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Abstract—Distracted driving is an ever growing concern and
driver safety systems are increasingly getting adopted. However,
they still remain as features in the luxury vehicles. The high
penetration of smartphones has made it possible to bring some
of those safety features within everyone’s reach. While some of
the recent works have proposed tracking the road conditions
as well as monitoring the driver with a smartphone, they have
not covered the blind spot. In this paper, we present SideEye, a
smartphone based system to monitor the blind spot on the driver
side and alert the driver about the presence of a vehicle. We
explore two approaches based on intensity variation and contour
matching to detect a vehicle in the blind spot. Our evaluation
shows that, when a vehicle is in the blind spot, our system can
detect and alert the driver with an accuracy of 87% in real-time.

I. INTRODUCTION

According to the traffic safety facts report of National
Highway Traffic Safety Administration, more than five million
police-reported motor vehicle crashes occurred in the United
States in 2011 [1]. One of the causes of these accidents
is that drivers change lane without checking the blind spot.
The common solution for this problem is to use blind spot
mirrors. But often mirrors are not set properly. Furthermore,
they work in a passive manner. If the driver does not check
it frequently, he could still miss what’s happening in the
blind spot. Therefore, apart from advocating defensive driving,
developing and deploying technologies to actively monitor
driver’s blind spot and alert driver to be aware of the vehicle
in his blind spot is essential to avoid collisions.

Blind Spot detection systems are offered by many vehicle
manufacturers, but they are not available in all models. These
systems are typically a luxury feature and usually a part of
an expensive safety package. It will take decades before such
features become commonplace. So how do we bridge this
safety gap? The answer could be smartphone-based systems.
Nowadays smartphone has become ubiquitous and all-purpose.
More than 60% mobile phone subscribers in the US are using
smartphones [2]. People are already using smartphones in
their vehicles for navigation. Smartphones contain most of the
necessary and similar functional components as commercial
systems, i.e. screen, camera (usually one front, one rear),
speaker, etc. Instead of being a cause of driver distraction, re-
cently smartphones have become the focus of improving driver
safety. Some of the functions of the commercial safety systems
are being implemented on smartphones to assist drivers.

Blind spot is usually the area the driver is least informed
about and hence any assistance in monitoring blind spot
can greatly enhance driver’s safety. Therefore, we develop
a smartphone-based application, referred to as SideEye, for
detecting the presence of vehicles in the blind spot and alerting
the driver. SideEye provides an affordable alternative for

bringing blind spot monitoring function, which approximates
the similar safety feature of luxury vehicles to economy
vehicles. Although it might not be a complete substitute for
the sophisticated safety features in the luxury vehicles, it goes
a long way in making driving safer.

To be a practical driver safety system, SideEye should
identify the situation very accurately and alert the driver
in real-time. In SideEye, we use computer vision related
technologies to analyze the scene in the blind spot area. There
are several challenges in realizing SideEye. First, compared to
dedicated cameras used in other safety systems, the resolution
of the smartphone camera is not so high in recording video,
especially the front camera that is watching the blind spot.
And the video frames captured by the smartphone camera
are heavily affected by the light condition and the dynamic
environmental factors. The low-quality frames will make it
difficult to correctly identify what is really happening in the
blind spot area. Second, computer vision technology is usually
computationally heavy. Obviously, compared to a desktop or
a laptop, the power of CPU in a smartphone is lower and
memory is smaller, and few smartphones are equipped with
GPU. So when processing the frames, it will take more time
on the smartphone, which might delay the alert, making it
ineffective. In this paper, we address these challenges. We
explore two computationally efficient approaches based on
intensity variation and contour matching to detect vehicles in
the blind spot. Our evaluation shows that these approaches hold
promise, encouraging us to further refine them and develop a
robust system for monitoring blind spot.

The rest of the paper is organized as follows. In Section II,
we present the related work in the driver safety area. Section
III gives an overview of the system. We describe our design
and implementation in Section IV and report its performance
evaluation results in Section V. We list the limitations of
current version of SideEye and discuss how we can improve
it in Section VI. Section VII concludes the paper.

