
ar
X

iv
:c

s/
04

05
08

0v
1

 [c
s.

P
L]

 2
3

M
ay

 2
00

4

Reactive Programming in Standard ML

Riccardo R. Pucella

Bell Laboratories
Lucent Technologies

600 Mountain Avenue
Murray Hill, NJ 07974 USA

riccardo@research.bell-labs.com

Abstract

Reactive systems are systems that maintain an ongoing
interaction with their environment, activated by receiving
input events from the environment and producing output
events in response. Modern programming languages de-
signed to program such systems use a paradigm based on
the notions of instants and activations. We describe a li-
brary for Standard ML that provides basic primitives for
programming reactive systems. The library is a low-level
system upon which more sophisticated reactive behaviors
can be built, which provides a convenient framework for
prototyping extensions to existing reactive languages.

1 Introduction

We consider in this paper the problem of programming
applications containing reactive subsystems. A reactive sys-
tem is defined as a system that maintains an ongoing in-
teraction with its environment [21], activated by receiving
input events from the environment and producing output
events in response. Typical examples of reactive systems
are user interfaces, required to coordinate the various user
requests (from the keyboard, the mouse and other devices)
with information coming from the application (enabling or
disabling input components and so on). Such systems gen-
erally decompose into independent parallel components co-
operating to solve a given task, and exhibit a high degree of
concurrency [16]. Because of this, programming reactive
systems using traditional sequential languages can be diffi-
cult, and one often turns to concurrent languages to simplify
the programming task.

In the past decade, a class of languages has emerged
specifically for programming reactive systems, including
imperative languages such as Esterel [5] and declarative
languages such as Signal [20] and Lustre [12]. Those lan-
guages are directly based on the model of reactive systems

as being activated by input events and producing output
events. Their approach to programming reactive systems,
referred to as thereactive paradigm, is to divide the life
of a reactive system intoinstants, which are the moments
where the system reacts. They allow the programmer to
write statements that depend on instants. For example, a
program may wait for the third instant where a given event
occurs, and so on. Instants provide a notion oflogical time
to which programs may refer. This is in contrast to lan-
guages providing a notion of absolute (or real) time, for ex-
ample Ada [1] with itsdelay statement.

This approach to programming reactive systems via in-
stants has an interesting consequence. Instants act as a
global logical time for a program, and thus the end of in-
stants provide a consistent configuration of the state of the
program, where one can make decisions before the next ac-
tivation. This in turns allows for a clean specification of
preemption, whereby one reaction can abort another reac-
tion executing in parallel [4].

This paper describes a library for the programming
language Standard ML (SML) [24] that implements the
essence of the reactive paradigm, as described by Boussinot
[6]: the notions of instants and activations. It permits the
definition of SML expressions that can be activated and that
specify control points denoting the end of instants.

The original purpose of the library was to help develop
a reactive interface language for connecting user interface
components, independently of the underlying window man-
agement system. The library also has features that make it
interesting in its own right. It is built from a very small set
of primitives, simplifying the task of analyzing programs
using the library. It provides a framework for reactivity that
fits naturally with the mostly-applicative programming style
of SML. It can be implemented without sizable extensions
to the language (none if the implementation provides first-
class continuations or a similar facility). More importantly,
it provides an opportunity to study the interaction of reactive

http://arxiv.org/abs/cs/0405080v1

primitives with features missing from most existing reactive
languages: higher-order functions and recursion.

The library is intended as a low-level framework im-
plementing basic reactive functionality upon which one
may build more sophisticated machinery. It can be used
to investigate and prototype extensions to existing higher-
level reactive languages, extending for example Esterel with
higher-order facilities. Compilation for higher-level reac-
tive languages is non-trivial, and using the reactive library
as a target language for compilation, one can rapidly pro-
totype extensions. Once a useful extension has been iden-
tified, effort can be put into finding a compilation process
that generates code as efficient as possible.

The paper is organized as follows: the next section de-
scribes the primitives implemented by the library; Section
3 provides an example of reactive code written using the
library; Section 4 gives the operational semantics of the re-
active primitives; Section 5 compares the library to existing
reactive frameworks, and Section 6 concludes with a dis-
cussion of future work.

2 The reactive library

In this section, we describe the reactive library and pro-
vide simple examples. Primitives for creating and activat-
ing basic reactive expressions are given, along with com-
binators to create new reactive expressions by combining
existing ones.

2.1 Basic reactive expressions

The central notion defined by the reactive library is that
of a reactive expression. A reactive expression is funda-
mentally an SML expression that defines instants. The ba-
sic primitives are shown in Figure 1. The functionrexp
creates a reactive expression out of its argument (aunit
-> unit function). Activating the reactive expression will
evaluate the argument ofrexp until a call tostop, which
marks the end of the current instant. The next activation
of the reactive expression will resume the evaluation from
the last point where astop was called, until either another
stop is called or the evaluation terminates. As a simple
example, consider the following:

val exp = rexp (fn () => (print "FIRST\n";
stop();
print "SECOND\n"))

This code defines a reactive expressionexp that prints
FIRST the first time it is activated, andSECOND the second
time it is activated. After the second activation, the reactive
expression isterminated.

