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Abstract—In this paper we propose a matched encoding
(ME) scheme for convolutionally encoded transmission over
intersymbol interference (usually called ISI) channels. A novel
trellis description enables to perform equalization and decoding
jointly, i.e., enables efficient super-trellis decoding. By means of
this matched non-linear trellis description we can significantly
reduce the number of states needed for the receiver-side Viterbi
algorithm to perform maximum-likelihood sequence estimation.
Further complexity reduction is achieved using the concept of
reduced-state sequence estimation.

Index Terms—ISI-channel; convolutionally encoded transmis-
sion; super-trellis decoding; matched decoding; reduced state
sequence estimation; trellis-coded modulation;

I. INTRODUCTION

Convolutional coded pulse-amplitude modulation (PAM) is
an attractive digital communication scheme for transmission
over intersymbol interference (ISI) channels, when low latency
is desired. Low latency, required e.g., for real-time bidirec-
tional communication, is obtained by the use of convolutional
codes (instead of block codes, cf. [1]) and dispense with
interleaving (as opposed to conventional bit-interleaved coded
modulation [2]).

For this setup, the optimum receiver performs equalization
of the ISI-channel and decoding of the convolutional code
jointly in a single super-trellis [3]. This technique, however,
is commonly regarded prohibitively complex due to the large
overall number of states of a super-trellis. Hence, equalization
and decoding are usually performed subsequently in two sepa-
rate processing steps, each based on its own trellis description.
As long as no interleaving can be applied, iterative (Turbo-)
decoding/equalization does not work satisfactorily.

In this paper, we merge the convolutional encoder and the
ISI-channel into a single non-linear trellis encoder with binary
delay elements only. It is shown, that the total number of states
of this equivalent non-linear trellis description is significantly
smaller than the number of states in the usual super-trellis.
Consequently, this non-linear trellis description enables very
efficient implementation of optimum super-trellis decoding
(STD) based on maximum-likelihood sequence estimation
(MLSE) using the Viterbi algorithm (VA) [4] or other trellis-
based decoding algorithms.

This work was supported by Federal Ministry of Economics and Technology
(BMWi) within the project C-PMSE.

Combining this approach with reduced-state sequence esti-
mation (RSSE) [5]–[7] enables to further reduce the computa-
tional complexity and thus offers a flexible trade-off between
performance (in terms of required signal-to-noise power ratio
to guarantee a target bit error rate) and receiver complexity.

The only requirement necessary for our approach is that
the rate-Kn convolutional code is matched to the M -ary
modulation via M = 2n, i.e., trellis-coded modulation (TCM).
For sake of simplicity, we here consider real-valued ASK only.

Note that recently, we have adopted a similar approach
to receiver design of continuous phase modulation (CPM) in
combination with non-coherent differential detection [8].

This paper is organized as follows: After the definition of
the system model in Sec. II, we derive the equivalent non-
linear trellis description in Sec. III. In Sec. IV the reduced
computational complexity is discussed and Sec. V employs
reduced-state sequence estimation (RSSE) for our approach.
The effectiveness of the proposed approach is validated by
means of numerical simulations in Sec. VI. The paper con-
cludes with a summary.

II. SYSTEM MODEL

We first introduce convolutionally encoded PAM transmis-
sion over ISI-channels (cf. example of Fig. 1). The discrete-
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Fig. 1: Concatenation of an ISI-channel with a rate- 12 convolu-
tional encoder [g1,oct; g2,oct] = [5oct; 7oct] and an ISI-channel
(L = 2).

time transmitter is composed of a rate-Kn binary convolutional
encoder with generator polynomials [ gi ] , 1 ≤ i ≤ n,
with K input symbols and n parallel output symbols at
each time instant, a mapper and M -ary PAM transmission.
The transmit signal traverses through a memory-L discrete-
time ISI-channel with L + 1 channel coefficients h[k] with

ar
X

iv
:1

20
7.

46
80

v3
  [

cs
.I

T
] 

 4
 O

ct
 2

01
2



k denoting the time index. In the convolutional encoder +

symbolizes the addition operation over the Galois field F2,
i.e., calculations are performed mod 2, whereas + and ×
indicate the addition and multiplication operation over the real
numbers, respectively.

