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Abstract—In this paper we explain how efficient delivery of
real-time information can be supported in the Publish Subscribe
Internet (PSI), a network architecture proposal for the Future
Internet. PSI departs from IP thinking with respect to the
core abstractions made and the functional organization of the
system. PSI places information at the heart of the network
layer and decouples the forwarding, path formation and topology
management functionalities. This design approach can be highly
beneficial for real-time communications, as it enables the network
to apply sophisticated mechanisms for multicast tree construc-
tion, such as delivery of information over optimal (minimum
cost) Steiner trees. Initial experiments with a proof-of-concept
implementation of PSI indicate the feasibility of realizing such
optimization policies. Our results show that significant bandwidth
savings can be achieved at the cost of small, un-noticeable to the
end-users, delays in flow establishment.

Index Terms—Future Internet design; Information-Centric
Network architectures; real-time delivery; multicast

I. INTRODUCTION

Information-Centric networking (ICN) is increasingly at-
tracting the attention of the networking research community.
Motivated by the observation that Internet usage is much more
content-centric than its initial design had ever anticipated, ICN
sees internetworking as a means to interconnect information,
rather than interconnecting physical machines [1], [2].

Ongoing ICN efforts have mostly focused on optimizing
information delivery through caching [1]. In this direction, re-
searchers study how to adjust routing and forwarding protocols
in order to further exploit in-router memory and in-network
storage. The merits of caching however, apply to a certain
type of applications: pull-based bulk data transfers. On the
other hand, the Internet is widely being used for disseminating
real-time information such as live media streaming (voice
and video conference applications, web radio and live TV)
and real-time notifications (sensor measurements, notification
alerts, twitter updates etc). This is a class of applications in
which the benefits obtained from caching are questionable.
For example, the existence of large in-network caches has
little impact on the quality of a voice conversation, since the
short-lived voice packets may not be worth caching. Real-
time applications are publish/subscribe in nature (a data source
transmitting data to a set of synchronized receivers) and
can highly benefit from efficient multicast delivery schemes.
We therefore argue that ICN proposals should widen their
application domain beyond caching services -which are suit-
able for bulk-data transfers- and consider the realization of

efficient multicast schemes -which are suitable for real-time
publish/subscribe applications.

In this paper we examine the support for efficient multi-
cast delivery in the Publish-Subscribe Internet (PSI) architec-
ture [3], an ICN proposal for the Future Internet. PSI departs
from IP thinking with respect to the core abstractions made
and the functional organization of the system. PSI introduces
information resolution functionalities as a core component of
the network layer and promotes a clear separation between
packet forwarding, path formation and topology management
functionalities. The design approach makes it feasible to re-
alize sophisticated mechanisms in multicast tree construction,
specifically by delivering information over optimal (minimum
cost) Steiner trees with minimal signaling overhead. We sup-
port our arguments with preliminary evaluations through a
proof-of-concept prototype deployed in PlanetLab, as well
as in an emulated network. Experimental results with a live
streaming application indicate about 30% savings in bandwidth
usage, with a small trade-off in increased, but un-noticeable
to the user, delay in flow-establishment.

The remainder of the paper is organized as follows: in Sec-
tion II we present the functional aspects of the PSI architecture
and discuss the design differences compared to IP. In Section
III we describe in more detail the operation of PSI in a WAN
environment and the mechanisms for constructing the Steiner
trees. In Section IV we briefly describe our implementation,
while section V presents our preliminary evaluation results.
We conclude and present plans for future work in Section VI.

II. PSI: PUBLISH-SUBSCRIBE INTERNET ARCHITECTURE

A. Network service model

PSI models information items as publications, information
producers as publishers and information consumers as sub-
scribers. The network provides users with two basic primitives:
(i) publish, used for announcing the availability of publications
to the network and (ii) subscribe, for expressing interest in
receiving publications (note that publish does not involve
data transmission; it only advertises data availability). The
granularity of publications is not mandated by the network;
on the contrary, it is left to applications. Publications may
represent (large) files, chunks of files, network layer packets,
services or channels of live streaming media.
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Fig. 1. PSI network elements: Rendezvous Nodes (RN), Topology Managers
(TM), Forwarding Nodes (FN) and hosts.