To activate a reactive expression from SML code, one
applies the functionreact, which returnstrue if the ex-
pression is terminated andfalse otherwise. Activating a

terminated expression has no effect. The functiondup cre-
ates a copy of the reactive expression, with its current state.
Here’s a sample session with the above example:

- react (exp);
FIRST (* first instant *)
false : bool
- val copy = dup (exp); (* make a copy *)
val copy = - : rexp
- react (exp);
SECOND (* second instant *)
true : bool (* rexp terminates *)
- react (exp);
true : bool
- react (copy); (* activate the copy *)
SECOND
true : bool

The functionreactT repeatedly activates the reactive
expression until it terminates.

A reactive expression can furthermore relinquish control
to another reactive expression, via the functionactivate.
When a reactive expression callsactivate on a reactive
expressione, it effectively behaves ase until e terminates,
at which point the reactive expression continues evaluation.
For example, activating the reactive expression

rexp (fn ()=> (activate (exp);
print "DONE\n"))

activatesexp, stopping whenexp stops. Onceexp termi-
nates, evaluation of the reactive expression continues and
DONE is printed before the reactive expression itself termi-
nates.

2.2 Combinators

Reactive expressions with a more complex behavior are
created via combinators, which take existing reactive ex-
pressions and produce new ones. Figure 2 presents the most
important combinators implemented by the library.

The combinatormerge takes two reactive expressions
e1 ande2 and returns a new reactive expressione with the
following behavior: whene is activated, it activatese1 and
then e2. The reactive expressione terminates when both
e1 ande2 terminate. For example, consider the reactive ex-
pression:

merge (rexp (fn ()=> (print "1"; stop (); print "2")),
rexp (fn ()=> (print "A"; stop (); print "B")))

This reactive expression will print1A at the first instant,
and2B at the second, then terminate. Note that the order of
activation of the branches of themerge is determined. This
ensures deterministic evaluation of the reactive expression.
Alternate orders of evaluation can be specified by defining
micro-instants (see Section 2.4).

The combinatorrif takes a boolean-valued function
and two reactive expressionse1 ande2, and returns a new
reactive expressione with the following behavior: whene is
activated, the boolean-valued function is evaluated, and de-
pending on the resulting value, eithere1 or e2 is activated.

val rexp : (unit -> unit) -> rexp (* create a basic reactive expression *)

val stop : unit -> unit (* stop execution of current instant *)

val react : rexp -> bool (* activate a reactive expression *)
val reactT : rexp -> unit (* activate until termination *)

val dup : rexp -> rexp (* duplicate reactive expression *)
val activate : rexp -> unit (* relinquish control to reactive expression *)

Figure 1. Reactive primitives

The reactive expressione terminates if the selected reactive
expression terminates. Note that the boolean-valued func-
tion is evaluated ateveryinstant.

The other combinators are are defined in terms of basic
reactive expressions, and the combinatorsmerge andrif.
Consider for example the combinatorloop. It takes a reac-
tive expressione and creates a new reactive expression with
the following behavior: upon activation, it saves a copy of
e at its current state, and activates a copy of that saved ex-
pression; if that copy terminates, a new copy of the saved
expression is created and activated. We initially save a copy
of e and work exclusively on that copy in order not to be
affected by external activations ofe by other reactive ex-
pressions. The behavior just described can be implemented
as follows:

fun loop (e) = let val saved_e = dup (e)
fun l () = (activate (dup(saved_e));

l ())
in

rexp l
end

2.3 Preemption

Preemption refers to the possibility for one reactive ex-
pression to force the termination of another reactive expres-
sion executing in “parallel” [4], i.e. in another branch of
a merge. This is achieved in our framework by the SML
exception mechanism. The following example shows how
one branch of a merge can force termination of the whole
merge expression:

exception Abort
let val m_exp =

merge (rexp (fn ()=> (print "FIRST\n";
stop ();
raise Abort)),

loop (rexp (fn ()=> (print "SECOND\n";
stop ()))))

in
rexp (fn ()=> (activate (m_exp) handle Abort => ()))

end

Since the second branch of themerge is aloop, it never
terminates, and thus themerge would never terminate if a
preemption was not performed by the first branch.

2.4 Micro-instants

It is sometimes necessary to consider a subdivision of
the notion of instant, to provide for a finer level of control.
The following primitives are used to manage those so-called
micro-instants:

val suspend : unit -> unit
val close : rexp -> rexp

Micro-instants are created by calling the function
suspend instead of stop. A reactive expression
that calls the functionsuspend is said to besuspended. A
suspended reactive expression behaves just like a stopped
one, unless it is wrapped with aclose combinator. Upon
activation, a reactive expression created via aclose
combinator will repeatedly activate the wrapped expres-
sion until it stops or terminates. Whereas thesuspend
function splits instants into micro-instants, theclose
combinator performs the dual operation of combining the
micro-instants together into a single instant.

