
FUTURE DIRECTIONS I N PROGRAMMING LANGUAGES

Samuel A. DiNit to , Jr.

Rome A i r Development Center
G r i f f i s s A i r Force Base, New York

Abs t r ac t ; This paper explores some
p o s s i b i l i t i e s f o r t h e programming
languages of t h e next century.
P ro jec t ions a r e based on what has and
has not been accomplished i n the l a s t
four decades and the programming t o o l s
proposed f o r t h e next decade.
Inf luencing programming language
d i r e c t i o n s a t both t h e high l e v e l s of
sof tware development (e.g. , problem
decomposition) and a t t h e lower l e v e l s
(e .g . , a lgori thm implementation) w i l l

be p a r a l l e l execut ion. There could
(f i n a l l y) come a s e r i o u s break with the
t r a d i t i o n a l languages such as For t r an ,
Algol, PL-1, Pascal , C, and Ada. Very
High Level Languages could take over i n
p o p u l a r i t y . Within an inc reas ing
number of domains, t h e programming, i n
add i t ion t o man-machine i n t e r f a c e s ,
w i l l be accomplished through mul t ip l e
media (VHLL, speech, na tu ra l language,
mouse, menus, touch sc reen , e t c .) .

I . I n t r d u c t i o n

This paper explores some s t rong (a t
l e a s t i n the a u t h o r ' s opinion)
candidates f o r t h e Programming
languages t h a t we w i l l see i n the next
century. For t h i s purpose,
"programming language" is def ined a s
any language used t o c r e a t e a s e t of
i n s t r u c t i o n s f o r a computer t o follow
i n ca r ry ing ou t a t a s k , a framework
t o use i n so lv ing a problem, when t h a t
s o l u t i o n i s s t o r a b l e f o r f u t u r e user
I t at tempts t o do t h i s by reviewing how
w e have a r r i v e d a t t oday ' s popular
programming languages, and i d e n t i f y i n g
t h e r e l e v a n t p r a c t i c a l experience
gained from t h a t h i s t o r y . The h i s t o r y
w i l l be used wi th t h e s t a t e of t oday ' s
r e sea rch and expected f u t u r e successes
t o temper t h e i d e a l s f o r t h e next
generat ion of programming languages.

This pragmatic author be l i eves
t h a t , with regard t o a programming

U.S. Government Work. Not protected by
U.S. copyright.

language 's success , i t i s more o f t e n
the i n e r t i a and p o l i t i c s of i t s
competi tors t h a t m u s t be overcome
r a t h e r than i t s r e l a t i v e merits. I n
t h e world of programming languages,
i n e r t i a is measured i n the amount of
sof tware a l r e a d y b u i l t i n a language
and s t i l l i n u s e , the number of people
t r a ined and a c t i v e l y using t h e
language, the number of popular
language s e n s i t i v e sof tware development
t o o l s f o r the language, the
requirements (both p a s t and c u r r e n t)
f o r the use of the language i n s p e c i f i c
a p p l i c a t i o n s , and o t h e r such c u l t u r e
cons ide ra t ions . S i m i l a r l y , " p o l i t i c s "
i s concerned with such th ings a s
a u t h o r i t y and scope of a u t h o r i t y of
those who r e q u i r e t h e use of a
language, the s t a t u r e of those who
endorse t h e language, and t h e power

a s (o f t e n me as u r ed
"share-of-the-market") of those
r e spons ib l e f o r the o r i g i n a t i o n of the
language.

Thus, " i n e r t i a " covers those items
t h a t must be overcome, and " p o l i t i c s "
covers those t h a t m u s t be obtained t o
begin bu i ld ing s i g n i f i c a n t i n e r t i a . A s
examples, FORTRAN and COBOL have much
i n e r t i a and in the p a s t have had s t r o n g
p o l i t i c a l backing by Government and
Industry: i n the p a s t , Pascal has
received s t rong academic p o l i t i c a l
endor semnt but has developed l i t t l e
i n e r t i a : and Ada has seen mixed
p o l i t i c a l e n d o r s e m n t , but is now
enjoying a r ap id bui ldup of i n e r t i a .

In synopsized form, the p re sen t
s tate-of -af f a i r s i s simply t h i s : The
procedure o r i en ted (o r imperat ive)
s t y l e of languages (FORT", Pascal , c,
ALGOL, PL-1, BASIC, Ada, e t c .) s t i l l
r u l e t h e r o o s t with regard t o
p o p u l a r i t y , and most of these languages
(when we include a l l t h e i r d i a l e c t s)

a r e s t i l l inc reas ing t h e i r i n e r t i a ,
al though t h e r e l a t i v e sha re of t h e
market is decreasing f o r some (e .g . ,
t h e va r ious d i a l e c t s of ALGOL, PL-1,
FORTRAN, e t c .) . The func t iona l (o r

