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Abstract—Nowadays, the continuous improvement and au-
tomation of industrial processes has become a key factor in
many fields, and in the chemical industry, it is no exception.
This translates into a more efficient use of resources, reduced
production time, output of higher quality and reduced waste.
Given the complexity of today’s industrial processes, it becomes
infeasible to monitor and optimize them without the use of
information technologies and analytics. In recent years, machine
learning methods have been used to automate processes and
provide decision support. All of this, based on analyzing large
amounts of data generated in a continuous manner. In this paper,
we present the results of applying machine learning methods
during a chemical sulphonation process with the objective of
automating the product quality analysis which currently is per-
formed manually. We used data from process parameters to train
different models including Random Forest, Neural Network and
linear regression in order to predict product quality values. Our
experiments showed that it is possible to predict those product
quality values with good accuracy, thus, having the potential
to reduce time. Specifically, the best results were obtained with
Random Forest with a mean absolute error of 0.089 and a
correlation of 0.978.

Index Terms—sulphonation, surfactants, machine learning, soft
sensors, chemical process

I. INTRODUCTION

Enhancing chemical production processes can yield major
economical and environmental benefits. A key measure of
these enhancements is waste reduction. However, reducing
waste proves challenging in flexible production processes that
can be re-configured to accommodate different types of end
products. While the process is being re-configured, there will
typically be a transition with the production of an interme-
diate product, which does neither satisfy the requirements
of the former, nor the new, product. In other words, these
transition periods produce waste. Therefore, the ability to
discover immediately when the output complies with the new
product requirement, becomes pivotal to minimize waste from
production.

Research leading to these results has received funding from the EU ECSEL
Joint Undertaking under grant agreement no 737459 (project Productive4.0)
and from the Research Council of Norway.

The quality control during the aforementioned transition pe-
riod used to be both fairly manual and conservative, involving
manual sampling and observations. This impelled a transition
period lasting undesirably long, with outputs satisfying the
requirements of the new product going to waste. More and
more, the chemical industry is investing into automated deci-
sion making processes, predominantly based on sensory data,
so as to optimize their production and reduce waste [1]. For
example, an automated method to predict the quality of cobalt
oxalate was reported by Zhang et al. [2]. The quality is based
on the particle size which was estimated based on process
variables such as reactor temperature, flow rate of ammonium
oxalate, agitation speed, and so on.

In chemical production, measuring key process variables can
be both difficult and expensive, due to complex non-linear
relations and costly sensory equipment. Emerging from this,
in combination with modern prediction modeling techniques,
is the concept of soft sensing [1]. In soft sensing, the idea
is to use easy-to-measure variables to predict the ones that
are difficult to measure. Usually, the latter, are obtained by
conducting offline lab analyses which are time consuming.
Geng et al. proposed a new, more generalized soft sensor
model, which they applied for accurately predicting the key
variables of the Purified Terephthalic Acid (PTA) process [3].
By developing and using an advanced neural network, they
create a soft sensor model which is trained to predict the
consumption of acetic acid on the basis of the PTA solvent
system data.

Following this trend, Unger Fabrikker AS, a company
producing chemicals used in active detergents, is currently
investing in machine learning solutions to rationalize their pro-
duction process, particularly with regards to waste reduction.
Unger shifts between producing a variety of products during
a normal week. This infers an approximately 30 minutes long
transition period when shifting from a product to another,
where parts of the chemical composition are unknown, and
where Unger potentially produces waste. For Unger, it is
critical to reduce this period of time.

To this extent, we trained different machine learning models
in the quality control phase, with historical data gathered
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from chemical process parameters, in order to estimate the
neutralization number (NT) which is a measure of the quality
of the product. When applying a machine learning model
with process parameters, to estimate this NT, we enter the
realm of soft sensing and soft sensor models [1]. Obtaining
automated and accurate estimates of the product composition,
and implicitly the quality, is vital towards the enhancement
of the chemical sulphonation process. Similar to the work
of Zhang et al. [2], we predict the quality based on process
variables. Based on our performance results, we see potential
of improving the chemical process with the aid of soft sensor
models.

The remainder of this paper is organized as follows. Sec-
tion II presents background information about machine learn-
ing and related work. Section III presents an overview of the
chemical process. Section IV details the data collection pro-
cedure. In section V we detail the conducted experiments and
present the results. In section VI we present our conclusions.

II. BACKGROUND

In this section we present an overview of machine learning
and supervised learning. Then, we describe some related
research works.