For example, consider the following reactive expression:

close (merge (rexp (fn ()=> (print "SUSPENDING ";
suspend();
print "1"; stop ();
print "2")),

rexp (fn ()=> (print "A"; stop ();
print "B"))))

This reactive expression will printSUSPENDING A1 at the
first instant, and2B at the second, then terminate. The
merge combinator activates the first reactive expression,
which suspends after printingSUSPENDING, and then ac-
tivates the second reactive expression, printingA. At this
point, themerge is suspended, because its first branch is.
Theclose combinator forces the completion of the sus-
pended reactive expressions, and thus the first branch re-
sumes its activation, printing1 and then stopping. The
second branch is already stopped, so themerge and the
close stop. At the next instant,2B is printed in the stan-
dard manner, and termination follows.

There is an implicitclose wrapping the reactive ex-
pression to whichreact is applied. It is therefore impos-
sible to witness micro-instants at the level of the application
that uses the reactive expression.

val merge : rexp * rexp -> rexp (* parallel activation *)

val rif : (unit -> bool) * rexp * rexp -> rexp (* conditional activation *)

val halt : unit -> rexp (* simply stop at every instant *)
val nothing : unit -> rexp (* terminate immediately *)
val loop : rexp -> rexp (* reactivate rexp upon termination *)
val terminate : (unit -> bool) * rexp -> rexp (* activate rexp if condition is false *)
val init : (unit -> unit) * rexp -> rexp (* call fn before every activation of rexp *)
val await : (unit -> bool) * rexp -> rexp (* block activation of rexp until true *)
val when : (unit -> bool) * rexp -> rexp (* activate rexp when true else stop *)
val repeat : int * rexp -> rexp (* reactivate rexp a ’n’ times *)

Figure 2. Reactive combinators

A common use forsuspend and micro-instants is to
suspend the activation of a reactive expression until infor-
mation has been collected from the activation of other reac-
tive expressions. For example, one can implement various
broadcast communication mechanisms between reactive ex-
pressions using micro-instants [6, 10].

3 An example: A simple keypad controller

Let us now consider an example of reactive code in some
detail. Interesting applications of the reactive approachare
found in the programming of widgets for user interface
toolkits, such as eXene [17]. Intuitively, a widget is an el-
ement of a user interface that encapsulates some behavior.
Basic widgets include buttons and text editing fields, and
menus. More complex widgets can be build up from other
widgets, like dialog boxes and so on. The obvious advan-
tage of encapsulating behavior inside widgets is that they
can be reused in different applications.

Programming a new widget involves selecting the wid-
gets it will be built from and then programming the control-
ling behavior of the widget (also know as the controller),
taking into account the input from its sub-widgets and the
expected interface of the widget. The key observation is that
the controller is fundamentally a reactive system.

Suppose we want to construct a widget representing a
numeric keypad made up of

• ten push buttons for the digits;

• a push button for CLEAR, that resets the number cur-
rently entered to 0;

• a push button for ENTER, that prints the number cur-
rently entered and then resets it to 0.

Suppose moreover that we parameterize the widget with re-
spect to an integern, representing the size of the number
buffer (the number of digits it will accept).

Here is how we could represent the behavior of the key-
pad using the reactive library. We program the keypad con-
troller as a reactive expression. We assume a mechanism

that waits for windowing system events (such as button
presses) and activates the controller if an event concerns
it. To access the state of the world, we assume we have
boolean-valued functions

val kDigitPressed : unit -> bool
val kClearPressed : unit -> bool
val kEnterPressed : unit -> bool

that inform us if the corresponding button has been pressed
in the current instant and a function

val kDigitValue : unit -> int

that returns the last digit pressed1.
We define a reactive expression for every button of the

keypad. The full controller will simply be a merge of all
these reactive expressions. This approach simplifies the task
of adding new buttons to the keypad. The code for the con-
troller is given in Figure 3.

The reactive expressionenter rexp corresponding to
the ENTER button is simple: At every instant, we check if
ENTER has been pressed, if so, we print the number cur-
rently entered, and then clear it and terminate. Otherwise,
we stop and wait for the next instant. The reactive expres-
sion clear rexp handling CLEAR is the same, except
that we do not print the number currently entered. The re-
active expressiondigit rexp handling a digit waits for
a digit to be pressed, and computes the new number before
terminating.

Recall that the keypad is parameterized by an integern

representing the size of the number buffer. We define a re-
active expressiongetnum rexp that will accumulate ex-
actly n digits by activatingdigit rexp exactlyn times
and then doing nothing for the subsequent instants aftern

digits have been pressed.
All of these expressions are gathered together to form the

full controller, which is obtained by applying the function
mkController to an integer representing the desired size

1No usable user interface toolkit would require us to access the state
of the interface via such functions. We simply abstract awayfrom the
problem of communicating windowing system events via this artificial in-
terface.