III. MATCHED ENCODING APPROACH

In the conventional approach one would process the receiver
input signal first by a MLSE or a symbol-by-symbol trellis-
based equalizer for the FIR filter h[k] and forward soft- or
hard-output symbols of this trellis equalization to the decoder
for the channel code, i.e., solve the equalization and decoding
tasks in two separate processing steps. An optimum receiver
however would perform MLSE in the super-trellis, decoding
the binary channel encoder and the ISI-channel impulse re-
sponse h[k] of length L jointly. In a straight-forward approach
the super-trellis would have Zenc ·ML states, where Zenc is
the number of states of the convolutional encoder.

In order to reduce the computational complexity of STD, we
introduce a matched trellis description for convolutionally en-
coded PAM transmission over ISI-channels (so-called matched
encoding). This non-linear trellis encoder can be used to build
the matched decoding (MD) trellis for the joint equalization
and decoding process.

If the number of output symbols from the encoder is related
to the size of the modulation alphabet M so that n = log2(M)
holds, the following trellis description can achieve exactly
the same performance at reduced complexity, i.e., with fewer
states in the trellis. To see this, note that in each encoding step,
n−K output symbols of the encoder are redundant and depend
on K input symbols. E.g., in Fig. 1 one of the two channel
encoder output symbols contains no further information.

The restriction that the size of the modulation alphabet has
to match the number of output symbols of the convolutional
encoder only allows to combine a K

2 -rate encoder with a 4-ary
modulation, a K

3 -rate encoder with a 8-ary modulation, and
so on. However, we showed in [9] that when puncturing is
performed to increasing the rate of the convolutional encoder
the matched decoding approach can still be applied using
a time-variant non-linear trellis description and a slightly
modified VA.

We here show, how to merge the binary channel encoder
with the M -ary channel impulse response to form a single
time-invariant binary non-linear trellis encoder. To this end,
we transform the transmission scheme step-by-step.

First, we describe the mapping process analytically.1 For
clarity, we restrict ourselves to M = 4, but note that the
concept easily extends to arbitrary M = 2n.

In this example M = 4, i.e., n = 2, with natural mapping
(here equals a set partitioning mapping), the upper branch
corresponds to the most significant bit (MSB) whereas the
lower branch describes the least significant bit (LSB). Having
the MSB and LSB at time instant k we now have to perform
the mapping to the symbols of the modulation alphabet.

1To simplify notation, we do no longer strictly distinguish elements and
operations from the Galois field and the real numbers.

For the 4-ary natural labeling we multiply the MSB by 2 and
add the LSB, i.e., c[k] = 2MSB[k] + LSB[k]. The conversion
from unipolar binary symbols c[k] into bipolar symbols b[k]
within an alphabet of size M can be done with b[k] = (c[k] ·
2)−(M−1).The resulting block diagram, for natural labeling
is depicted in Fig. 2.

Different mappings are easily incorporated, e.g., a Gray
labeling can be achieved by c[k] = (1−MSB[k])(2MSB[k] +
LSB[k])+(MSB[k])(2MSB[k]+(1−LSB[k])). Furthermore, a
4-ary quadrature amplitude modulation (QAM) can be repre-
sented using the MSB as real part and the LSB as imaginary
part (or vice versa), e.g., b[k] = (2MSB− 1) + j(2LSB− 1),
with j =

√
−1.
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Fig. 2: Equivalent description of the convolutional encoding
and the ISI-channel (exemplarily M = 4; natural labeling).

For the second step, recall that the mod-operation can be
represented using the floor-function. In terms of Gaussian
notation we can thus write

xmodn = x− n ·
⌊x
n

⌋
(1)

where b.c denotes the floor-function. In addition, we see
that the main branch (after the summation of MSB and LSB)
has a multiplication and summation which can be moved to
the output of the convolution. With C = −

∑L
k=0 h[k](M −

1) and the Gauss representation of the modulo operation we
can sketch the transmission system as depicted in Fig. 3. All
calculations can therefore be performed in the real numbers.
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Fig. 3: Replacement of the mod 2 addition with the non-linear
representation using the floor function.