A. Machine learning

With the advent of information technologies, the amount
of data that is generated everyday is growing at a fast pace.
Trying to extract information and knowledge from that vast
cumulus of data is a time consuming (if not impossible) task
to do by hand. The computational power of machines has
experienced a significant increase during recent years. That
computational power can be used to analyze large quantities
of data in an automatic manner. Machine learning methods
and tools provide the means to automate the process of
knowledge discovery and extraction from databases. Machine
learning can be thought of (but not limited to), as a set of
computational algorithms that automatically find interesting
patterns and relationships from data. The key term here is:
automatic. Algorithms should be able to automatically scale
without requiring explicit coded instructions. Kononenko &
Kukar define it as “The basic principle of machine learning
is the automatic modeling of underlying processes that have
generated the collected data.” [4]. Machine learning has two
main types of models: supervised and unsupervised. Here,
we will focus on supervised methods, specifically, regression
methods. More about unsupervised learning and other methods
can be found in [5]. In supervised learning, the algorithms are
presented with a set of input variables and the corresponding
output values from which they learn at training time. The aim
is to find a mapping between input and output variables to
generalize to unseen data points. When the output variable
to be predicted is numeric it is called regression. When it is
nominal it is called classification. In this work we used two
supervised learning methods for regression: Random Forest
and Neural Network.

A Random Forest [6] is an ensemble model composed of
several individual trees. In this case, regression trees. Each
tree is built with different sub-samples of data and with
random subsets of features at each tree split. The purpose of
adding randomness is to generate de-correlated trees. The final
prediction is obtained by averaging the output of all trees.

A Neural Network is a mathematical model that receives
some input and produces an output. The traditional Neural
Network architecture consists of a set of layers and units.
Typically, there is an input layer, one or several hidden layers
and an output layer. Each layer is composed of one or more
units also known as neurons. As the name implies, the input
layer receives the input values, it is the interface with the
external world. Those input values are propagated through
the hidden layers by applying several operations based on the
weights between units. At the end, the output layer aggregates
the outputs of the previous hidden layer and produces the
final prediction. The parameters of the network (e.g., weights
between units) are learned during training, usually with the
gradient descent algorithm.

B. Related work

Soft sensors are predictive software models that make use
of measured data from a given process, usually, industrial pro-
cesses [7]. A predictive model is a function that produces an
output (the prediction) based on input variables. An example
of a predictive model is a supervised learning algorithm like
Random Forest. Soft sensors are mainly used to predict process
variables that are related to process output quality [7]. Those
variables are typically estimated through manual off-line lab
analyses which can be time consuming and/or expensive.
Being able to estimate those variables more frequently, while
reducing the required resources, is the main motivation of
using soft sensors. Another use of soft sensors is as a back-up
for physical sensors. If a given physical sensor fails, a soft
sensor can take its place and start predicting estimated values
while the physical sensor is fixed, thus, allowing the process to
continue without major interruptions. Some of the advantages
of soft sensors are: they are a low cost alternative compared
to expensive hardware, they can work in parallel with physical
sensors, they can provide real time estimations, etc. [8].

A natural application of soft sensing technologies is within
the chemical industry since online monitoring [9] and waste
reduction are key elements during the process. In the pre-
viously mentioned work of Zhang et al. [2], the authors
implemented an online quality prediction system for a cobalt
oxalate synthesis process. The final quality of products such as
cutting tools and batteries, depend on the size and morphology
of cobalt powders, thus, being able to measure particle size
becomes important. Average particle size is measured by
means of an offline analysis which is usually conducted one
time per day. In order to reduce time, the authors proposed
a soft sensor method based on least squares support vector
regression that achieved a root mean squared error of 0.052.

One of the problems with predictive models is that they
need several representative data points during the training



phase. A data point is composed of the input variables and
the expected output (label). Usually, input variables are easy
to obtain but the output variables (labels) require more effort,
e.g., conducting an offline analysis. Because of this, many
databases contain huge amounts of data points with only input
variable values but empty labels and just a small proportion
of data points contain both (input variables and labels). To
address this, Bao et al. [10] proposed a method based on
co-training and partial least squares. In machine learning, co-
training is a method that uses both, labeled and unlabeled data
points to train a model [11]. The authors tried their method on
the Tennessee Eastman process benchmark to predict purge gas
stream based on easy-to-measure variables. Their method pre-
sented significant improvements compared with the traditional
method when labeled data was readily available. Another
research work where easy-to-measure variables are used to
predict hard-to-measure variables is presented in [12]. Here,
the authors used a neural network to predict primary chemical
oxygen demand, nitrogen content and total suspended solids at
a waste-water treatment plant. In this work, we follow a similar
approach to predict the NT value which is a measure that
represents the quality of the product. The predictive models
are trained based on process variables measured during the
chemical process. The production chemical process and related
variables are presented in the next section.