169

appl ica t ive) s t y l e s , such as L I S P , and
the logic s t y l e s , such a s Prolog, a r e
seeing a resurgence of a c t i v i t y (a t
l e a s t in the R&D world) due t o the
renewed i n t e r e s t i n a r t i f i c i a l
in te l l igence i n the l a s t decade and the
so-called F i f t h Generation and
St ra teg ic Computing thrus ts . We see
some successes for the appl ica t ion
s p e c i f i c , o r very high-level languages
(VHLLs) , s t y l e s i n business
appl i ca t ions , aut o m t ed t es t
equipment appl icat ions, and even
AI/expert systems appl icat ions; but i n
the b ig p ic ture , the use of such
languages is not universal , even within
t h e i r narrow domains, so they have not
r e a l l y caught on yet .

too 1 ing ,

I f one accepts the above view of
where we a r e , l e t ' s now t r y t o
e s t a b l i s h how we got here. This may
allow us t o determine what we can learn
from a h i s t o r i c a l perspective t h a t may
be relevant for our fu ture project ions.

Most people acknowledge t h a t i t was
r e a l l y the language FORTRAN, i n the
1956 timeframe, t h a t se r ious ly kicked
things off for the computing world i n
general . In the next f i v e years ,
almost everyone i n the computing
community had a t l e a s t heard of COBOL,
ALGOL, LISP, and possible NELIAC, but
how about the o ther f i v e dozen
languages? Five years a f t e r tha t
(i .e . , 1 9 6 6) . i n addi t ion t o the

numerous d i a l e c t s of the previously
named languages, computer people a t
l e a s t heard of PL-1, SNOBOL, J O V I A L ,
and BASIC, but not too many heard of
the o ther e ight dozen languages
ava i lab le [SAMM 7 2 , pgs 6 0 6 , 6071.

Le t ' s s top here f o r awhile t o make
some observations about the languages
being used t o bui ld so-called "f ie lded"
systems, ignoring the f a c t t h a t , a t
tha t time and for a t l e a s t t en and more
years, most software would be
implemented i n assembly language.
Computers were expensive a t t h a t time,
and the programmer who could implement
software i n the fewest (however
measured) number of words of s torage
was golden. Recursion and block
s t r u c t u r e were elegant , but both,
espec ia l ly the former, chewed up
s torage and machine cycles. The need
f o r the programmer t o s tay close t o the
machine's own ins t ruc t ions was evident
by the above and the need t o debug from
so-called "core dumps" of the binary
s ta te-of- the machine's memory and
r e g i s t e r s a t selected points . Final ly ,
only FORTRAN and COBOL were being
taught en masse t o the people ac tua l ly
building the f ie lded systems, and I
might add by some very innovative

approaches l i k e John McCracken's
Autocoder for FORTRAN.

During these times, very few places
had more than one computer system 01
had the means or inc l ina t ion t o fund
more than one. Also, appl icat ions were
becoming more and more diverse . . This
meant there was a need f o r a p r a c t i c a l ,
general-purpose language t o span the
s c i e n t i f i c , business, and real-t ime
(la rge ly f o r DOD appl ica t ions)
communities. However, the world did
not leap a t a very good one f o r the
t i m e s , namely, J O V I A L , whose
implementations came on the scene i n
the e a r l y 1 9 6 0 ' s [SAMM 6 9 , pg. 5301.

JOVIAL, f o r Ju les ' O w n Version of
the Internat ional Algebraic Language,
b u i l t on the s t r u c t u r e and controls i n
Algol-58. It added t a b l e s and ar rays ,
capable of being packed a t the b i t
level by programmers, or a t the b i t ,
byte, and word leve l by the compiler.
Status , l i t e r a l , Boolean. and user
specif ied fixed-point da ta types were
a l so added. The language enforced i ts
typing ru les , but on a case-by-case
bas i s a programmer could a l t e r them.
The DEFINE f a c i l i t y allowed one t o
i s o l a t e machine dependent parameters
for easy redef in i t ion when port ing t o
another machine. COMPOOLS of shared
da ta , programs, and t h e i r
spec i f ica t ions allowed the compiler t o
c o r r e c t l y in tegra te and/or help debug
software developed by multiple
programmers. Final ly , i f a l l e l s e
f a i l e d , the language allowed one t o
f a l l d i r e c t l y i n t o assembly language t o
accomplish what could not be
e f f i c i e n t l y handled a t the source
level . What more could a programmer of
the 1960's ask for?! What went wrong?.

Well, for one thing, while several
of the large mainframers, such as IBM,
UNIVAC, and CDC had some e f f i c i e n t
compilers f o r J O V I A L (most d i r e c t l y or
i n d i r e c t l y funded by the A i r Force) ;
while several l a rge , complex, real-time
and successful A i r Force and FAA
systems were implemented i n J O V I A L ;
while even commercial appl icat ions did
show up (a i r l i n e reservat ions) ; and
while the UK's Ministry of Defence
copied the J O V I A L s t y l e and philosophy
i n CORAL-66, there was no perceived
support o r long-term commitment. After
a l l , the newer, more modern PL-1 was
being supported by the company with
over two-thirds of the worldwide
marketplace. Merit and t rack record
j u s t did not count for much. People
using Fortran, COBOL, and/or assembly
language were content t o wait u n t i l
PL-1 came around, with a l l the support
and backing t h a t only the large

I70

mainframers could supply, even though
by the mid-1960's the mst respected
sof tware houses (e .g . , SDC, CSC) were
f i e l d i n g and support ing J O V I A L
compilers , t r a i n i n g , and JOVIAL systems
sof tware (inc lud ing a working
t ime-sharing system).