Finally, note that now the convolution can be moved into the
MSB branch and LSB branch, respectively, which enables to



use binary delay elements instead of M -ary ones. The mapping
can be moved to the end of the branches.

This representation now has n independent binary branches,
i.e., an MSB and an LSB branch in the case of n = 2, which
all depend on the same K input values (here K = 1). Due
to the memory elements of the ISI-channel being binary and
depending on either the MSB or the LSB we can combine
them with the memory elements of the convolutional encoder
and distinguish them using the generator polynomials g1 and
g2. This results in a single non-linear filter combining the
calculations in each branch.
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Fig. 4: The matched encoder (ME) as a non-linear encoder rep-
resentation of coded PAM transmission over an ISI-channel.

The resulting, non-linear trellis encoder, as depicted in
Fig. 4, can be used to generate the hypothesis and the state
transitions of a finite state machine (FSM). The receiver is
depicted in Fig. 5 and uses the hypothesis to calculate the
metrics λi[k], e.g., Euclidean distances, for the noisy received
signal and performs optimum MLSE via the VA. At this point
a suboptimum state reduction can be applied, as described in
Sec. V.

r[k] +
Metric

calculation
λi[k]

Viterbi
algorithm

n[k]

û[k]

Fig. 5: The full-state matched decoder (MD) using the non-
linear encoder representation for metric calculation and the VA
for decoding.

IV. COMPLEXITY COMPARISON

The main advantage of matched encoding is the reduction
of the convolution by the ISI-channel from an M -ary input
sequence into log2(M) binary parallel convolutions in each
branch. As the number of convolutions affects the calculation
of metrics at the receiver but does not influence the number of
resulting MLSE states, we will now examine the complexity of
separated equalization and decoding, the super-trellis decoding
(STD), and matched decoding (MD). Clearly, as a measure
for the computational complexity the total number of states
required for receiver-side processing can be adopted. For our
comparison we need to distinguish the number of states that
result from the convolutional encoder and the ISI-channel from
the receiver complexity. The latter can either be a result of
separated equalization and decoding, super-trellis decoding, or
matched decoding.

A. Separated Equalization and Decoding

For separated equalization and decoding the receiver com-
plexity is defined as the sum of states in the equalization and
the decoding, i.e.,

Zseparate = Zequ + Zenc. (2)

In our simulations we distinguish between hard- and soft-
output trellis-based equalization using DFSE, or the BCJR
algorithm, respectively, and decoding is performed using the
VA in the full-state trellis.

B. Super-Trellis Decoding

In a super-trellis we consider encoder states and channel
states jointly resulting in a total number of states in the super-
trellis of

ZSTD = Zenc · Zequ = 2ν ·ML = 2ν · 2(n·L). (3)

Apparently, already for moderate ν, n and/or L, super-trellis
decoding becomes intractable.

C. Matched Decoding

There are two differences compared to STD when consider-
ing the proposed matched encoding/decoding approach. First,
the convolution with the channel impulse response is done
with binary delay elements in contrast to M -ary elements.
Second, as the MSB and LSB depend on each other (as of the
channel encoder) not all state transitions are allowed anymore.
As can be seen from Fig. 4 the total number of delay elements
does not increase although we use binary delay elements, only.
Thus, we still have 2ν possible states for the binary channel
encoder (which is fully integrated into the non-linear encoder)
but only 2L possible states for the convolution resulting in a
total number of states of

ZMD = 2ν · 2L. (4)

Recall that for n = 2 there are two convolutions in parallel for
the computation of the hypothesis. Finally, employing RSSE
(cf. Sec. V), the complexity depends on the partitioning as will
be described below, i.e., ZMD-RSSE = ZR = 2r with arbitrary
integer r > 1.