fun mkController (n) =
let exception Clear

val num = ref (0)
fun clear () = (num := 0; raise Clear)
val enter_rexp = rif (kEnterPressed,

rexp (fn ()=> (print (Int.toString (!num));
clear ())),

halt ())
val clear_rexp = rif (kClearPressed, rexp (clear), halt ())
val digit_rexp = rif (kDigitPressed,

rexp (fn ()=> (num:=!num*10+kDigitValue ())),
halt ())

val getnum_rexp = rexp (fn ()=> (activate (repeat (n,digit_rexp));
activate (halt ())))

in
loop (rexp (fn ()=> activate (enter_rexp || clear_rexp || getnum_rexp)

handle Clear => ()))
end

Figure 3. Definition of the keypad controller

of the number buffer. The core of the controller is the reac-
tive expression that activatesenter rexp, clear rexp
andgetnum rexp concurrently2. Sincegetnum rexp
never terminates, the merged expression never terminates
by itself. However, the functionclear is used to raise a
Clear exception. When ENTER or CLEAR is pressed, the
exception is raised and intercepted by the exception handler
of the main reactive expression; the expression terminates
and loops, awaiting for another button press.

Suppose we wish to add a NEG button to the keypad, that
negates the number currently entered. We need only provide
a functionkNegPressed, and a new reactive expression
to handle this case:

val neg_rexp = rif (kNegPressed,
rexp (fn ()=> (num := ˜(!neg))),
halt ())

We can then addneg rexp to the general merge of the
keypad controller. It is also possible to parametrize the con-
troller over the buttons and corresponding reactive expres-
sions used to implement them.

4 Operational semantics

We describe the semantics of reactive expressions in
terms of a simple functional language, in the spirit of
[3, 27]. The syntax of the language is given by the following
grammar:

M = x | () |M1 M2 | (M1,M2) | (M1;M2)

| (fn x => M) | (rec f(x) => M)

wherex andf are alphabetic identifiers. The semantic ob-
jects are given in Figure 4. As in [3], the set of expressions
is a superset of both the set of values and the set of lexical

2The operator|| is simply an infix version ofmerge, that allows for
a clearer presentation of nested merged reactive expressions.

phrases. The set of identifiers includes all possible alpha-
betic identifiers, including the constructors and basic val-
ues. The constructors and basic values define the reactive
behavior of the language. They have no special syntax be-

yond their existence as identifiers. The notation
fin
7−→ is used

to denote a finite mapping.
A reactive expression is tagged with a unique reactive

ID: whenever a new reactive expression is created viarexp
or by applying a combinator to existing reactive expres-
sions, a new reactive ID is allocated and associated to the
reactive expression. A reactive environmentR S is used to
store information relating to reactive expressions. The map
R holds the bindings between reactive IDs and actual re-
active expressions, stored as constructed values. The map
S stores the current state of reactive expressions, indexed
by reactive ID. The state of a reactive expression is either
stopped, suspended or terminated. GivenM a finite map,
we use the notationM [m : v] to denote the new map de-
fined by:

M [m : v](m′) =

{

M(m′) if m′ 6= m

v if m′ = m

The semantics is described used Plotkin’s Structural Op-
erational Semantics [26], and extends the semantics of Re-
active C given in [7].

The semantics we describe has two levels. The first level
is a semantics for the core language, given in Figure 5, ex-
pressed as a conventional reduction rule semantics. The
semantics of the core language is complicated by the fact
that expressions can occur in two contexts: the normal se-
quential context, and in the context of a reactive expression
(captured by arexp constructor). The reduction relation

e,R S
α

−→ e′, R′ S′

denotes the reduction of expressione into expressione′,
possibly transforming the reactive environmentR S into

r ∈ ReactiveId
x, y, z, f ∈ Identifier

() ∈ Unit = {()}
c ∈ Constructor= {rexp,merge,rif,close}
b ∈ Basic Value= {stop,suspend,activate,dup}

R ∈ ReactiveSet= ReactiveId
fin
7−→ ConstructedValue

s ∈ State= {STOP,SUSP,END}

S ∈ StateSet= ReactiveId
fin
7−→ State

v ∈ Value= Unit ∪ ReactiveId∪ Constructor∪ ConstructedValue∪
BasicValue∪ Closure∪ ValPair

〈c, v〉 ∈ ConstructedValue= Constructor× Value
(v1, v2) ∈ ValPair= Value× Value

(fn x => e) ∈ Closure= Identifier× Expression
e ∈ Expression= Value∪ Application∪ Identifier∪ ExpPair∪ RecExp

e1 e2 ∈ Application= Expression× Expression
(e1, e2) ∈ ExpPair= Expression× Expression

(rec f(x) => e) ∈ RecExp= Identifier× Expression× Expression
R S ∈ ReactiveEnvironment= ReactiveSet× StateSet

Figure 4. Semantic objects

R′ S′. The reduction is labeled by an actionα: END if
the reduction terminates instantly,STOP if the reduction is
stopped andSUSP if the reduction is suspended. Stopped
and suspended reductions can only occur within the context
of rexp constructed expression.

As we already noted, the only reductions allowed for
the core language in the normal sequential context are ter-
minated reductions (labeledEND). The functionreact is
the only function that may be called from the sequential
context. We do not give the semantics ofreact to un-
clutter the presentation of the rules, butreact behaves as
activate in the sequential context — returningtrue or
false depending on the resulting status of the reactive ex-
pression to which it is applied.