Three p o i n t s can be made a t t h i s
t i m e . F i r s t , a language wasn ' t going
t o leave the R&D community un le s s it
made e f f i c i e n t u s e of resources .
Second, without r e a d i l y a v a i l a b l e
t r a i n i n g , t h e r e was l i t t l e p o s s i b i l i t y
of a language gaining popu la r i ty .
Third, without a t l e a s t perceived
backing of t h e hardware v e n d o r (s) , a
language was doomed. The l imi t ed but
s i g n i f i c a n t success of CORAL-66 i n t h e
UK and the promising f u t u r e of Ada a r e
b u i l t on these p o i n t s .

Other p o i n t s t h a t became r e a d i l y
accepted by the canmunity were t h a t
people s t r o n g l y r e s i s t e d switching t o
another programming language i f they
considered themselves p r o f i c i e n t i n
one, and the f i r s t language you learned
forced you i n t o a s t y l e of programming
and a percept ion of computation t h a t
was d i f f i c u l t t o change. Anyone who
doubts the above should t r y t o t each
seasoned FORTRAN I V programmers ALGOL,
Pascal , o r Ada (j u s t wai t t ill you g e t
t o r e c u r s i o n) .

The years 1 9 6 6 t o t h e p re sen t a r e
cha rac t e r i zed by the i n t r c d u c t i o n of
many new languages, most of which d i ed
i n the r e sea rch canmunity, o r never
gained c r i t i c a l vendor support . The
focus with the imperat ive languages
switched i n t h e e a r l y 1 9 7 0 ' s from "give
the programmer the power t o do anything
he might p o s s i b l y want without
encumbrances, such a s s t r o n g typing o r
t h e requirement t o l e a r n and understand
the whole language" (PL-1, Algol 6 8) ;
t o "give him a small , e f f i c i e n t l y
implemented, well-defined language and
p r o t e c t him from h i s human f r a i l t i e s
with regard t o programming and those of
o t h e r programmers" (Pasca l , ALGOL+) ,
t o "give him a l a r g e , powerful
e f f i c i e n t l y implemented language with
p r o t e c t i o n mechanisms" (Ada). From
o t h e r pe r spec t ives , w e saw a t t e n t i o n
being paid t o languages (Eucl id) or
language f e a t u r e s (a l i a s i n g) t h a t
r e s p e c t i v e l y helped or hindered formal
v e r i f i c a t i o n . W e saw va r ious at tempts
a t dea l ing with mass s t o r a g e
(p o i n t e r s 1 , concurrency (semaphores,
m n i t o r s , t a s k i n g) , real- t ime
(i n t e r r u p t s) , f l e x i b i l i t y (gener ic d a t a
t y p e s) , e t c . , e t c . , e t c . The bottom
l i n e is t h a t , l i k e it or not , i n over
t h i r t y years , we have merely tweaked i n
an evolut ionary way, t h e b a s i c approach

t o programming the Von Neumann
computer, and, i n t h i s a u t h o r ' s
opinion, in p r a c t i c e , we have no t made
t h a t overwhelming improvement i n
p r o d u c t i v i t y or q u a l i t y t h a t has been
promised with t h e in t roduc t ion of each
new programming language i n t h i s s t y l e .
I f you doubt t h i s , t r y t o develop and
c o d u c t an experiment t h a t w i l l prove
t h e advantages of one imperative
language over another t o the m a j o r i t y ' s
s a ti sf ac t i o n .

The case f o r t h e a p p l i c a t i v e s t y l e
of language on the s u r f a c e is no t m u c h
d i f f e r e n t . The p a s t twenty-eight
years , s i n c e McCarthy's e a r l y papers.
have witnessed a gradual i nc lus ion of
the more complex f e a t u r e s t h a t s t u d e n t s
have f o r yea r s implemented a s e x e r c i s e s
(e.g. , APPEND) and the borrowing of
some f e a t u r e s from t h e imperative s t y l e
(e.g. , CASE, DO-WHILE, e t c .) much
e a r l i e r than f o r t h e imperative s t y l e s ,
the var ious d i a l e c t s of L I S P have b u i l t
up impressive, almost s tandard,
sof tware engineer ing environments
(e .g . , Allegro Common-LISP, INTERLISP ,

L I S P Machine E n v i r o n m n t) . I f we probe
deeper i n t o t h e L I S P family, we see
t h a t , i n comparison with the imperat ive
languages, t h e LISP d i a l e c t s have
achieved much more along the l i n e s of
r eusabi 1 i t y , t r u l y i n t e g r a t e d suppor t
environments, and a higher l e v e l of
e x p r e s s a b i l i t y t h a t improves both
q u a l i t y and p roduc t iv i ty in terms of
sof tware development.