D. Comparison

The main advantage of MD compared to STD is the
reduction of states without loss in performance. The resulting
trellis still describes the super-trellis but with fewer states. The
gain of this state reduction therefore calculates to

GMD =
ZSTD

ZMD
=

2(n·L)

2L
= 2L(n−1). (5)

Table I summarizes several examples for different encoders
and channel lengths for the special case of n = 2 (M = 4).
Obviously the gain increases with the length of the ISI-
channel.



TABLE I: Number of states for PAM transmission with M =
4, n = 2 and for the super-trellis representation and MD,
respectively.

Encoder L ZSTD ZMD GMD

16 states
ν = 4

e.g., [23oct; 04oct]

0 16 16 1

1 64 32 2

2 256 64 4

3 1024 128 8

4 4096 256 16

5 16384 512 32

64 states
ν = 6

e.g., [103oct; 024oct]

1 64 64 1

0 256 128 2

2 1024 256 4

3 4096 512 8

4 16384 1024 16

5 65536 2048 32

V. REDUCED-STATE SEQUENCE ESTIMATION

We have shown that the super-trellis of convolutionally
encoded transmission over ISI-channels can be represented
using significantly fewer states by parallelizing the M -ary
convolution. At this point we can use reduced-state sequence
estimation (RSSE) [6] to further reduce the number of states
at the cost of small loss in Euclidean distance.

In RSSE, Z MLSE states, each with M = 2K possible tran-
sitions to adjacent states, are combined into ZR = Z

2J
; J ∈ N

hyperstates [3], [5] each having 2J substates and 2K · 2J

state transitions as depicted in Fig. 6 with K = 1 and
J = 1. A certain assignment of states to hyper states is called
partitioning [5].

Instead of selecting a survivor from 2K arriving transitions
at each of the Z MLSE states we now select a single survivor
from a set of 2K ·2J transitions at ZR hyper states. The number
of metrics that have to be calculated remains 2K · Z.

The main difference is, that we decide for a surviving path
prematurely resulting in a truncation of error events. A loss
in Euclidean distance appears if an error event with minimum
Euclidean distance gets truncated. Therefore the performance
of RSSE strongly depends on the partitioning of the states into
hyperstates.

One approach to find the optimum partitioning is to de-
termine the mutual state distances and iteratively maximize
the intra hyperstate distance [5]. Unfortunately the exhaustive
search for the state distances is impractical for a larger number
of states.

Fortunately the channel impulse response h[k] is fully
integrated into the non-linear trellis description. W.l.o.g we
assume that the channel impulse response h[k] is minimum
phase, which can be achieved by the application of a proper
all-pass filter. For a minimum phase channel impulse response
the MLSE equalization with a reduced number of states is
well-known as delayed decision-feedback sequence estimation
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Fig. 6: Illustration of hyper states and sub states in a trellis.

(DFSE) [6], [7], [10], [11]. On an ISI-channel with delay
length L, DFSE generates the trellis on the first qh < L coef-
ficients only. Some post cursors of the discrete-time impulse
response are cancelled using a decision feedback in each state
using the state register of the VA. This can be interpreted as
a particular solution of RSSE using a methodical partitioning.

As the minimum phase ISI-channel is fully integrated into
the non-linear trellis we can apply the methodical DFSE
partitioning to use RSSE for MD for convolutionally encoded
PAM transmission over ISI-channels.

VI. NUMERICAL RESULTS

The effectiveness of the approach of MD is now verified
by means of numerical simulations. We restrict ourselves to
rate- 12 encoding schemes and a 4-ary modulation alphabet.
As convolutional encoder we apply the generator polynomials
given in Table I, which, in combination with natural labeling,
result in a trellis coded modulation scheme (TCM) for M -
ary ASK.2 The ISI-channel is described by (6) using L ∈
{2; 5} with Zcha = 16 states and 1024 states, respectively.
For simplicity an exemplary minimum phase ISI-channel is
generated by

h[k] =
1

α
· L− k + 1

L+ 1
; 0 ≤ k ≤ L (6)

α2 =

L∑
k=0

(
L− k + 1

L+ 1

)2

(7)

and normalized to unit energy. Please note that due to the
normalization the equivalent energy per bit Eb is identical at
transmitter output and receiver input.