B. Functional Organization

The operation of a PSI network is the synthesis of three
core functions [1]: (i) Rendezvous, (ii) Topology Management
and (iii) Forwarding. The Rendezvous function tracks available
publications in the network and resolves user subscriptions.
The Topology Management function serves a dual cause. First,
it monitors network topology and link conditions. Second, it
computes optimal delivery paths for disseminating publica-
tions from publishers to subscribers. The Forwarding function
undertakes the actual data transmission, i.e. packet forwarding.
Figure 1 shows the four kinds of network elements in PSI, with
respect to the system’s functional organization: (a) Forwarding
Nodes (b) Rendezvous Nodes, (c) Topology Managers and (d)
user Hosts.

Information delivery requires a close interaction between
the three core functions. Publication announcements issued by
users are handled by the Rendezvous function which stores
a mapping between publishers and available publications.
Subscriptions are also handled by the Rendezvous function
which performs the publication-subscription matching. Once
a publisher is found, the Rendezvous function requests the
Topology Management function to compute a suitable for-
warding path for disseminating the requested publication. The
path is encoded into a Forwarding Identifier and sent to the
publisher in the form of a notification. Publishers receive
these instructions from the network and transmit the requested
publications over the specified paths.

PSI Net BPSI Net A
PSI Net

(a) (b)

PSI Network

Fig. 2. Interconnection of PSI networks: (a) neighboring PSI networks, (b)
nested PSI networks.

C. Multicast Delivery

Multicast delivery requires some network entity to keep
track of users subscribed to information items (e.g. RSS feeds)
in order to construct and establish the respective forwarding
trees. In PSI, the task of tracking multicast receivers is
assigned to the Rendezvous function. When a user issues
(withdraws) a subscription, the Rendezvous function adds

(removes) the user from the list of item receivers and requests
the Topology Management function to create a source-specific
forwarding tree, rooted at the publisher and with item sub-
scribers as leaves. The details of how these mechanisms are
implemented vary according to the function implementations
used. In IP multicast for instance, all routers implement both
the Rendezvous and Topology Management functionalities as
they participate in distributed multicast routing protocols. We
describe how multicast is implemented in a WAN setup in PSI
in Section III-B.

D. Internetworking in PSI

PSI networks interconnect with each other through border
gateways for internetworking purposes. PSI networks may
be connected with other PSI networks forming neighboring
relations (Figure 2a) or a network may contain nested PSI
networks (Figure 2b). Complex network organizations may use
a mixed combination of the two interconnection types.

Each PSI network runs its own domain-specific implementa-
tions of the core functions, carefully selected for the particular
networking environment it operates in (e.g., home, enterprise,
mobile, wireless ad-hoc, data-center, etc). PSI networks com-
municate with each other through inter-PSI implementations
for Rendezvous, Topology Management and Forwarding, in
the same spirit of the inter-domain routing protocols used
in the Internet. In inter-PSI communication, each network
aggregates subscriptions issued by domain-local users when
these need to be resolved by other PSI networks. Upon
the arrival of the requested data packets, the network de-
multiplexes them and delivers the data to local subscribers.
Apart from enhancing the system’s scalability, this inter-PSI
communication abstraction allows each network to apply its
own domain-specific policies in order to optimize its internal
operation, without affecting global communication.

E. Discussion

The functional organization of PSI diverges from IP think-
ing in two major design aspects. First, network functionalities
are centered on what is being transferred instead of who are
the communicating end-points. This requires pushing item
resolution functionalities down to the network layer. IP, in
contrast, does not require such functionalities at its core;
existing resolution systems like DNS and DHTs are deployed
on top of IP, operating in overlay mode. This layered operation
however has a significant drawback: these resolution systems
are isolated from the (underlay) network, hence they cannot
exploit detailed network information during item/host resolu-
tion (say, select a publisher among many possible publishers
based on network congestion conditions). In reality, layering
principles often have been violated in order to optimize data
delivery, e.g. the various DNS tricks applied by CDN opera-
tors [8]. However, these violations do not come for free as they
introduce anomalies in the system [8]. Second, PSI clearly
separates the Forwarding from the Topology Management
functionality; more specifically, it decouples packet forward-
ing, path formation and topology monitoring tasks. Decoupling
path formation from topology monitoring and computing paths
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on a per-flow basis can be highly beneficial for a variety of
applications, as it enables the network to take into account
application-specific requirements in path establishment such
as QoS restrictions (e.g., end-to- end delay, packet loss).

