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Abstract—Wireless multi-hop networks, in various forms and
under various names, are being increasingly used in military
and civilian applications. Studying connectivity and capacity of
these networks is an important problem. The scaling behavior of
connectivity and capacity when the network becomes sufficiently
large is of particular interest. In this position paper, we briefly
overview recent development and discuss research challenges
and opportunities in the area, with a focus on the network
connectivity.

I. INTRODUCTION

Wireless multi-hop networks, in various forms, e.g. wireless
sensor networks, underwater sensor networks, vehicular net-
works, mesh networks and UAV (Unmanned Aerial Vehicle)
formations, and under various names, e.g. ad-hoc networks,
hybrid networks, delay tolerant networks and intermittently
connected networks, are being increasingly used in military
and civilian applications. There are three defining features that
characterize a wireless multi-hop network:

1) Wireless devices are self-organized or assisted by some
infrastructure to form a network. The former case cor-
responds to ad-hoc networks whereas the latter case
corresponds to infrastructure-based multi-hop networks.
Depending on the applications, the forms of the infras-
tructure can be quite flexible, e.g. a subset of devices
connected via wired connections, a subset of devices
with more powerful transmission capability such that
they form a wireless backbone for the network, or in a
UAV formation, the infrastructure may assume the form
of a subset of UAVs with satellite links.

2) Communication is mostly via wireless multi-hop paths.
This feature sets wireless multi-hop networks apart from
the traditional one-hop networks, i.e. cellular networks
and wireless LANs. Therefore, there is a unique set
of challenging problems specific to wireless multi-hop
networks.
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3) Packets are forwarded collaboratively from the source
to the destination.

Studying connectivity and capacity of wireless multi-hop net-
works is an important problem [1]–[3]. The scaling behavior
of connectivity and capacity when the network becomes suffi-
ciently large is of particular interest. In this paper, we briefly
overview recent development and discuss research challenges
and opportunities in the area, with a focus on the network
connectivity. A network is said to be connected iff (if and
only if) there is a (multi-hop) path between any pair of nodes.
Further, a network is said to be k-connected if there are k
mutually independent paths between any pair of nodes that
do not have any node in common except the starting and
the ending nodes. k-connectivity is often required for robust
operations of the network.

The rest of the paper is organized as follows: Section II
discusses connectivity of large-scale random networks; Section
III discusses connectivity of giant component; Section IV
discusses recent development, research challenges and oppor-
tunities in mobile networks and Section V concludes the paper.

II. CONNECTIVITY OF LARGE-SCALE RANDOM
NETWORKS

A. Unit disk model and connectivity

Extensive research has been done on connectivity problems
using the well-known random geometric graph and the unit
disk model, which is usually obtained by randomly and uni-
formly distributing n nodes in a given area and connecting
any two nodes iff their Euclidean distance is smaller than or
equal to a given threshold r(n), known as the transmission
range [3], [4]. Significant outcomes have been achieved for
both asymptotically infinite n [1], [3], [5]–[9] and finite n
[10]–[12].

Research on the connectivity of large-scale random ad-
hoc networks under the unit disk model is spearheaded by
Penrose [13], [14] and Gupta and Kumar [1]. Specifically,
Penrose [13], [14] and Gupta and Kumar [1] proved using
different techniques that if the transmission range is set to

r (n) =
√

logn+c(n)
πn , a random network formed by uniformly

placing n nodes on a unit-area disk in <2 is asymptotically
almost surely (a.a.s.) connected as n→∞ iff c (n)→∞. An
event ξn depending on n is said to occur a.a.s. if its probability
tends to one as n→∞. Penrose’s result is based on the fact
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that in the above random network, as n → ∞ the longest
edge of the minimum spanning tree converges in probability
to the minimum transmission range required for the above
random network to have no isolated nodes (or equivalently
the longest edge of the nearest neighbor graph of the above
network) [3], [13], [14]. Gupta and Kumar’s result is based
on a key finding in the continuum percolation theory [15,
Chapter 6]: Consider an infinite network with nodes distributed
in <2 following a Poisson distribution with density ρ; and a
pair of nodes separated by a Euclidean distance x are directly
connected with probability g (x), independent of the event that
another distinct pair of nodes are directly connected. Here,
g : <+ → [0, 1] satisfies the conditions of non-increasing
monotonicity and integral boundedness [15, pp. 151-152]. As
ρ → ∞, a.a.s. the above network in <2 has only a unique
unbounded component and isolated nodes.