Our MD approach of RSSE operating on the equivalent non-
linear trellis description is compared to separate equalization
and decoding employing DFSE/BCJR [13] for equalization
and the full-state VA for decoding. Here, the full-state BCJR
equalization is used to compare our approach with soft-
decision equalization and decoding, whereas DFSE employs
a hard-decision reduced-state equalization [6], [7], [10], [11]

2Note that [12] reveals an equivalence between TCM encoders. There, it is
shown that a [5; 7] encoder with gray labeling is identical to a [5; 2] encoder
with natural labeling.
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Fig. 7: Bit error performance for convolutionally encoded 4-ASK transmission (natural labeling) over the ISI-AWGN-channel.
Left: Generator polynomials [23oct; 04oct] (Zenc = 16), L = 2 (Zcha = 16). Right: Generator polynomials [103oct; 024oct]
(Zenc = 64), L = 5 (Zcha = 1024).

based on a VA. Both equalization techniques require a full-
state VA for decoding the convolutional code.

In contrast, the MD-RSSE performes the VA on the reduced
set of hyperstates and selects the substates using delayed deci-
sions fed back from the path register. The applied partitioning
is created equal to the methodical DFSE partitioning and
determines the number of states in the receiver trellis.

A. Bit Error Performance

The bit error rates for transmission over the ISI-AWGN-
channel (one sided power spectral noise density N0) are given
in Fig. 7. The number of states for the DFSE/BCJR and for
the VA are given in the legend, separately. Here the number
of states implemented in the receiver trellis and therefore
the receiver complexity is given directly for the MD/RSSE
receiver.

Please note that by dispensing the interleaver between chan-
nel encoding and modulation for the separated approaches,
block errors that are caused by the equalization process reduce
the ability to decode due to correlated errors. Obviously, the
soft-decision separated approach results in improved bit error
rates when compared to the hard-decision separated approach.
However, the separated equalization and decoding approach is
significantly outperformed by our MD. In the case of a 16-
state convolutional encoder and a 16-state ISI-channel, the MD
performance equals STD at 64 MD states.

The behavior of MD-RSSE is equivalent to that of DFSE.
With increasing number of states the performance improves
(especially at low number of states) and converges to the
performance of STD.

For the 64-state encoder the performance converges slower
due to increased encoder complexity (STD not shown due to
complexity constraints).

B. Performance Vs. Complexity Trade-Off

We now compare the receiver complexity for separated
equalization and decoding to MD. We compare different
channel encodings and ISI-channels defined by their num-
ber of states in the transmitter. Channel encoders with 16
or 64 states and an ISI-channel with L = {2, 3, 4, 5} (or
{16; 64; 256; 1024} states, respectively) are considered. The
channel encoding and the ISI-channel are described by their
number of states at the transmitter trellis, i.e., the number of
states in the channel encoder and equalizer, respectively, and
abbreviated with Zenc/Zequ.

The target bit error rate is 10−3 and the receiver complexity
is described by the number of states as described in Sec. IV.
As our approach enables the use of RSSE, we can compare
the performance for arbitrary receiver complexity for the given
target error rate.

In Fig. 8a the results for a convolutional encoder with 16
states and an ISI-channel with another 16 states are depicted.
The super-trellis would have 256 states. The best performance
for separated equalization and decoding is achieved with
the soft-decision approach using the (full-state) BCJR for
equalization and the VA for decoding. However, the figure
also clearly shows that MD supersedes separated equalization
and decoding already for only two states in MD-RSSE.

In Fig. 8b the results for multiple transmitter schemes are
depicted. Note, that all separated approaches perform worse
with more states compared to the proposed MD approach.
Obviously, the 64-state convolutional encoder with 27 = 128
receiver states can achieve best performance due to increased
constraint length of the convolutional encoder. In contrast, in-
creasing the memory of the ISI-channel reduces the minimum
Euclidean distance resulting in a degradation of the bit error
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Fig. 8: Receiver complexity versus required SNR to guarantee a BER = 10−3 for separated equalization with DFSE, BCJR
and decoding with VA compared to MD with RSSE.

performance.
It becomes also clear that a Zenc = 16/Zcha = 16 scheme

achieves a bit error rate of 10−3 with fewer number of receiver
states, whereas a convolutional encoder with more states, i.e.,
Zenc = 64/Zcha = 16, achieves 10−3 with less signal-to-noise
power ratio. Hence, the proposed decoding schemes enable
a flexible trade-off between complexity and noise-robustness,
i.e., power efficiency.