II. RELATED WORK

There has been extensive work done on making driving
safer and commercial systems already exist. BMW has in-
troduced Active Blind Spot Detection system. Volvo uses a
sensor-based system that provides the driver with a warning
if a vehicle enters his blind spot while he is changing lanes.
Mercedes and many other OEMs also have their own blind
spot monitoring systems. Although there is a need for these
safety features, they are limited to luxury vehicles only. A
major section of vehicles are still without this safety feature.

There are also many aftermarket products for blind spot
detection which offer a choice over the features offered by
luxury vehicles. Mobileye [3] developed a blind spot/lane
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change assist system which mounts a camera on the side mirror
to monitor the vehicles moving behind on the next lane. Iteris
[4] offers blind spot warning system. Both Mobileye and Iteris
use specialized hardware. However, the market penetration for
such devices remains low, especially in low-end vehicles. This
is where the smartphone offers a viable solution for taking
the safety technology to most of the drivers. The import of
prior driver safety related work to the smartphone platform
will make it useful for many.

In academia, lot of research has been done to improve
driver safety. VioLET [5] uses vehicle-state information and
cameras to track lanes, monitor head pose and lane changing
intent. Several similar research proposals utilize specialized
hardware. Recently, there has been active work on using
smartphones to assist drivers. SignalGuru [6] advises the driver
to maintain a certain speed while approaching a signal for fuel
efficiency. The works in [7] [8] proposed smartphone-based
systems that monitor both the driver and the road ahead by
its dual cameras. The system in [8] detects driver distraction,
vehicle proximity and weaving. In SideEye, we focus on blind
spot detection and improve the safety in lane changing.

III. SIDEEYE OVERVIEW

Although blind spots are present on both sides of the
vehicle, we propose to monitor only the driver side. A collision
on the driver side can be more damaging to the driver and in
most instances there are no other passengers in the vehicle.
Driver-side blind spot is also difficult to check by turning head,
as there is little space between the driver and the blind spot on
his side. Even by turning head, driver’s view is always blocked
by the pillar between the front door and back door, especially
the driver’s head is so close to that pillar on his side. In this
section, we describe how SideEye operates to detect a vehicle
in driver-side blind spot and alert driver.

A. Area to Monitor and Alert

Fig. 1 shows an example of how we mount the smartphone
in the vehicle. We can easily find a place to mount the
smartphone on the windshield or on the dashboard to allow
the front camera of the smartphone to monitor the blind spot
area. The red polygon shown in the right of Fig. 1 is the region
of interest (ROI) on which our SideEye system will monitor,
which covers the blind spot of the driver. The ROI is the area
on the next lane on the driver side. When there is a vehicle in
ROI, it is easy to cause collision if the ego-vehicle attempts
to change lane without seeing that vehicle.

Fig. 1. Mounted position of the smartphone and the region of interest

The smartphone’s screen is facing the driver. Whenever
SideEye detects a vehicle in the ROI, it alerts the driver as
soon as possible to improve safety. The system can work as a

daemon thread simultaneously with other apps in smartphone,
e.g. navigation app. Only when the system detects something
critical, i.e. a vehicle is in the ROI, it alerts the driver. The
system could alert the driver in different ways, for example,
show a warning icon on the screen or give an audio warning.

B. Schemes

We use camera to monitor the ROI and process the informa-
tion in the video frame. Naturally, we employ computer vision
based techniques to do this job. We explore two approaches
to detect whether there is a vehicle in the ROI. One checks
for the change in the intensity of image within ROI; the other
looks for the vehicle in ROI by the knowledge of vehicle’s
shape. Below, we present the intensity and contour matching
based schemes for detecting vehicles.

1) Intensity based scheme: When there is a vehicle in the
ROI (as shown in the top-right of Fig. 2), the distribution of
the pixel intensity of the ROI could be significantly different
from the scenario when the road is empty (Fig. 2 (top left)).
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Fig. 2. Empty road (top left) and road with vehicle (top right); the
corresponding pixel intensity distribution for empty road (middle) and for
road with vehicle (bottom).