III. PRODUCTION CHEMICAL PROCESS

The chemical production process at Unger Fabrikker AS
is a sulphonation process used for the manufacture of active
detergents. A sulphonation reaction is based on different
sulphonation reagents [13], and the process at Unger is based
on Sulphur burning and conversion of SO2 gas to SO3 gas.
The SO3 gas is diluted with air and mixed with organic liquid
(raw material) in a liquid-gas reactor. The dew point of the air
is a crucial part of the Sulphur burning and the conversion of
SO2 gas to SO3 gas. The dew point should be at least −60
C to prevent the formation of sulphuric acid mist. The output
from the reactor is a sulphonic acid with a variety of qualities
based on the type of organic liquid used in the sulphonation
process. The whole process is depicted in Figure 1.

The NT-value measures the reaction quality i.e, how much
of the organic liquid is sulphonated, which is determined by
the neutralization number (NT), and defines how many mg
KOH (Kalium Hydroxid) are needed to neutralize one gram
of sulphonic acid [14]. To define the neutralization number, the
titration method by Karl Fischer is used [15]. Unger Fabrikker
has several transitions between different products during one
week and therefore the neutralization number will differ in
respect of which product they are producing. To check the
performance of the transition and the quality in producing time
there is a need for analyses of the product. The analyses results
will have a delay of approximately thirty minutes. This means
that the production will be in a “blind spot” (historical data
based on experience) during this waiting time for analyses
results. However, to have a continuous measurement, the
operator will have a confidence ability of analyses results by

using machine learning to predict the neutralization number.
Further, the number of analyses taken in the local laboratory
could be reduced to more than a half.

IV. DATA COLLECTION

It is important that the quality of the products are within the
limits regarding the analysis result. To fulfill this purpose, the
operator takes samples from the production line and analyze
them with the help of the titration method. After the results
are taking place, the operator adjusts the parameters in the
production to reach the quality specification. The time-line
between the taken sample and the result are approximately
30 minutes. The analysis results are stored in a database with
a time-stamp. All of the process parameters are stored into
a historian database so that these values can be inspected
later for analysis. Process parameters will be set as points to
regulators and new values from the production. Typical process
values will be temperatures, pressures, flow and potential of
hydrogen (pH). In this case, 8 process parameters were used
to predict the NT value:

1) Raw-material. This is the quantity of organic material
in kg/hr.

2) Sulfur. This is the amount of sulfur in kg/hr.
3) Dew-point. This is the value of how dry the air is,

measured in temperature.
4) Air-sulfur-oven. This is the quantity of air injected into

the sulfur oven nm3/hr.
5) Air-converter. This is the amount of air injected into the

converter in nm3/hr.
6) Air-SO3-filter. This is the quantity of air injected into

the SO3 filter in nm3/hr.
7) Molar. This is the mol rate.
8) Molar-stp. This is the molar weight.
In order to preserve data confidentiality, the variables were

normalized by subtracting the mean and dividing by the
standard deviation from each of the data points. In total,
the dataset contains 14, 252 data points. From those, there
are 23 outliers, i.e, analyses with anomalous values in one
or more parameters. Because of those outliers, two datasets
were created. One with outliers and another one removing
the outliers. Currently, the outliers are manually identified by
an experienced engineer. For future work, we will explore
methods to automatically detect those outliers. Figure 2 shows
a plot of the Sulfur parameter with outliers marked with the
’+’ symbol. The x axis represents the data point number with
no particular ordering. The y axis represents the amount of
sulfur in kg/hr.

V. EXPERIMENTS AND RESULTS

For the experimental phase, we considered two settings:
1) dataset with outliers, and 2) dataset without outliers. For
each setting, we trained 3 different machine learning models:
Random forest [6], linear regression and a neural network.
To train the linear regression model, we used the lm func-
tion which is part of the base R programming language.
For the random forest model, we used the randomForest R



Fig. 1. Sulphonation process.
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Fig. 2. Outliers plot with respect to the Sulfur parameter. The x axis is the
data point number with no particular order.

Fig. 3. Architecture of the used neural network. It consists of 1 input layer,
1 hidden layer with 4 units and an output layer with 1 unit.

library [16]. The random forest consists of 100 trees. The
neural network architecture consists of an input layer of size 8
which corresponds to the 8 process parameters. Then, it has a
hidden layer of 4 sigmoid units and an output layer of a single
linear unit that produces the final prediction of the NT value.

We used the WEKA software [17] to train the neural network
with the default learning rate of 0.3 and a batch size of 100.
Figure 3 shows a graphical representation of the network’s
architecture. The models use the eight parameters described
in section III as input features. Based on those input features,
the models predict the NT number. As a baseline, we also
used a dummy model that always predicts the mean NT value
from the training set regardless of the input data.