In summary, we conclude that it is favorable to choose a
convolutional code with a low number of states in combination
with MD-RSSE, when low delay and low complexity are
required.

VII. CONCLUSION

In this paper we have shown that it is possible to reduce
the number of states for super-trellis decoding without loss in
performance by transforming the M -ary channel convolution
into log2(M) parallel binary convolutions. Here, a coded
ASK transmission is used, but as several other non-interleaved
transmission schemes (e.g., QAM over an ISI-channel) can
be represented as a separate channel encoder and a channel
impulse response, this approach is attractive for such schemes,
as well. We showed that with MD the same performance as
super-trellis decoding can be achieved with significantly re-
duced computational complexity. By using RSSE with DFSE-
like partitioning we obtain an efficient method for a trade-off
between complexity and performance. The only restriction of
this approach is the strong relation between the alphabet size
of the modulation and the code rate.
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talen Übertragungstechnik. Springer, 1992.

[4] A. Viterbi, “Error Bounds for Convolutional Codes and an Asymp-
totically Optimum Decoding Algorithm,” Information Theory, IEEE
Transactions on, vol. 13, no. 2, pp. 260 –269, Apr. 1967.

[5] B. Spinnler and J. Huber, “Design of Hyper States for Reduced-State
Sequence Estimation,” in Proc. IEEE Int. Conf. Communications ICC
’95 Seattle, vol. 1, 1995, pp. 1–6.

[6] M. Eyuboglu and S. Qureshi, “Reduced-State Sequence Estimation With
Set Partitioning and Decision Feedback,” IEEE Trans. Commun., vol. 36,
no. 1, pp. 13–20, Jan. 1988.

[7] ——, “Reduced-State Sequence Estimation for Coded Modulation of
Intersymbol Interference Channels,” IEEE J. Sel. Areas Commun., vol. 7,
no. 6, pp. 989–995, Jun. 1989.

[8] F. Schuh and J. Huber, “Nonlinear trellis description for convolutionally
encoded transmission over ISI-channels with applications for CPM,”
in 9th International ITG Conference on Systems, Communications and
Coding 2013 (SCC’2013), Munich, Germany, Jan. 2013.

[9] F. Schuh, A. Schenk, and J. B. Huber, “Matched Decoding for Punctured
Convolutional Encoded Transmission Over ISI-Channels,” ArXiv e-
prints, Aug. 2012.

[10] W. Lee and F. Hill, “A Maximum-Likelihood Sequence Estimator With
Decision-Feedback Equalization,” IEEE Trans. Commun., vol. 25, no. 9,
pp. 971–979, Sep. 1977.

[11] A. Duel-Hallen and C. Heegard, “Delayed Decision-Feedback Sequence
Estimation,” IEEE Trans. Commun., vol. 37, no. 5, pp. 428–436, May
1989.

[12] A. Alvarado, A. G. i Amat, F. Brännström, and E. Agrell, “On the
Equivalence of TCM Encoders,” in 2012 IEEE International Symposium
on Information Theory Proceedings, Jul. 2012.

[13] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Linear
Codes for Minimizing Symbol Error Rate (Corresp.),” Information
Theory, IEEE Transactions on, vol. 20, no. 2, pp. 284 – 287, Mar. 1974.


	I Introduction
	II System Model
	III Matched Encoding Approach
	IV Complexity Comparison
	IV-A Separated Equalization and Decoding
	IV-B Super-Trellis Decoding
	IV-C Matched Decoding
	IV-D Comparison

	V Reduced-State Sequence Estimation
	VI Numerical Results
	VI-A Bit Error Performance
	VI-B Performance Vs. Complexity Trade-Off

	VII Conclusion
	References