In the context of a reactive expression, the core language
is allowed the full range of labeled reductions. The basic
functionsstop, suspend, activate andreset are
allowed in such a context.

The interesting rules in that part of the semantics are
the rules foractivate, which acts upon reactive expres-
sions (really reactive IDs representing reactive expressions).
The intuitive interpretation ofactivate is to activate the
given reactive expression, which propagates the activation
according to the structure of the reactive expression.

The rules foractivate involve the reduction relation

r, R S
α

7−→ R′ S′

that act on a reactive expression whose ID isr. Again, the
reduction is labeled by an actionα indicating if the reduc-

tion is terminated, stopped or suspended. The intuition be-
hind this reduction relation is that if the reactive expression
denoted byr is stopped, then the activation is not propa-
gated, andactivate returns immediately. If the reaction
is not terminated, then the activation is propagated to the
reactive expression via the reduction

α

=⇒ . The reduction
relation

α

7−→ is not formally necessary, but does greatly
simplify the semantic rules.

The actual activation of reactive expressions is expressed
by the reduction relation

r, R S
α

=⇒ R′ S′

denoting the activation of the reactive expression whose ID
is r. The rule to apply depends on the structure of the
reactive expression, whose constructed value is extracted
from the reactive environment. Again, this reduction rule
is labeled by an actionα indicating if the reaction termi-
nates, stops or suspends. Figure 6 gives the semantics of
reactive expressions. If the reactive expression is arexp
constructed value, the reduction of the expression involves
the reduction of an expression in the core language via

α

−→ transitions.
The semantics of themerge combinator use a function

⋆ on actions, defined as follows:

⋆ SUSP STOP END
SUSP SUSP SUSP SUSP
STOP SUSP STOP STOP
END SUSP STOP END

e1, R S
α

−→ e′
1
, R′ S′

e1 e2, R S
α

−→ e′
1
e2, R′ S′

e,R S
α

−→ e′, R′ S′

v e,R S
α

−→ v e′, R′ S′

e1, R S
α

−→ e′
1
, R′ S′

(e1, e2), R S
α

−→ (e′
1
, e2), R′ S′

e,R S
α

−→ e′, R′ S′

(v, e), R S
α

−→ (v, e′), R′ S′

e1, R S
α

−→ e′
1
, R′ S′

(e1; e2), R S
α

−→ (e′
1
; e2), R′ S′

e1, R S
α

−→ v, R′ S′

(e1; e2), R S
α

−→ e2, R′ S′

(fn x => e) v, R S
END
−→ e{v/x}, R S

(rec f(x) => e), R S
END
−→ (fn x => e{(rec f(x) => e)/f}), R S

r 6∈ dom(R)

c v, R S
END
−→ r,R[r : 〈c, v〉] S[r : STOP]

r,R S
END
7−→ R′ S′

activate(r), R S
END
−→ (), R′ S′

r,R S
α

7−→ R′ S′ α 6= END

activate(r), R S
α

−→ activate(r), R′ S′

stop(), R S
STOP
−→ (), R S suspend(), R S

SUSP
−→ (), R S

R(r) = 〈c, v〉 S(r) = s r′ 6∈ R

dup(r), R S
END
−→ r′, R[r′ : 〈c, v〉] S[r′ : s]

S(r) = END

r,R S
END
7−→ R S

S(r) 6= END r,R S
α

=⇒ R′ S′

r,R S
α

7−→ R′ S′

Figure 5. Semantics of core language

4.1 Implementation

The implementation of the library is a direct transla-
tion of the operational semantics. The core of of the im-
plementation is a functionstep that plays the role of the
=⇒ transition in the semantics. It is used to activate a reac-
tive expression and returns the state of the expression after
the activation. Every basic combinator may be expressed by
the step function and the basic reactive expression con-
structor, by simply defining it via its semantic reduction
rules. We therefore only need to concentrate on the imple-
mentation ofstep, stop andsuspend.

The library was implemented with the Standard ML of
New Jersey compiler [2]. The compiler providescallcc
[22], an extension to SML that allows the expression of
powerful control abstraction in a typed setting. It lets one
grab the current continuation of the evaluation of an expres-
sion as a first-class object and resume it at will.

A reactive expression is implemented as a tuple contain-
ing the continuation of the reactive expression and the cur-
rent state of the expression. Callingstep on the tuple sim-
ply throws the stored continuation to resume the evaluation

of the expression, after saving the current continuation. This
latter continuation will be thrown ifstop is called from the
reactive expression code. The functionstop saves the cur-
rent continuation of the reactive expression in the tuple, and
throws the continuation saved by thestep function, resum-
ing the evaluation of the code callingstep. The function
suspend is similarly implemented. The technique used is
analogous to the one used by Wand [29] and Reppy [27] to
implement concurrent threads via continuations.

5 Comparison with other reactive frame-
works

The library described in this paper evolved from a de-
sire to port the reactive framework of Reactive C [6] to the
higher-order language SML. It is instructive to compare our
system against both the original Reactive C and its deriva-
tive, the Java toolkit SugarCubes [11]. We also compare the
library to various other frameworks for programming reac-
tive systems.