The data points were randomly split into two subsets: 70%
for the train set and the remaining 30% was used as the test
set. Tables I-II show the prediction results on the test set for
the two settings: with and without outliers, respectively. The
tables show the mean absolute error (MAE), root mean squared
error (RMSE) and the Pearson correlation (Correlation).

TABLE I
RESULTS ON DATASET WITH OUTLIERS.

MAE RMSE Correlation

Random Forest 0.091 0.295 0.955

Neural Network 0.232 0.399 0.940

Linear regression 0.146 0.360 0.932

Mean value 0.700 0.999 0.0

TABLE II
RESULTS ON DATASET WITHOUT OUTLIERS.

MAE RMSE Correlation

Random Forest 0.089 0.205 0.978

Neural Network 0.115 0.236 0.972

Linear regression 0.118 0.245 0.969

Mean value 0.704 0.999 0.0

From these tables it can be seen that Random Forest pro-
duced the best results in terms of MAE, RMSE and correlation.
It can also be noted that the results were better when removing
the outliers. The minimum MAE (0.089) and RMSE (0.205)
were achieved by Random Forest. The maximum correlation



of 0.978 was also achieved by Random Forest. All algorithms
outperformed the baseline mean value. Figure 4 shows the
predicted NT values versus the true NT values when using
Random Forest.
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Fig. 4. Predictions with random forest.

A. Variable importance analysis

Given that Random Forest achieved the best results, we
further investigated which were the most important variables
when predicting the NT value with such a model. Figure 5
shows the variable importance plot generated by Random
Forest. The variables at the top are the most important ones
based on the increase of the mean standard error. The x axis
shows the percent increase of the mean standard error which is
calculated based on the out-of-bag data. For each tree, the pre-
diction error on the out-of-bag portion of the data is computed.
Then, the same is done after permuting each predictor variable.
The difference between the two are averaged over all trees and
normalized by the standard deviation of the differences. From
this plot, we can see that Raw material and Sulfur are the
most important variables based on this criterion.

It is also important to understand what is the relationship
between the predictors and the output variable of a model.
Since Random Forest is an ensemble method composed of
several decision trees, it would be a difficult task to perform
such an analysis with each individual tree and then aggregating
the results. Fortunately, there exist model agnostic methods
that can help to understand these variables’ relationships [18],
[19]. In this case we used partial dependence plots (PDPs)
which can be used to visualize the marginal effect of a set of
predictors (usually, one or two) on the predicted outcome (NT
in this case). The partial dependence of a set of features of
interest zs can be estimated by

fs(zs) =
1

n

n∑
i=1

f̂(zs, zi,c), (1)

where f̂(x) is the prediction function and zc is the compli-
ment of zs. Thus, zi,c(i = 1, . . . , n) are the values of zc that
occur in the dataset [19].

Figure 6 shows the PDP for the Raw material variable.
The x axis is the Raw material value and the y axis is
the predicted NT value by Random Forest. Both variables’
values are after normalization. Here we can see that as the
Raw material increases, the predicted NT value decreases.
This negative relationship was validated by computing the
pearson correlation coefficient which was −0.4. The black
line represents the random forest’s predictions when varying
the value of raw material but keeping all other variables fixed.
The gray line is a smoothed version of the original predictions
that helps to visualize the trend.

Fig. 5. Variable importance plot produced by random forest. Top variables
are the most important based on the mean squared error. In this case, Raw-
material and Sulfur. The x axis is the percent increase of the mean squared
error (MSE).

−1.0

−0.5

0.0

0.5

−1 0 1 2 3
Raw material kg/hr

pr
ed

ic
te

d 
N

T

predicted NT

loess

PDP Raw material

Fig. 6. Partial dependence plot with random forest. The black line represents
the actual predictions whereas the gray line is a smoothed version to ease
the visualization of the overall data trend. All values are shown after
normalization.

VI. CONCLUSIONS

In this work we explored the use of machine learning
models to predict the quality of the product from chemical
process parameter values. We trained and evaluated different
models including Random Forest, Neural Network and linear
regression. We did this in two different settings. One with
outliers and the second one removing outliers from the dataset.



The best results were obtained with Random Forest on the
dataset without outliers with a positive correlation of 0.978.
Based on our preliminary results, we see that there is potential
for implementing a system capable of automating the process
by reducing manual efforts and analyses’ time. In this case,
all algorithms performed better without outliers. These results
suggest that one should devote some effort in reducing noisy
data points. In the present work, outlier removal was made
manually. For future work, we will explore automatic methods
to detect and remove outliers. Furthermore, we will also
explore the use of deep learning models since in recent years
they have proven to produce state of the art results in different
domains.
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