We utilize the difference between the pixel intensity dis-
tribution to identify whether there is a vehicle or not. In the
following, we propose two sub schemes based on the intensity
variation.

a) Intensity Variation: One way to distinguish between
an empty road and a vehicle, is to observe the intensity
variation of the region. It is based on the idea that the intensity
variation of an empty road will be small compared to that of
a road with a vehicle. We calculate the intensity variation and
use a threshold to separate empty road from non-empty road.
Usually an empty road will have most of its pixels concentrated
around one peak (shown as in Fig. 2 (middle)). When the
texture of the road changes, the peak may shift, but most of
the pixels are still concentrated around that. When a vehicle
enters the region, there will be a spread of pixels and other
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local peaks will occur (as shown in Fig. 2 (bottom)). We use
this characteristic as a hint to tell whether a vehicle is present
in the region.

b) Intensity Variation with Warping: The problem with
the simple intensity variation based approach is that it calcu-
lates the intensity as seen from the camera view. A vehicle
which has just entered the region will only occupy few pixels,
and therefore their contribution to the overall pixel intensity
distribution is small.

It is important to detect a vehicle as early as possible. For
that, we warped this region so that it gives an even distribution
of pixels. This way, a vehicle which has just entered the
detecting region will have a proportional contribution to the
overall intensity variation.

Fig. 3 shows how the warping works. The left image shows
the ROI with a vehicle in it. A vehicle just enters this area
and only occupies a small portion of the ROI. The right image
shows what the scene will be after warping. When warped,
the vehicle will occupy more in this ROI and hence it could
contribute more to the overall pixel intensity distribution.

Fig. 3. ROI with a vehicle (left) and the scene after warping (right).

2) Contour Matching based Scheme: Vehicles have similar
contours. If we can find a contour in ROI which matches the
contour of vehicle, we may conclude that a vehicle is in the
region. We adopt Chamfer Matching to do this work. Chamfer
Matching computes the distance or dissimilarity between two
images. It basically matches a template with the contours of a
query image and finds the best matching contour in the image.
It first calculates the edges of the template and the query image,
and then computes the distance between pixels on the edges.
We use this scheme for early detection of vehicles. Most of
the vehicles’ front contours are similar, with the wheels, hood
and the roof. We draw a general template of vehicles and
use Chamfer Matching to detect a similarly looking object,
i.e. the vehicle. We then put a threshold on the cost/distance
of matching, with the smaller cost implying a match with a
vehicle (as shown in Fig. 4). Moreover, even if there is no
perfect match of the template, it is still possible to detect a
vehicle. Since a vehicle has many edges, its distance from the
template will still be a low value compared with an empty road
which does not have many edges.

IV. DESIGN AND IMPLEMENTATION

We need to decide the scene of the ROI, i.e. is it an empty
road or is there a vehicle present in it. From Fig. 2 we know
the distribution of the pixel intensity is different for empty
road and road with vehicle, hence, the variation is different.
So we need to find out the optimal threshold for the variation
which can confidently distinguish between empty road and
road with vehicle. When the road is empty, it should not report

Fig. 4. Chamfer Matching of the template to a vehicle.

as a vehicle; when there is a vehicle, it should correctly tell
us a vehicle is there. We use macro-average F-measure (as
shown in the following formula) to select thresholds. The one
which maximizes the macro-average F-measure is the optimal
threshold. (In the formulas, e = empty road; v = road with
vehicle; TP = True Positive, FP = False Positive, FN = False
Negative, F = F-measure.)

Precision

e

= TP

e

/(TP
e

+ FP

e

)

Recall

e

= TP

e

/(TP
e

+ FN

e

)

Precision

v

= TP

v

/(TP
v

+ FP

v

)

Recall

v

= TP

v

/(TP
v

+ FN

v

)

F

e

= 2 ⇤ Precision

e

⇤Recall

e

/(Precision

e

+Recall

e

)

F

v

= 2 ⇤ Precision

v

⇤Recall

v

/(Precision

v

+Recall

v

)

F

MacroAverage

= (F
e

+ F

v

)/2

We build a model which tracks the macro average F-
measure by choosing different thresholds. We trained this
model on 18000 sample images, which includes 11600 images
with vehicles and 6400 empty road images. The Fig. 5 (left)
shows at which point we get the optimal threshold for the
Intensity Variation scheme. We find 35 to be optimal threshold.