So why a r e n ' t we a l l L I S P
programmers? For one th ing , t he re is
s t i l l no real support from t h e b i g
vendors, and t h e small hardware
vendors, who do s e r i o u s l y support LISP,
do no t have a s i g n i f i c a n t share of the
market. For another , t h e r e is an even
bigger chal lenge t o t u r n FORTRAN and
COBOL programmers t o t h e a p p l i c a t i v e
s t y l e than t o Ada. In a d d i t i o n , the
a p p l i c a t i v e languages d o n ' t y e t make
e f f i c i e n t use of the computer hardware
t h a t i s designed t o execute them, l e t
a lone the c l a s s i c Von Neumann
computers. Outside of poss ib ly t h e
b e s t endowed computer s c i ence labs and
those who s t i l l b e l i e v e t h a t r i g h t
around the c o m e r a r e a l l the s t o r a g e
and machine cyc le s p e r second we w i l l
ever need, a t a f r a c t i o n of our budget,
t h i s e f f i c i e n c y concern is s t i l l with
u s . While i t is e a s i e r t o demonstrate
progress with a p p l i c a t i v e languages,
t h i s a u t h o r ' s v e r d i c t i s t h a t progress
cannot hold up t o the demands f o r
e f f i c i e n c y , p r o d u c t i v i t y , and q u a l i t y
i n t h e market p l ace .

The problem or a p p l i c a t i o n o r i en ted
languages i n popular use today can only

171

be described as "loosing ground" with
respect t o product ivi ty and qual i ty .
While they tend t o make some very
def i n i t e headway when f i rs t employed,
t h e i r development tends t o s tagnate
rapidly and they become more or l e s s
frozen i n terms of expressabi l i ty a?d
hence product ivi ty . The problem 1 s
t h a t they a r e e f f e c t i v e l y only a
shorthand notat ion or macro t o be
simply t rans la ted t o a rout ine s e t of
assembly or higher leve l programming
statements, and they give l i t t l e or no
assis tance beyond tha t po in t . This
doesn ' t have t o be the case, but the
fur ther refinement of these languages
would c o s t more sophis t ica t ion and
complexity i n t h e i r implementations
than t h e i r vendors w i l l r i s k .

The logic s t y l e languages, although
f i f t e e n years old, a r e s t i l l i n t h e i r
infancy. Without the i n t e r e s t of
Japan's F i f t h Generation project and
more recent ly the i n t e r e s t of the
Defence Advanced Research Projects
Agency (DARPA) , these languages would
be la rge ly unknown. There a r e a few of
u s (t h i s author included) who think the
poten t ia l f o r t h i s s t y l e has j u s t been
scratched. There a r e fewer yet (but ,
again, include t h i s author i n the few)
tha t think the merger of the logic and
appl ica t ive s t y l e s o f f e r s even grea te r
advantages. While such a smooth and
a e s t h e t i c a l l y pleasing language ca l led
SUPER (f o r Syracuse University Para l le l
Expression Reducer) e x i s t s , the
hardware t o e f f i c i e n t l y execute it is
not y e t in the breadboard s tage.

11. "Drivers" for the Next Generation
of Programming Languages

If it is t r u l y t o be a next
generation of languages, the new
generation must ca tapul t u s out of t h i s
slow evolutionary improvement cycle we
a r e in . The slow addi t ion of
evolutionary fea tures , an addi t ion
usual ly th in ly disguised by the
"syntact ic sugar'' of a t'new'' language,
w i l l mean tha t the next century 's e a r l y
languages w i l l mostly be today 's
languages. In 1 9 7 2 , Jean Sammtt [SAMM
7 2 , pg 6091 pegg;d FORTRAN's and
COBOL's l i f e span a t a t l e a s t
f i v e and probably ten more years." Is
there any among us who doubts they w i l l
disappear before the year 2000? This
author wrote h i s l a s t l i n e of FORTRAN
i n 1 9 6 9 , threw rocks a l l during the
1970's a t those proposing tha t FORTRAN
I V be the language f o r portable
software, and f i n a l l y gave up when in
1985 one of the research products under
h i s control was wr i t ten in FORTRAN 77
t o guarantee maximum a v a i l a b i l i t y -
even though the p r d u c t analyzes Ada

software! Now we a r e on the verge of
FORTRAN 88! One doesn' t become a
pragmatist (or a cynic) overnight.

So, what a r e the dr ivers f o r a
t r u l y next generation of languages? We
have been hearing this f o r a t l e a s t
f i f t e e n years, but paral le l ism (both
synchronous and asynchronous 1 "st be
handled d i r e c t l y (and s a f e l y) within
the next generation languages. Even
with projected successes i n hardware
technology, it w i l l s t i l l f a l l on
paral le l ism t o provide the computing
horsepower f o r many appl icat ions.