In [6], Philips et al. proved that the average node degree,
i.e. the expected number of neighbors of an arbitrary node,
must grow logarithmically with the area of the network to
ensure that the network is connected, where nodes are placed
randomly on a square according to a Poisson point process
with a constant density. This result by Philips et al. actually
provides a necessary condition on the average node degree
required for connectivity. In [5], Xue et al. showed that in
a network with a total of n nodes randomly and uniformly
distributed on a unit square, if each node is connected to c log n
nearest neighbors with c ≤ 0.074 then the resulting random
network is a.a.s. disconnected as n→∞; and if each node is
connected to c log n nearest neighbors with c ≥ 5.1774 then
the network is a.a.s. connected as n → ∞. In [8], Balister
et al. advanced the results in [5] and improved the lower and
upper bounds to 0.3043 log n and 0.5139 log n respectively. In
a more recent paper [9] Balister et al. achieved much improved
results by showing that there exists a constant ccrit such that
if each node is connected to bc log nc nearest neighbors with
c < ccrit then the network is a.a.s. disconnected as n → ∞,
and if each node is connected to bc log nc nearest neighbors
with c > ccrit then the network is a.a.s. connected as n→∞.
In both [8] and [9], the authors considered nodes randomly
distributed following a Poisson process of intensity one on
a square of area n. In [7], Ravelomanana investigated the
critical transmission range for connectivity in 3-dimensional
wireless sensor networks and derived similar results as the
2-dimensional results in [1].

In [11], Bettstetter empirically investigated the minimum
node degree and connectivity of a finite network with n
(100 ≤ n ≤ 2000) nodes randomly and uniformly placed
on a square of area A. Tang et al. [12] proposed an empirical
formula relating the probability of having a connected network
to the transmission range for a finite network with n (n ≤ 125)
nodes randomly and uniformly distributed on a unit square.
Bettstetter [10] studied the network connectivity considering
different node placement models, i.e. uniform distribution,
Gaussian distribution. Note that most results for finite n are
empirical results.

B. More general connection models and connectivity

All the work described in the last subsection is based on
the unit disk model. This model may simplify analysis but
no real antenna has an antenna pattern similar to it. The log-
normal shadowing connection model, which is more realistic
than the unit disk model, has accordingly been considered for
investigating network connectivity in [16]–[21]. Under the log-
normal shadowing connection model, two nodes are directly
connected if the received power at one node from the other
node, whose attenuation follows the log-normal model [22],
is greater than or equal to a given threshold.

In [16], Hekmat et al. proposed an empirical formula for
computing the average size of the largest connected component
through simulations, where a total of n nodes are randomly
and uniformly distributed in a bounded area in <2. In [20],
Bettstetter derived a lower bound on the minimum node den-
sity ρ required to ensure that a network with nodes Poissonly
distributed in an area in <2 with density ρ is k-connected with
a high probability. The analysis is based on the observation that
the minimum node density required for a k-connected network
is larger than that required for the network to have a minimum
node degree k, and the assumption that the event that a node
has a degree greater than or equal to k is independent of the
event that another node has a degree greater than or equal to k.
Using simulations, they showed that the bound is tight when
the node density is sufficiently large. Using the same model as
in [20], Bettstetter et al. obtained in [21] a lower bound on the
minimum node density required for an almost surely connected
network using essentially the same technique as that in [20].
The analysis relies on the assumption that the event that a
node is isolated and the event that another node is isolated
are independent, hereafter referred to as the independence
assumption. Orriss et al. [17] considered nodes uniformly
and randomly distributed on a plane and communicating with
each other following the log-normal shadowing model in
the framework of cellular networks. They investigated the
distribution of the number of base stations that communicate
with a given mobile and found that the number of base stations
able to communicate with a given mobile and lying within a
specified range of the mobile follows a Poisson distribution.
In [19], Miorandi et al. presented an analytical procedure for
computing the node isolation probability in the presence of
channel randomness, where nodes are distributed following a
Poisson point process in <2 (which extends their earlier work
in [18]). They further obtained an estimate of the probability
that there is no isolated node in the network based on the above
independence assumption. The previous results in [16]–[21]
dealing with a necessary condition on the critical transmission
power for connectivity under the log-normal shadowing model
all rely on the independence assumption that the node isolation
events are independent. Realistically however, one may expect
the event that a node is isolated and the event that another
node is isolated will be correlated whenever there is a non-
zero probability that a third node may exist which may have
direct connections to both nodes. In the unit disk model, this
may happen when the transmission range of the two nodes
overlaps. In the log-normal model, any node may have a non-



zero probability of having direct connections to both nodes.
This observation and a lack of rigorous analysis on the node
isolation events to support the independence assumption raised
a question mark over the validity of the results of [16]–[21].