R(r) = 〈rexp, v1〉 v1 (), R S
α

−→ e,R′ S′ α 6= END

r,R S
α

=⇒ R′[r : 〈rexp,(fn () => e)〉] S′[r : α]

R(r) = 〈rexp, v1〉 v1 (), R S
END
−→ v, R′ S′

r,R S
END
=⇒ R′ S′[r : END]

R(r) = 〈merge, (r1, r2)〉 S(r) 6= SUSP r1, R S
α1
=⇒ R′ S′ r2, R′ S′

α1
=⇒ R′′ S′′

r,R S
α1 ⋆ α2
=⇒ R′′ S′′[r : α1 ⋆ α2]

R(r) = 〈merge, (r1, r2)〉 S(r1) = S(r2) = SUSP r1, R S
α1
=⇒ R′ S′ r2, R′ S′

α1
=⇒ R′′ S′′

r,R S
α1 ⋆ α2
=⇒ R′′ S′′[r : α1 ⋆ α2]

R(r) = 〈merge, (r1, r2)〉 S(r1) = SUSP S(r2) 6= SUSP r1, R S
α

=⇒ R′ S′

r,R S
α ⋆ S(r2)
=⇒ R′ S′[r : α ⋆ S(r2)]

R(r) = 〈merge, (r1, r2)〉 S(r1) 6= SUSP S(r2) = SUSP r2, R S
α

=⇒ R′ S′

r,R S
S(r1) ⋆ α

=⇒ R′ S′[r : S(r1) ⋆ α]

R(r) = 〈rif, (v, r1, r2)〉 S(r) 6= SUSP v (), R S
END
−→ true, R′ S′ r1, R′ S′

α

=⇒ R′′ S′′

r, R S
α

=⇒ R′′ S′′[r : α]

R(r) = 〈rif, (v, r1, r2)〉 S(r) 6= SUSP v (), R S
END
−→ false, R′ S′ r2, R′ S′

α

=⇒ R′′ S′′

r, R S
α

=⇒ R′′ S′′[r : α]

R(r) = 〈rif, (v, r1,−)〉 S(r1) = SUSP r1, R S
α

=⇒ R′ S′

r,R S
α

=⇒ R′ S′[r : α]

R(r) = 〈rif, (v,−, r2)〉 S(r2) = SUSP r2, R S
α

=⇒ R′ S′

r, R S
α

=⇒ R′ S′

R(r) = 〈close, r′〉 r′, R S
α

=⇒ R′ S′ α 6= SUSP

r,R S
α

=⇒ R′ S′[r : α]

R(r) = 〈close, r′〉 r′, R S
SUSP
=⇒ R′ S′ r,R′ S′

α

=⇒ R′′ S′′

r,R S
α

=⇒ R′′ S′′

Figure 6. Semantics of reactive expressions

5.1 Reactive C and SugarCubes

The principal difference between the formalism in this
paper and the formalisms of both Reactive C and Sugar-
Cubes relates to the programming paradigm embodied by
the underlying languages. The Reactive C formalism ex-
tends the imperative language C [23] where programs are
viewed as sequence of commands. The formalism defines a
“machine” executing a sequence of reactive “instructions”.
The SugarCubes toolkit extends the object-oriented lan-
guage Java [18], and also uses the same imperative ap-
proach.

To illustrate the differences between “reactive instruc-
tions” and reactive expressions as we defined them in this
paper, observe that our framework can be expressed as a

datatype. Following SML’s notation, one may define the
following:

datatype rexp = REXP of unit -> unit
| MERGE of rexp * rexp
| RIF of (unit -> unit) * rexp * rexp
| ...

A reactive expression becomes a tree-shaped data structure,
andreact simply walks the given tree. In fact, the seman-
tics of reactive expressions given in Section 4 uses exactly
this view of reactive expressions as a constructed datatype.
In this framework, the leaves of the structure are basic reac-
tive expressions that contain arbitrarystop,suspend and
activate calls. Sample reactive code would look like:

MERGE (REXP (fn ()=> (print "1"; stop(); print "2")),
REXP (fn ()=> (print "A"; stop(); print "B")))

If we were to implement the reactive “instructions” ap-
proach in SML via a datatype description as above, we
would obtain something like the following:

datatype rinst = EXP of unit -> unit
| STOP
| SUSPEND
| ACTIVATE of rinst
| SEQUENCE of rinst list
| MERGE of rinst
| RIF of (unit -> unit) * rinst * rinst
| ...

We do not allow arbitrary calls tostop andsuspend in
basic expressions. Rather, the end of instants are explicitly
specified in the datatype. Basic expressions always termi-
nate immediately. This means that much of the structure
that in our framework would fit in a basic reactive expres-
sionREXP now needs to be explicitly added to the datatype
(for example, a way to describe sequences of reactive in-
structions). The sample code given above would now look
like:

MERGE (SEQUENCE [EXP (fn ()=> print "1"), STOP,
EXP (fn ()=> print "2")],

SEQUENCE [EXP (fn ()=> print "A"), STOP,
EXP (fn ()=> print "B")])

A reactive library implemented via reactive instructions (us-
ing the model of SugarCubes) is part of the Standard ML of
New Jersey Library3.