Certain of today's compilers f o r
the non-expl ic i t ly p a r a l l e l languages
d e t e c t the obvious forms of paral le l ism
(nested loops of independent
opera t ions) , but they usual ly assume
(because they c a n ' t always de tec t i t)
no s ide e f f e c t s or a l ias ing . The
paral le l ism is not invoked a t the h i n t
of a problem (e.g., a subroutine c a l l) .

The e x p l i c i t l y para1 l e 1 languages
allow f o r the programmer's dec la ra t ion
of the p a r a l l e l sect ions of the
program. While t h i s allows f o r more
paral le l ism than can be achieved f o r
the nonexpl ic i t ly p a r a l l e l languages,
and thus p o t e n t i a l l y more e f f i c i e n t use
of the resources, the languages count
on the programmer knowing what he is
doing; t h e i r compilers cannot d e t e c t
a l l programmer induced deadlocks and
races . This problem is of course
compounded because such problems don ' t
always show up i n t e s t i n g , and cannot
always be reproduced i n follow-up
t e s t i n g once they have occurred during
operation. A t r u l y fu ture generation
of p a r a l l e l programming languages and
t h e i r implemntations must overcome
these problems and l imi ta t ions .

Object-oriented design and
implemtation has created as much, i f
not more, enthusiasm than s t ruc tured
programming d id i n the e a r l y 1 9 7 O l s
[Broo 87, pg 1 4 1 . While c e r t a i n of
today ' s more popular programming
languages support some of the essent ia l
ingredients f o r object-oriented design
and programming, namely, encapsulation,
message passing, l a t e binding, and
inheri tance, [WILS 87, pg 53 f f l I they
d o n ' t supply them a l l , o r not a l l t o
the degree necessary. Usually, today 's
approach t o object-oriented software is
t o design in the object-oriented s t y l e ,
but t o implement the object or ien ta t ion
through "project d i s c i p l i n e , I' as no
cur ren t language i m p 1 emen t a t ion
provides e f f i c i e n t support for t h i s
paradigm.

Another dr iver f o r t r u l y new

172

languages is t h a t the r o l e of the
"pur e 'I programmer is r a p i d l y
disappearing. More and more,
businessmen, engineers , s c i e n t i s t s ,
e tc . , a r e developing o r modifying t h e i r
own software r a t h e r than dea l with a
programner they probably c a n ' t
communi ca t e wi th , because t h e
programmer doesn ' t r e a l l y understand
t h e a p p l i c a t i o n i n enough depth. These
p o p l e , while computer l i t e r a t e , a r e
no t sof tware engineers capable , nor
i n c l i n e d , t o p u t t oge the r l a r g e
sof tware systems, of t e n s t o hundreds
of thousands of l i n e s of FORTRAN,
COBOL, Ada, o r any o t h e r s i m i l a r
language, r e q u i r i n g dozens of manyears
of e f f o r t and l a r g e teams. They need

expressing s o l u t i o n s and ignoring
implementation d e t a i l s . They need t o
go beyond today ' s l e v e l of a p p l i c a t i o n
s p e c i f i c languages which s t o p a t
r eus ing macros and subrout ine
l i b r a r i e s . They need r euse , but r euse
of g e n e r a l i t i e s i n a d d i t i o n t o
s p e c i f i c s . They need prompting, ea sy
i n t e r f a c e s , p r o t e c t i o n from obvious
s u b t l e mistakes, e t c . I n s h o r t , they
need reuse of knowledge. Here, t h e
l i n e between language and a p p l i c a t i o n s
package may seem gray; b u t i f a series
of high-level ope ra t ions is c rea t ed and
s t o r e d f o r reuse, how can one argue
t h a t ' s n o t a program c rea t ed with a
proqramminq language?

On y e t another s c a l e , t h e sof tware
and/or system engineers need higher
l e v e l s of e x p r e s s a b i l i t y i f w e a r e t o
p u t t oge the r the l a r g e complex systems
of t h e Twenty-First Century, i n a
r e l i a b l e manner. Today, we have design
languages, requirements languages, and
even f l e d g l i n g prototyping languages.
However, what i s missing i s the
mechanical t r a n s l a t i o n from any one of
t hese forms of t h e sof tware t o t h e next
phase. W e have enough t r o u b l e g e t t i n g
people t o l e a r n one new language, l e t
a lone one (or more) t o deal with each
phase of t h e s o f t w a r e ' s l i f e cyc le .
For years , w e have argued t h a t we m a
keep t h e human away from t h e
implenentat ion d e t a i l s with the kind of
systems we need (and p lan) t o b u i l d ;
t h a t means much more than s h i e l d i n g the
human from t h e code generated by a
"CASE" s t a t emen t .