Other work in the area includes [23]–[26], which studies
from the percolation perspective, the impact of mutual in-
terference caused by simultaneous transmissions, the impact
of physical layer cooperative transmissions, the impact of
directional antennas and the impact of unreliable links on
connectivity respectively.

C. Random connection model and connectivity

In the more recent work [27]–[29], the authors considered
a network where all nodes are distributed on a unit square
A ,

[
− 1

2 ,
1
2

]2
following a Poisson distribution with known

density ρ and a pair of nodes are directly connected following
a random connection model, viz. a pair of nodes separated by
a Euclidean distance x are directly connected with probability
grρ (x) , g

(
x
rρ

)
, where g : [0,∞) → [0, 1], independent of

the event that another pair of nodes are directly connected.
Here

rρ =

√
log ρ+ b

Cρ
(1)

and b is a constant. The function g is required to satisfy
the properties of non-increasing monotonicity and integral
boundedness [15], [30, Chapter 6]. Further, it is required that
g satisfies the more restrictive requirement that

g (x) = ox

(
1

x2 log2 x

)
(2)

in order for the impact of the truncation effect, which accounts
for the difference between an infinite network and a finite
(or asymptotically infinite) network, on connectivity to be
asymptotically vanishingly small [29]. Based on the above
model, it is shown that as ρ → ∞, the probability that the
above network has no isolated nodes and the probability that
the above network forms a connected network both converge
to e−e

−b
as ρ→∞. As a ready consequence of these results,

the above network is a.a.s. connected iff b → ∞ as ρ → ∞;
and is a.a.s. disconnected iff b→ −∞ as ρ→∞.

The above results extend the earlier work by Penrose [13],
[14] and Gupta and Kumar [1] from the unit disk model to the
more generic random connection model and bring theoretical
research in the area closer to reality. It can be readily shown
that the results on the random connection model include the
work of Penrose [13], [14] and Gupta and Kumar [1] on the
unit disk model and the work on the log-normal model [16]–
[21] as two special cases.

D. Challenges

There remain significant challenges ahead.
Most results in the area rely on three main assumptions: a)

the connection function g is isotropic, b) the connections are
independent, c) nodes are Poissonly or uniformly distributed.

We conjecture that assumption a) is not a critical as-
sumption, i.e. under some mild conditions, e.g. nodes are

independently and randomly oriented, assumption a) can be
removed while the above results, particularly the ones obtained
assuming a random connection model, are still valid. It how-
ever remains to validate the conjecture.

The above results however critically rely on assumption b),
which is not necessarily valid in some networks due to channel
correlation and interference, where the latter effect makes
the connection between a pair of nodes dependent on the
locations and activities of other nearby nodes. In [31], some
preliminary work was conducted on the connectivity of CSMA
networks considering the impact of interference. The work
essentially uses a de-coupling approach to solve the challenges
of connection correlation caused by interference and suggests
that when some realistic constraints are considered, i.e. carrier-
sensing, the connectivity results will be very close to those
obtained under a unit disk model. This conclusion is in stark
contrast with that obtained under an ALOHA multiple-access
protocol [23]. The major obstacle in dealing with the impact of
channel correlation is that there is no widely accepted model in
the wireless communication community capturing the impact
of channel correlation on connections.

Finally, it is a logical move after the above work to consider
connectivity of networks with nodes distributed following
a generic distribution other than Poisson or uniform. This
remains a major challenge in the area.

III. CONNECTIVITY OF GIANT COMPONENT

A giant component is a component with a designated large
percentage of nodes in the network, say p where 0.5 < p < 1.
A component is a maximal set of nodes where there is a path
between any pair of nodes in the set.

Results on connectivity of large-scale random networks
under both the unit disk model [1], [13], [14] and the more
generic random connection model [27], [28] revealed the same
scaling law. That is, when the number of nodes, denoted by
n, in a network increases, the transmission range (or power)
has to increase at a rate to maintain an average node degree of
Θ (log n) in order to achieve connectivity. For two functions
f (x) and h (x), f (x) = Θ (h (x)) iff there exist a sufficiently
large x0 and two positive constants c1 and c2 such that for any
x > x0, c1h (x) ≥ f (x) ≥ c2h (x). For example, the critical

transmission range for connectivity is r (n) =
√

logn+c(n)
πn

under the unit disk model for a random network formed
by uniformly placing n nodes on a unit-area disk [1], [13],
[14]1. In other words, a connected network poses a very
demanding requirement on the transmission range (or power).
This in turn causes many undesirable effects on increased
interference and reduced throughput. In [32], it was shown
that the end-to-end throughput between a randomly chosen
source-destination pair in the above network is Θ