In this paper we showcase the benefits of separating these
functions by delivering real-time information over optimal
(minimum cost) Steiner trees. Our aim is not to present a
new algorithm for computing Steiner trees; it is to show the
simplicity and feasibility of realizing such schemes in PSI.
We are motivated by the fact that such algorithms, although
extensively studied [5], were not adopted for IP, due to the
complexity of constructing a Steiner tree in a fully distributed
manner [5]. This occurs because in IP forwarding, topology
management and rendezvous functionalities are coupled inside
IP routers (e.g. IP multicast routing protocols). We showcase
how such optimization policies are feasible in PSI by (i) del-
egating tree construction to a logically centralized component
and (ii) replacing IP forwarding with new stateless multicast
forwarding schemes such as LIPSIN [4].

III. REALIZING PSI IN THE WIDE AREA

In this section we provide a more detailed description of a
PSI implementation in the context of a Wide Area Network
(WAN) and the specific solutions for the three core functions.
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Fig. 3. A PSI WAN that interconnects PSI LANs.

A. Core Function Implementation

A PSI WAN consists of a backbone PSI network that
provides access to users residing in local area PSI networks
(Figure 3). For the forwarding function, we use LIPSIN [4],
a source-routing scheme that encodes delivery paths (unicast
and multicast) into Bloom filters. Among the features of this
technique, LIPSIN supports stateless multicast forwarding, i.e.
FNs are not required to store explicit forwarding information
per multicast tree. The Rendezvous function is undertaken by
several RNs which distribute the load of tracking publications
and serving subscriptions in a DHT fashion [3]. When a
publication/subscription is issued, it is forwarded to the nearest
RN and then routed through the RN-DHT. RNs are co-
deployed with FNs, analogous to a DNS server being deployed
in an IP-based host. Topology Management functionalities are
spread over all nodes. The first task of the TM function -
topology discovery and network monitoring - is implemented

through a link-state routing scheme: FNs and border gate-
ways in the backbone participate in the link-state exchange
announcing their connectivity information. The second task
of the TM function - path computation -is performed inside
RNs. When an RN handles a subscription, it extracts the
topology information from its co-located FN and computes the
publisher-subscriber path. The path is encoded into a LIPSIN
source-route forwarding identifier and handed to the publisher.

B. Efficient Multicast Delivery

Multicast tree computation is performed at the RNs during
subscription handling. The baseline operation is to compute a
shortest-path tree, i.e. the union of the shortest paths from
the publisher to each subscriber. The centralized nature of
tree computation however enables the system to apply more
sophisticated algorithms for multicast tree construction. For
instance, the RN may compute optimal (minimum cost) Steiner
trees.

Multicast trees are constructed with minimal - to the net-
work - signaling overhead. It only requires a subscription to
be handled by the RN-DHT and a notification to be sent to the
publisher. In addition, due to the stateless multicast capabilities
of LIPSIN, no further control plane messages are exchanged,
for example, there is no need to explicitly set up multicast
forwarding state in FNs [9]. Steiner tree construction requires
no further signaling compared to construction of shortest path
trees. Compared to IP, the signaling cost for tree construction
in PSI is proportional to a DNS/DHT resolution. On the
other hand, the operation involves considerable computation
overhead in the RNs since they need to handle publications and
subscriptions, track active subscribers per item and compute
multicast trees. Hence, careful network planning is required
when selecting the number and hardware capabilities of the
physical nodes for deploying the RNs.

C. Discussion

The above design delegates control plane functionalities
(multicast group tracking and tree construction) to a logically
centralized module, the RN-DHT. Centralized schemes are
often dealt with skepticism due to scalability constraints. We
note however that for the tree formation, the RNs take into ac-
count only the WAN topology. Access networks and users are
not part of the backbone and they are viewed as neighboring
PSI networks. This abstraction highly reduces the computation
overhead at the backbone RNs. Moreover, the benefits of
delegating control plane functionalities to logically centralized
components are increasingly considered as very significant,
despite the scalability advantages of fully distributed schemes,
strengthening such design approaches [9].