powerful languages capable of

To amplify t h e above, w e a r e a l s o
witnessing a phenomenon t h a t w i l l
become even more of a problem i n the
f u t u r e , namely, the proper development - and maintenance of even t h e concept f o r
a system. Consider the number Of
d i s t i n c t a r e a s of sc i ence and
engineer ing involved with p l ac ing and
maintaining a manned space s t a t i o n i n t o

space; the amount of change i n the
concept from b i r t h t o f i e l d i n g such a
system (t h r e e decades b r ings a l o t of
change); t h e number of people t h a t w i l l
pass through such a p r o j e c t (loss of
co rpora t e memory); and even t h e
advancement (favor a b l e or unfavorable)
of technology during the development of
the system. How can w e expect t o have
a "good handle" on such a concept ,
eva lua te the thousands of a l t e r n a t i v e s
f o r i n t e r r e l a t e d func t ions of systems,
subsystems, sub-subsystems, e t c . , and
communicate these concepts t o t h e
hundreds of companies t h a t would be
involved i n bu i ld ing t h e sof tware. A
t o o l , o r one would argue a
general-purpose "language, " is needed
t o c r e a t e maintain an ever evolving
executable conceptual model of
long-term complex systems.

111. This Author 's Prognosis f o r t h e
Future .

With regard t o a t r u l y new
generat ion of programming languages i n
wide u s e t o support p a r a l l e l i s m by t h e
year 2000 , the chances a r e v e r y s l i m .
While t h e r e may be b e t t e r p l aces t o
s t a r t augnenting languages, (e .g . ,
Occam), f e a t u r e s t o e x p l i c i t l y support
p a r a l l e l i s m w i l l continue t o be added
t o FORTRAN, Pascal , Ada, C, e t c . I t is
extremely doubtful a more complete s e t
of p r o t e c t i o n mechanisms, t o prevent or
d e t e c t the 'I ove rpar a1 l e 1 i za t ion" of a
program, can or w i l l be developed,
f i e l d e d , and massively supported i n
t h i s century. Remember t h a t Ada i s
r e a l l y a 1 9 7 0 ' s v in t age language and,
only because of huge investments by DOD
and Indus t ry , and unabashed arm
twi s t ing by t h e DOD and o t h e r NATO
defense o rgan iza t ions , is Ada now
(t h i r t e e n years l a t e r) a prominent
language. Thus, i f t h e p e r f e c t
p a r a l l e l language was a l r eady on t h e
drawing board, it is doubtful i f i t
would make i t by 2 0 0 0 . While some
people argue t h a t e f f i c i e n t Ada
implementations (i n terms of run-time)
a r e s t i l l d i f f i c u l t today, we can argue
those implementations a r e almost a l l
f o r the same c l a s s of machine, the
s i n g l e i n s t r u c t i o n - s i n g l e d a t a
a r c h i t e c t u r e . The complication i n
g e t t i n g e f f i c i e n t implementations of a
new p a r a l l e l language, and i t s run-time
package on seve ra l d i f f e r e n t p a r a l l e l
a r c h i t e c t u r e s , is much higher than f o r
an e f f i c i e n t Ada compiler s t r a t e g y f o r
the simple Von Neumann computer.

This next p r o j e c t i o n is easy.
The author has no doubts t h e r e be
a s e t of e f f i c i e n t l y implemented and
e f f i c i e n t l y execut ing implementations
of ob jec t -o r i en ted languages along t h e

I73

l i n e s of Smalltalk. Unfortunately if
the h is tory repeats i t s e l f , we w i l l
a l s o see even more e f f i c i e n t l y
implemented and e f f i c i e n t l y executing
var ian ts of today's imperative
languages t h a t d o n ' t q u i t e do the job.
(Like FORTRAN-77 supported s t ruc tured
programming, maybe there w i l l be a
FORTRAN-99 for ob jec t-or iented
programming.) However, vendors appear
t o be la tching on t o var ien ts Of
Smalltalk, so there is some hope we
won't repeat the past too f a i t h f u l l y .

The appl icat ion spec i f ic
languages a r e f i n a l l y going t o make
some rea l headway by the next century.
With a l i t t l e more c m i t m e n t and some
adventuresome s p i r i t by the hardware
- and software vendors, there could be a
rash of i n t e l l i g e n t very high-level
languages for everything from machine
tool ing t o prototyping or even f ie ld ing
and maintaining C 3 1 systems or
subsystem components.

O f course it i s knowledge based
systems technology tha t w i l l allow t h i s
t o happen. The "knowledge" b u i l t i n t o
the analogy t o today 's compilation
process w i l l allow for t r u l y "typeless"
language i n spec i f ic appl icat ion a reas .
I t w i l l allow for the "ske le ta l
rout ines" purported i n the mid-1970's
as a way of leveraging product ivi ty and
qua l i ty by having generic subroutines
t a i l o r a b l e t o spec i f ic requirements,
although the t a i l o r i n g w i l l be done by
the i n t e l l i g e n t compiler, and not by
the "programmer, 'I a s o r i g i n a l l y
conceived.