(
W√
n logn

)
,

where W is the link capacity. This result can be intuitively
explained using the results on connectivity as follows: as the
number of nodes n increases, the average distance, measured

1By scaling, it can be shown that assuming an extended network model
where nodes are distributed on a disk of area n with a constant density of 1
node per unit area, the critical transmission range for connectivity is r (n) =√

logn+c(n)
π

.



by the number of hops, between a randomly chosen pair of
nodes is Θ

(
1

r(n)

)
= Θ

(√
πn

logn

)
. That is, for a typical node,

for every packet transmitted for itself, there are Θ
(√

πn
logn

)
relay packets transmitted for other source-destination pairs.
Further, the average node degree is nπr2 (n) = Θ (log n),
which implies that in a neighborhood of a typical node, at any
time there can only be one out of every Θ (log n) nodes active.
It follows that the end-to-end throughput between a typical
source-destination pair is W

Θ
(√

πn
logn

)
Θ(logn)

= Θ
(

W√
n logn

)
,

hence comes the result in [32].
The above observation motivates a question: since the net-

work connectivity is a very demanding requirement, whether
there is any benefit in backing down from such a demanding
requirement and requiring most nodes, instead all nodes, to be
connected?

Indeed in many applications, it is unnecessary for all nodes
to always be connected to each other [33]. Examples of such
applications include a wireless sensor network for habitat
monitoring [34], [35] or environmental monitoring [36], [37]
and a mobile ad-hoc network in which users can tolerate short
off-service intervals [38].

In environmental monitoring, there are scenarios where the
size of the monitored phenomenon is very large (e.g. rain
clouds) or the parameters (e.g. temperature, humidity) that
are monitored change slowly both in space and in time.
When the number of nodes for monitoring the phenomenon
or measuring the parameters is very large, having a few
disconnected nodes will not cause a statistically significant
change in the monitored parameters. One example of such
applications is a wireless sensor network that was deployed
underneath the Briksdalsbreen glacier in Norway to monitor
the pressure, humidity, and temperature of ice to understand
glacial dynamics in response to climate change [36]. In
habitat monitoring, there are scenarios where the number of
objects (e.g. zebras and cane toads [34]) that are monitored
is large. Having a few nodes disconnected or lost may not
significantly affect the accuracy of the monitored parameter.
In many mobile ad-hoc networks, having a number of nodes
temporarily disconnected is also not critical, as long as users
can tolerate short off-service intervals. For example, in a
campus-wide wireless network, students and staff can share
information using wireless devices (e.g. laptops and personal
digital assistants) around the campus [38]. When a wireless
device temporarily loses connection, it can store the data and
complete the work after becoming connected later.

In [39], [40], considering a network with a total of n nodes
uniformly and i.i.d. on a unit square in <2, it was shown
analytically that under both the unit disk model [40] and
the log-normal model [39], the transmission range (or power)
required for having a designated large percentage of nodes
connected, say p where 0.5 ≤ p < 1, is asymptotically
vanishingly small compared to that required for having a
connected network, irrespective of the value of p. This result
implies that significant energy savings can be achieved if we
require only most nodes (e.g. 95%, 99%) to be connected,
instead of requiring all nodes to be connected; and given a

network with most nodes connected, a sharp increase in the
transmission range (or power) is required to connect the few
remaining hard-to-reach nodes. It was further shown using
simulations that under the unit disk model, in a network with
1000 nodes, the transmission range required for having 95%
nodes connected is only 76% of that required for having all
nodes connected. Based on a conservative estimate that the
required transmission power increases with the square of the
required transmission range, an energy saving of at least 42%
can be achieved by sacrificing 5% of nodes. That energy saving
will further increase with an increase in the number of nodes in
the network. Other benefits of the reduced transmission range
or power requirement is the reduced interference, hence better
throughput.

It remains to find the value of the transmission range (or
power) required for guaranteeing a designated large percentage
of nodes to be connected in a large scale network. This
problem has some intrinsic connections to the problem of find-
ing the percolation probability in the continuum percolation
theory [15]. Further, it remains to quantitatively characterize
the benefit in capacity due to the reduced transmission range
(or power) required for a giant component.

Other researchers approached the problem caused by the
demanding requirement of a connected network on the trans-
mission range (or power) from a different perspective and
considered the use of infrastructure instead. Here the infras-
tructure can be quite flexible. It can be a subset of nodes
connected through wired connections [41], or a subset of
nodes with possibly more powerful transmission capability
that forms a wireless backbone of the network [42], [43], or
a subset of nodes with satellite links as one would possibly
encounter in UAV formations [44]. The use of infrastructure
does not change the wireless multi-hop nature of the end-
to-end communication, instead the infrastructure assists the
end-to-end communication by leapfrogging some long hops
and reducing the number of hops between two nodes, hence
improving the performance. Accordingly the concept of k-hop
connected networks was proposed and investigated [45]–[48].
In a k-hop connected network, the maximum number of hops
between any two nodes is smaller than or equal to k. Some
research in the area was also conducted under the name of
hybrid networks [41], [49].