IV. EXPERIMENTATION

A. Network Implementation

We have implemented a proof-of-concept prototype to
validate the architecture and explore the feasibility of the
aforementioned ideas. The prototype operates as an overlay
network. Links between nodes are UDP-tunnels. For topology
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discovery, FNs and RNs periodically flood the network with
link-state announcements. Unicast paths are computed using
Dijkstra’s shortest path algorithm with hop-count as the metric.
For multicast trees, the baseline is the shortest-path tree, i.e.
the union of the shortest paths. For Steiner trees we used the
KMB heuristic [6].

B. Live media streaming applications

We also implemented a simple live media streaming applica-
tion. Streaming sources act as publishers and stream receivers
act as subscribers. Sources first choose a name for the stream
and publish it to the network. Subscribers simply subscribe to
the stream. We note that subscription handling is required only
for flow establishment. Once the tree is constructed and the
LIPSIN identifier is passed to the streaming source, subsequent
streaming packets are directly delivered from the source to
receivers.

Subscribers are expected to obtain the available channel
names through an out-of-band mechanism, for example direc-
tory services or search engines. In voice/video conversations
(e.g. Skype sessions), each user in the session selects a name
for her outgoing stream, publishes the stream’s name to the
network and then hands the name to the receiver though a
separate signaling mechanism. Multi-party conferences are
decomposed to a number of single-source streams, one per
participant. Each user subscribes to each participant’s stream,
for which the network creates a source-specific multicast tree.

To stop receiving a stream, subscribers issue un-
subscriptions. Subscriptions also expire after a time-out, after
which the user no longer receives data packets. To stay tuned,
users must periodically re-subscribe to the stream. The soft
state of subscriptions serves as a precaution mechanism to
prevent the network from pushing packets to users that are
not interested anymore but did not properly un-subscribe (e.g.,
due to a node or link failure or, simply, negligence).

V. PRELIMINARY EVALUATION

A. Evaluation metrics

Our initial evaluation goal is to measure gains in bandwidth
usage when delivering data over Steiner trees compared to
using shortest-path trees; we also consider using multiple
unicast flows (as is the case in the Internet today) as a
baseline. Our second goal is to examine how the processing
overheads for computing Steiner trees at the RNs affect the
user experience in terms of the increased delay in flow-
establishment compared to the shortest-path tree mode.

B. PlanetLab Experiments

We deployed PSI in 35 PlanetLab Europe (PLE) nodes
in a dense network topology; Figure 4 depicts our backbone
topology which consists of 20 nodes. The other 15 nodes (not
shown) acted as PSI LANs providing access to users.

In each PSI LAN we instantiated 2 user processes, thus we
had 30 users in total. We then injected a synthetic workload
emulating a TV scenario, in which a user switches among 6
available streaming channels, all produced by the same source.

Fig. 4. Network topology of PlanetLab overlay.

User behavior is modeled by two modes: a) the stationary
mode, where the user stays tuned to a channel for a duration
uniformly distributed between 4 and 8 minutes and b) the
channel surfing mode, where the user switches sequentially
between channels, staying tuned in each channel for 10-30
seconds. Each user initially starts in the stationary mode and
then alternates between the two modes. When in surfing mode,
the user changes a channel x times, with x being an integer
uniformly distributed between 2 and 5 (i.e. at least 2 channel
switches and at most 5). After surfing, the user switches to
the next channel and goes back to stationary mode, and so on.
Each experiment lasted 2 hours and we repeated it once for
each delivery scheme: (i) multiple unicast flows, (ii) shortest-
path trees and (iii) Steiner trees.
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Fig. 5. Total number of bytes transferred between FNs (in GB) in the three
delivery modes.

