [WOLF 80] Wulf, William A.,
"Trends in the Design and
Implementation of Programming
Languages," Computer, January 1980, pp
14-23.

17. [YOK 081] Yokoi, T., et al,
"Logic Programming and a Dedicated
High~Performance Personal Computer, "
Proceedings of International Conference
on Fifth Generation Computer Systems,
October 19-22, 1981.

176