The first approach, which we followed in this paper, al-
lows for a clearer syntax, by directly using SML control-
flow primitives (sequencing, local declarations) which need
to be redefined in the datatype for the second approach.
Moreover, the first approach allows one to easily reuse ex-
isting higher-order functions in a reactive way. One can
easily write:

REXP (fn ()=> app (stop o print) ["1","2","3","4"])

which prints one number of the list at every instant until ter-
mination. Expressing this reactive expression in the second
approach seems difficult. On the other hand, the reactive
code in the second approach is easier to analyze (for the
purpose of compilation, for example), since the end of in-
stants is fully characterized by the actual data structure rep-
resenting the reactive code — there is no need to analyze the
control-flow of an arbitrary SML expression callingstop
andsuspend.

5.2 Synchronous languages

Synchronous languages are among the most popular lan-
guages for programming reactive systems. These include
Esterel [5], Lustre [12] and Signal [20]. These languages
are all based on the same notions of instants and activations
that we describe in this paper, but with important additions.
In the case of Esterel, we have the following:

3J. Reppy, Personal communication, 1997.

1. The instants are assumed to take zero time and are
atomic. This is thesynchrony hypothesis.

2. Communication between parallel reactions is done via
broadcast signals, and is instantaneous.

3. Preemption can be triggered by the presence of a spec-
ified signal in the instant under consideration.

These characteristics allow the code for Esterel (and syn-
chronous languages in general) to be efficiently compiled
into a finite-state automaton, which can be translated into
a program in a sequential language. There exists a transla-
tor taking the output of the Esterel compiler into SML code
implementing the corresponding finite-state automaton4.

Our framework does not support the synchrony hypoth-
esis of synchronous languages, and provides no commu-
nication mechanism between various parallel reactions be-
yond shared memory. As such, it does not support com-
pilation into finite-state machines, and can be considered
lower-level than synchronous languages. Boussinot and de
Simone showed in [9] that it is possible to translate a syn-
chronous language into a framework similar to the one de-
scribed in this paper. This justifies our intended goal of us-
ing the library as a target language for experimental exten-
sions to synchronous languages, such as higher-order syn-
chronous languages. These extensions might not preserve
finite-state semantics, but may still be useful as a conve-
nient notation for various types of processes.

Higher-order extensions to synchronous languages in-
clude the work of Caspi and Pouzet [13] on extending the
dataflow synchronous language Lustre with higher-order
functions.

5.3 Fran

The Fran system [15] is a reactive framework for pro-
gramming multimedia animations in Haskell [25]. It defines
the notions of behaviors and events to program reactive an-
imations. A behavior is fundamentally a function of time,
and it is possible to specify behaviors with respect to events.
The principal difference between the Fran approach and the
one in this paper is that Fran is based on a continuous time
model as opposed to our discrete time model divided into
instants.

5.4 Coroutine facilities

Languages providing facilities for defining coroutines
can be used to define a reactive framework such as the one
we present in this paper. For example, the programming
language Icon [19] providesco-expressions, which are ex-
pressions that can be suspended and resumed at a later time.

4J. Riecke, Personal communication, 1997.

When it suspends, a co-expression needs to state to which
other co-expression it is relinquishing control. Our basic
notions of activation and instants can be viewed as a hierar-
chical use of co-expressions.

6 Future work

The interesting questions about the framework presented
in this paper all relate to the interaction between the reactive
formalism and the underlying mostly-functional approach
of SML. For example, the current implementation of the
rif combinator uses a(unit -> unit) function to be
evaluated at every instant to determine which branch of the
reactive conditional to activate. This means that any exter-
nal value used by the test must be a reference.

Possible extensions to the framework include adding pa-
rameters toreact that will be propagated through every
combinator and used byrif during the evaluation of the
conditional test. Dually, we can give a return type to re-
active expressions, so that a value may be returned when
a reaction stops or terminates. One should then augment
themerge combinator with a function specifying how to
combine the values returned by the two branches.

Futher investigations into the interaction between reac-
tivity and higher-order functions will involve the implemen-
tation of the reactive framework as a monad [28] in the
purely functional language Haskell. Work by Claessen [14]
on expressing concurrency as a monad via explicitly inter-
leaved atomic actions closely follow ourmerge combina-
tor. It would also be of interest to embed the reactive frame-
work in a typedλ-calculus, in a way similar to the semantics
of reactivity given in terms of a process calculus in [8].

7 Conclusion

We have described in this paper a reactive library for
SML that implements the reactive paradigm exemplified by
modern languages such as Esterel. The library provides
primitives that capture the essence of the reactive paradigm,
namely the notions of instants and activations. The library
is intended to be a low-level system upon which more so-
phisticated reactive behavior can be built, providing a con-
venient framework for prototyping various higher-level re-
active languages.

Acknowledgments

I wish to thank Frédéric Boussinot and John Reppy
for careful readings of the manuscript, as well as Nevin
Heintze, Hormoz Pirzadeh, Jon Riecke, Michael Sperber,
Walid Taha and the anonymous referees for useful com-
ments on various aspects of this work.