The technology is almost here t o
allow f o r a mixture of communication
media between man and machine (speech,
natural language, mouse, mnues, e t c .)
i n narrow domains. While a pragmatist
should not project u n t i l the technology
is well i n hand, i n t h i s case, i t w i l l
d e f i n i t e l y be a case of "keeping up
with the Jones" a f t e r the f i r s t such
system is f ie lded: the difference in
having it or not having i t is not as
s u b t l e as whether or not a
hardware-sof tware combination supports
bit-map displays or the hardware can
support 1 . 2 vs. 1 . 0 MIPS. By the year
2 0 0 0 , if you don ' t support c a p a b i l i t i e s
l i k e an informal in te r face , "smart"
a s s is tance , I' in t e l 1 i gen t "
monitoring of execution, you w i l l be
closed out of cer ta in appl icat ion
areas .

and

The ro le the hardware w i l l play
in supporting these project ions cannot
be ignored e i t h e r . The c o s t of
workstations tha t can handle full-up
expert systems engineering too ls is

dropping rapidly. A card, not yet on
the open market, can be added t o a
PC-AT t o recognize 1 0 , 0 0 0 spoken words.
In the next f i v e t o ten years, it is a
safe bet tha t hardware of the c lass of
today's b e s t AI workstations, o u t f i t t e d
with the equivalent boards s imilar t o
the above, w i l l be i n the $10K range.
In narrow domains, i f we make e f f i c i e n t
use of the resources, the appl icat ion
spec i f ic languages can r e a l l y "take
o f f " and f u l f i l l the product ivi ty and
q u a l i t y promises of the l a s t f i f t e e n
years.

With regard t o the
general-purpose languages t o put
together la rge systems (the current i n
vogue term is Very High-Level, Wide
Spectrum Languages), i t is almost
c e r t a i n t h a t , although d i r e l y needed,
the pragmatic view is t h a t they w i l l
not be ava i lab le i n the e a r l y
twenty-f i rs t century. However, for the
moment, even though h i s t o r y is against
u s i n programming languages, l e t ' s
recognize tha t in other d i sc ip l ines ,
technology project ions a r e usual ly
overoptimistic r e l a t i v e t o ac tua l
progress i n the f i rs t f i v e years, but
pessimist ic r e l a t i v e t o ac tua l progress
made i n the f ive- to-f i f teen year
bracket of the fu ture . Taking tha t
view, there a r e s o many pieces of the
theory and technology puzzle being
worked throughout the world t h a t an
opt imist would have t o argue a l l we
need i s more funding and more focus t o
p u l l off these Very High-Level, Wide
Spectrum Languages.

Some pieces of the problem could
be solved (a t l e a s t p a r t i a l l y) with the
logic-oriented s t y l e of languages.
Concept modeling requirements analysis
and prototyping have already been
demonstrated with t h i s s t y l e [DAY 871.
I f the goals of the F i f t h Generation
thrus t i n Japan a r e successful , tha t
hardware, coupled with t h i s s t y l e , may
be a l l t h a t ' s needed as the seed corn
for a wide c l a s s of appl icat ions.

The Knowledge-Based Software
Assis tant (KBSA) [Green 831 attempts an
evolutionary approach t o a
revolutionary paradigm f o r developing
and supporting la rge software systems.
The approach is t o uni te a s e t of
i n t e l l i g e n t knowledge-based t o o l s
v i s i b l e t o the user (requirements
as sist ant , specif ica t ion a s s is t a n t ,
performance a s s i s tan t , pro j ec t
management a s s i s t a n t , e t c . 1 with each
o ther and some tools not so v i s i b l e t o
the user (a c t i v i t i e s coordinator.
p ro jec t data-base b u i l d e r) . The
uni f ica t ion would p r d u c e a s ing le too l
which a s s i s t s i n a l l aspects of the

I74

sof tware developrent and cap tu res
knowledge, about t h e s p e c i f i c sof tware
system being b u i l t , t h a t normally
d isappears (design dec i s ions , a lgor i thm
s e l e c t i o n and implementation s t r a t e g y ,
e tc . . This knowledge is inva luable
f o r t h a t system's f u t u r e maintenance
and upgrades, f o r reducing t h e work
necessary t o b u i l d similar systems i n
t h e f u t u r e , and f o r accommodating t h e
i n e v i t a b l e personnel tu rnovers on a
long-term p r o j e c t . I f success fu l ,
someday (not i n this century) f o r a
s p e c i f i c c l a s s of very complex systems,
such a s a i r t r a f f i c c o n t r o l , one may
on ly need t o spec i fy requirements f o r
the grandson of a system previous ly
b u i l t with t h i s paradigm and have a
KBSA do the rest . This would be the
u l t i m a t e i n high-level languages.