Figure 5 shows the total number of bytes (in GB) transferred
in the network, i.e. the number of bytes transmitted by FNs.
Shortest-path trees reduced bandwidth consumption by a factor
of 25% compared to multiple unicasts, while Steiner trees
reduced the amount of transferred bytes by 31% compared to
shortest-path trees and by 48% compared to multiple unicasts.

We now focus on the cost of constructing the Steiner tree
compared to the shortest-path tree, which is the baseline
multicast mode in PSI. As discussed in section III-B, the
signaling cost remains the same regardless of the multicast
mode used. The cost of the optimization scheme comes in
the form of additional processing delay in the RNs, which
increases network response when handling a subscription and,
therefore, also increases the flow-establishment delay. Due to
the public nature of the Planetlab testbed, we could not extract
reliable observations regarding end-to-end delays (link delays
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Fig. 6. Delays within the RN for computing Steiner trees.

varied extremely during our experiments). Thus we examined
the processing delays in the RNs for computing the multicast
trees. In Figure 6 we plot the computation delay in the RN
for computing Steiner trees. The Y axis is the time required
for running the KMB heuristic (in ms) and the X axis is the
time in the experiment. 99% of KMB computations required
up to 10 ms while the maximum observed computation delay
was 50 ms. These processing delays are almost un-noticeable
to users, as they are a small fraction of the end-to-end delay.

C. Emulated Network Experiments

The PLE deployment reflects a small-scale network setup.
To test the system in a larger scale, we moved to an isolated
environment and emulated AS224, the Norwegian University
& Research Network which consists of 233 routers [7]. We
executed 233 instances of our software in a workstation -
one instance per network node. Instances communicate with
each other exactly as in the PLE testbed. The connectivity
between the instances reflects the topology of the network.
We considered 75 of the nodes to be PSI LANs, each one
providing access to 10 users; hence the network serves 750
users in total. Users follow the same behavior as in the PLE
experiments.
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Fig. 7. CDF of additional delay in flow-establishment between Steiner tree
and shortest-path tree delivery.

We ran the system using the same synthetic workload as
in the PLE experiments, once for each of the two multicast
modes. For each subscription issued, we measured the flow-
establishment delay and calculated the delay increment in the
case of the Steiner tree mode, compared to the shortest-path
mode. In 99.6% of the cases the delay was increased by less

than 60 ms, while for the remaining 0.4% it ranged from
200 ms to 32 seconds. We believe that this small portion of
outliers is an artifact of the implementation and workstation
load, thus we considered the outliers as noise and removed
them from the results. In Figure 7, we plot the CDF of the
additional flow-establishment delay. In 90% of the requests,
flow-establishment in the Steiner-tree mode was increased by
only 2 ms compared to the shortest-path tree mode, while for
99.9% the increment is less than 5 ms. The results indicate
that - at these scales - Steiner tree construction has negligible
costs with respect to user experience.

Another important issue related to system scalability is
the request aggregation in PSI LANs and its effect in the
subscription load that actually hits the PSI backbone. In our
experiments, viewers generated 93,500 subscriptions in the 2
hour experiment, i.e. ˜13 subs/s. However, due to the request
aggregation in PSI LANs, the actual number of subscriptions
sent to the backbone was 55,000 (˜7.6 subs/s), a reduction of
more than 40%.We anticipate that in larger setups with zipf-
like distributions in item popularity, the backbone load will not
grow linearly, therefore the design would scale to significantly
larger deployments. To what extent this will be the case, is an
issue of further research.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented how the efficient delivery of real-
time information can be supported in the Publish Subscribe
Internet architecture. The functional design of PSI, makes the
construction of Steiner delivery trees realistic, with minimal
signaling costs. We supported our arguments by preliminary
experimental results of a real PSI implementation, deployed in
PlanetLab as well as in an emulated network. Although tested
in a small scale, test results indicated bandwidth savings of
30% at the cost of small, un-noticeable to the user, delays in
flow-establishment.

For future work, we plan to further investigate the opti-
mization space introduced in large-scale setups. We expect
that the design choice to delegate control-plane functionalities
to a logically centralized component (the RN-DHT) will face
scalability issues, for example, large processing requirements
in the RNs that will lead to increased delays. We plan to
examine the scalability constraints of the system compared
to the offered optimization opportunities.
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