References

[1] Ada 9X Mapping/Revision Team.Ada 95 Reference Manual. Inter-
metrics, Inc., 1995. ISO 8652:1995 (E).

[2] A. W. Appel and D. B. MacQueen. A Standard ML compiler.
In Functional Programming Languages and Computer Architecture,
volume 274 ofLecture Notes in Computer Science, pages 301–324.
Springer-Verlag, 1987.

[3] D. Berry, R. Milner, and D. N. Turner. A semantics for ML con-
currency primitives. InConference Record of the Nineteenth Annual
ACM Symposium on Principles of Programming Languages, pages
119–129. ACM Press, 1992.

[4] G. Berry. Preemption in concurrent systems. InProceedings of
FSTTCS’93, volume 761 ofLecture Notes in Computer Science,
pages 72–93. Springer-Verlag, 1993.

[5] G. Berry and G. Gonthier. The Esterel synchronous programming
language: Design, semantics, implementation.Science of Computer
Programming, 19(2):87–152, 1992.

[6] F. Boussinot. Reactive C: An extension of C to program reactive
systems.Software — Practice and Experience, 21(4):401–428, 1991.

[7] F. Boussinot. RC semantics using rewriting rules. Internal Report
18-92, ENSMP-CMA, 1992.

[8] F. Boussinot. Reactivity and atomicity. Internal Report 20-93,
ENSMP-CMA, 1993.

[9] F. Boussinot and R. de Simone. The SL synchronous language. IEEE
Transactions on Software Engineering, 22(4):256–266, 1996.

[10] F. Boussinot and L. Hazard. Reactive scripts. InProceedings
RTCSA’96. IEEE, 1996.

[11] F. Boussinot and J-F. Susini. The SugarCubes
tool box — definition, April 1997. Available at
http://www.inria.fr/meije/rc/SugarCubes/.

[12] P. Caspi, D. Pilaud, N. Halbwachs, and J. Plaice. Lustre, a declara-
tive language for programming synchronous systems. InConference
Record of the Fourteenth Annual ACM Symposium on Principlesof
Programming Languages. ACM Press, 1987.

[13] P. Caspi and M. Pouzet. Synchronous Kahn networks. InProceed-
ings of the 1996 ACM SIGPLAN International Conference on Func-
tional Programming. ACM Press, 1996.

[14] K. Claessen. A poor man’s concurrency monad. To appear in Journal
of Functional Programming, 1997.

[15] C. Elliott and P. Hudak. Functional reactive animation. In Proceed-
ings of the 1997 ACM SIGPLAN International Conference on Func-
tional Programming. ACM Press, 1997.

[16] E. R. Gansner and J. H. Reppy. A foundation for user interface con-
struction. In B. A. Myers, editor,Languages for Developing User
Interfaces, chapter 14, pages 239–260. Jones and Bartlett Publishers,
1992.

[17] E. R. Gansner and J. H. Reppy. A multi-threaded higher-order user
interface toolkit. In Bass and Dewan, editors,User Interface Soft-
ware, volume 1 ofSoftware Trends, pages 61–80. John Wiley &
Sons, 1993.

[18] J. Gosling, B. Joy, and G. Steele.The Java Language Specification.
Addison Wesley, 1996.

[19] R. Griswold and M. Griswold.The Icon Programming Language.
Peer-to-Peer Communications, Inc., third edition, 1996.

[20] P. Le Guernic, A. Benveniste, P. Bournai, and T. Gautier. Signal:
A data-flow oriented language for signal processing.IEEE-ASSP,
34(2):362–374, 1986.

[21] D. Harel and A. Pnueli. On the development of reactive systems. In
Logic and Models of Concurrent Systems, pages 477–498. Springer-
Verlag, 1985.

[22] R. Harper, B. F. Duba, and D. MacQueen. Typing first-class contin-
uations in ML. Journal of Functional Programming, 3(4):465–484,
1993.

[23] B. W. Kernighan and D. Ritchie.The C Programming Language.
Prentice-Hall, 1988.

[24] R. Milner, M. Tofte, R. Harper, and D. MacQueen.The Definition of
Standard ML (Revised). The MIT Press, Cambridge, Mass., 1997.

[25] J. Peterson and K. Hammond. Report on the programming language
Haskell, version 1.4. Technical report, Department of Computer
Science, Yale University, 1997. Available fromhttp://www.
haskell.org.

[26] G. D. Plotkin. A structural approach to operational semantics. Tech-
nical Report DAIMI FN-19, University of Aarhus, 1981.

[27] J. H. Reppy.Higher-Order Concurrency. PhD thesis, Department of
Computer Science, Cornell University, 1992. Available as Technical
Report TR 92-1285.

[28] P. Wadler. Monads for functional programming. In J. Jeuring and
E. Meijer, editors,Advanced Functional Programming, volume 925
of Lecture Notes in Computer Science. Springer-Verlag, 1995.

[29] M. Wand. Continuation-based multiprocessing. InConference
Record of the 1980 Lisp Conference, pages 19–28, 1980.