Despite previous research in the area of hybrid networks
or k-hop connected networks, no conclusive results have been
obtained yet on the role of infrastructure in wireless multi-
hop networks with many problems remain unanswered. Some
examples include: for randomly deployed infrastructure nodes
and “ordinary” nodes, how many infrastructure nodes (versus
ordinary nodes) are required for a k-hop connected network;
for deterministically deployed infrastructure nodes and ran-
domly deployed ordinary nodes, how many infrastructure
nodes are required for a k-hop connected network and what
is the optimum deployment of infrastructure nodes; how to
combine the use of infrastructure-based communications and
ad-hoc communications in one network in order to provide
some performance guarantee, in terms of capacity or delay.
These problems are important for wireless multi-hop networks,
particularly for wireless vehicular networks in which both



infrastructure-based communications and ad-hoc communica-
tions will co-exist [50].

IV. DEVELOPMENT AND CHALLENGES IN MOBILE
NETWORKS

In [51], Grossglauser and Tse studied the capacity of mobile
ad-hoc networks. Particularly, they considered a network with
a total of n nodes distributed on a unit-area disk, the trajec-
tories of different nodes are i.i.d. and the nodes’ movement is
such that the spatial distribution of nodes are stationary and
ergodic with stationary uniform distribution on the disk. They
showed that in the above network with unbounded delay re-
quirement, the throughput between a randomly chosen source-
destination pair can be kept constant even as n increases.
This result is in stark contrast with its counter-part in static
networks in which the throughout between a randomly chosen
source-destination pair is shown to be Θ

(
W√
n logn

)
[32].

Following the seminal work of Grossglauser and Tse, other
researchers have conducted further research trying to quanti-
tatively characterize the relationship between delay, mobility
and capacity in mobile ad-hoc networks [45], [52]–[55] and
the obtained results vary greatly with the mobility models and
network settings.

A fundamental reason why mobility increases throughput
is that in mobile networks message transmissions generally
follow the store-carry-forward pattern versus the store-forward
pattern found in static networks. As nodes move, new op-
portunity may arise such that a mobile node can carry the
message until it meets a node, which is in a better position
than itself to transmit the message to the destination, or until it
meets the destination directly. In this way, the number of relay
nodes (number of hops) involved in transmitting a message
to its destination can be greatly reduced and the required
transmission range (or power) for a node to reach another
node via a multi-hop path can also be greatly reduced, hence
the benefit in improved capacity. The cost in achieving this
benefit in capacity is the increased delay.

By analogy, mobility can also improve connectivity. There
are three fundamental differences between mobile networks
and static networks [56]: in mobile networks
• the wireless link between two directly connected nodes

and the end-to-end path only exists temporarily;
• two nodes may never be part of the same connected

component but they are still able to communicate, i.e.
exchange messages, with each other; and

• while any one wireless link may be (or assumed to
be) undirectional, the path connecting any two nodes is
directional, i.e. there is a path from node vi to node vj
within a designated time period does not necessarily mean
there is a path from vj to vi within the same period.

These are illustrated in Fig. 1. Particularly the last difference
implies that it is important to consider the order of links in time
when analyzing mobile networks, which has been incorrectly
neglected in some previous work.

Due to these differences, many established concepts in static
networks must be revisited for mobile networks. For example,
a static wireless multi-hop network is said to be connected iff

there is a path between any pair of nodes in the network.
However a more meaningful definition of connectivity in
mobile networks is to say that a mobile network is connected
in time period [0, T ] if any node can exchange a message
with any other node within [0, T ]. The above definition implies
that the tradeoff between connectivity, mobility and delay is
the prime issue when analyzing the connectivity of mobile
networks. Despite intensive research on the properties of
mobile networks, no conclusive results have been obtained
on the above problem and it remains a major challenge in the
area.

V. SUMMARY

Wireless multi-hop networks have attracted significant re-
search interest. This interest is expected to grow further with
the proliferation of applications, particularly in the areas of
wireless vehicular networks and sensor networks. In this pa-
per, we briefly overviewed recent development and discussed
research challenges and opportunities in the area mainly from
the perspective of network connectivity. We also showed how
the results on network connectivity is related the study of other
performance metrics, i.e. capacity and delay.
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