To r each the u l t ima te goal of t he
KBSA is obviously very ambitious and,
while var ious compoents a r e proving ou t
today (P ro jec t Mangement, Requirements
A s s i s t a n t , Spec i f i ca t ion Ass i s t an t .
Performacne Ass i s t an t , and even a
rudimentary framework t o connect t he
independent components o r " f a c e t s " i n
KBSA te rms) , much more work needs t o be
done. However, t h e r e appears t o be
renewed i n t e r e s t on both s ides of the
A t l a n t i c i n one of t h e key a reas ,
formal (or mechanical) t r a n s l a t i o n .
Some o t h e r keys t o t h e KBSA paradigm
(e.g., d i s t r i b u t ed 'mow 1 ed g e
a c q u i s i t i o n , t r u t h maintenance) a r e
necessary f o r many o t h e r a p p l i c a t i o n s
i n knowledge-based systems and a r e a l s o
being worked. It is hoped w e can
r e v i s i t t h e success t h i s new paradigm
i n f if teen-to-twenty years

I V . Conclusion

His tory is a g a i n s t r ap id change i n
programming languages. However, t o
meet t h e sof tware cha l lenges of t h e
next century, cha l lenges which a r e
inseparable from and requi red f o r
advancements i n many f i e l d s , w e must
make some revo lu t iona ry changes. I f w e
r e a l l y p u t our minds t o i t and focus
our a t t e n t i o n on f u r t he r ing
advancements, r a t h e r than succumbing t o
temptation and d i s s i p a t i n g our
i n t e l l e c t u a l and f i n a n c i a l resources by
t r y i n g t o accommodate each s t e p forward
i n almost every e x i s t i n g programming
language, w e can o r c h e s t r a t e and f i e l d
t h i s very necessary r evo lu t ion .

BIBLIOGRAPHY

1. [B I R D 871 Bi rd , Richard, "A
Calculus of Functions f o r Program
Deviation, 'I Technical Monograph PRG-64.
December 1967, Oxford Univers i ty .

2 . [BROO 871 Brooks, Freder ick P . *
"No S i l v e r Bu l l e t : Essence and
Accidents of Software Engineering, 'I

Computer, Apr i l 1987, pp 10-19.

3 . [DAY 871 Day, William. e t a l ,
Loaic Proaramminq A l i ed t o
R e uirements and s p e 2 f i c a t ion=
RADqC-TR-87-260, December 1987.

4 . [FAUG 861 Faught, William S. .
"Appl ica t ions of A I i n Engineering, 'I
Computer, Volume 1 9 . Number 7, Ju ly
1986, pp 17-27.

5. [GENE 851 Geneserth, Michael R .
and Mathew L. Ginsberg, "Logic
Programming, Communications of t he

~ ACM, September 1985, Volume 287Number
9 , pp 933-941.

6 . [GREE 831 Green, Corde l l , e t a l ,
Report E a Knowledqe-Based Software
Ass i s t an t , RADC-TR-83-195, August 1983.

7. [HOAR 871 Hoare, C. A. R. . "An
Overview of Some Formal Methods f o r
Program Design, Computer, September
1987, pp 85-91.

8. [HWAN 871 Hwang, Kai, e t a l ,
"Computer Arch i t ec tu res f o r A I
Processing, 'I Computer, Volume 2 0 ,
Number 1, January 1987, PP 1 9 - 1 7 .

9 . [I N G A 781 I n g a l s , Daniel , "The
Smal l ta lk - 76 Proqramming System,"
Conference Record of fhe F i f t h Annual
ACM S osium E Pr inc i l e s of
ProgrammEE Lanquaqes, J anua r t 23-25,
1978

-

1 0 . [MATT 871 Matthews, Gene, e t al,
"Single Chip Processor Runs LISP
Environments, Computer Desiqn, May 1,
1987, pp 69-76.

11. [SAMM 691 Sammet, Jean E . #
Programminq Lan ua es: His tory
Fundamentals, w t i c e - H a 1 1 .
1 2 . [SAMM 721 Sammet, Jean E . ,
"Programming Languages : His tory and
Future, 'I Communications of the G,
J u l y 1972, Volume 15, N u m b e r 7, pp
6 0 1 - 6 1 0 .

13. [TICH 871 Tichy, Walter F . , "What

175

Can Software Engineers Learn from
A r ti f i c i a1 Computer ,
November 1987, pp 43-54.

14. [UNGA 871 Ungar, David and David
Patterson, "What Pr ice Smalltalk, "
Computer, Volume 20, N u m b e r 1, January

I n t e l 1 i gence? 'I ,

1987, pp 67-74.

15. [WIL 87 I W i l son, Ron,
"Object-oriented Languages Reorient
Programming Techniques, I' Computer
Desiqn, November 1, 1987, pp 52-62.

16. [WULF 801 Wulf, W i l l i a m A.,
"Trends i n the Design and
Implementation of Programming
Languages, 'I Computer, January 1980, pp
14-23.

17. [YOK 0811 Yokoi, T., e t a l ,
"Logic Programming and a Dedicated
High-Performance Personal Computer, 'I
Proceedinqs of In t e rna t iona l Conference
-- on F i f t h Generation Computer Systems,
October 19-22, 1981.

176