Similarly, for the Intensity Variation with Warping scheme,
we choose 46 as the threshold of variance (as shown in Fig. 5
(middle)) to distinguish the empty road and road with vehicle.

For the Chamfer Matching scheme, first, we construct a
contour template based on the general shape of vehicles, and
then try matching on the training image set. Every matching
has a cost. If the cost is low, we consider the subject is
matched, i.e. it is a vehicle; otherwise, it should be an empty
road. So here the problem is to choose an optimal cost which
allows us to confidently tell whether the ROI contains a vehicle
or not. We also use the macro average F-measure to decide the
best threshold for the matching cost. Fig. 5 (right) shows that
we can get the most confident conclusion about the ROI at the
threshold 0.2.

We use the thresholds obtained above to implement our
SideEye system for the three schemes in distinguishing ve-
hicle from empty road. The flow of intensity variation based
schemes is shown in Fig. 6 (left) and the flow of Chamfer
Matching based scheme is shown in Fig. 6 (right).
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Fig. 5. Threshold selection for Intensity Variation (left), Intensity Variation with Warping (middle) and Chamfer Matching scheme (right).

Fig. 6. (Left) Flow of intensity variation based scheme (with/without
Warping). (Right) Flow of Chamfer Matching based scheme.

V. EVALUATION

A. Dataset and Environment

To evaluate SideEye, we tested it on 6350 video frames
taken on US I-20 and US I-26. Our final target is a safety
app, but for the sake of efficiency during evaluation, we tested
our system in a laptop and ran on the video frames offline.
The platform we use in testing will not affect the accuracy
of our system, only the efficiency of our system will change
from platform to platform. We measured the computational
efficiency of each scheme on a real smartphone.

B. Performance of Schemes

We measured the accuracy, precision and recall for each
scheme. The results are compared in Fig. 7.
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Fig. 7. Overall performance of the schemes.

Both Intensity Variation and Intensity Variation with Warp-
ing can correctly detect the scene in the ROI with an accuracy
at about 87%. Chamfer Matching’s accuracy goes to 82%. As
to precision and recall, the performance of Intensity Variation
and Intensity Variation with Warping are also very close, and
they both work better than Chamfer Matching scheme.

As a safety system, it should alert the driver when a vehicle
is in the ROI. But when the vehicle is at different positions
in ROI, the danger to the ego-vehicle is different. The danger
increases as the vehicle moves closer. Here we break down
the ROI into small segments to check how the performance
will be when the vehicle is at different positions. Fig. 8 shows
how correctly each scheme can identify the situation when the
vehicle reaches at different positions in the ROI.

We can see that for Intensity Variation and Intensity
Variation with Warping scheme, if there is a vehicle in the ROI
and has moved across 20% of this area, both these schemes
can detect it very accurately. And when the road is empty with
no shadow, it can also correctly find out that it is empty road.

But when a vehicle just entered the ROI (i.e. < 20%),
the two intensity variation based schemes cannot confidently
tell whether it is a vehicle or not. At this moment, although
the overall intensity of this area changes, the vehicle only
occupies a very small portion of this area. Therefore, the
overall intensity variation is not affected much, which makes
the two schemes fail to detect the vehicle. But note that, when
a vehicle only occupies < 20% of the ROI, that vehicle is still
at some distance from the ego-vehicle. As a result, even if the
system cannot confidently alert at this moment, the driver will
not be in immediate danger. Furthermore, when the vehicle
gets even slightly closer in ROI, say beyond 20%, accuracy
improves quickly, thus ensuring the safety of drivers.

When a vehicle is moving in the “rest” area, i.e., parallel
to the ego-vehicle, it occupies less and less portion of the ROI
and its influence on the overall intensity variation decreases.
Consequently, the overall detection rate here is not as high as
other categories where the vehicle occupies a major part of the
ROI. Still, the detection accuracy is between 80% and 95%.
Also, when a vehicle is moving parallel to the ego-vehicle,
the driver of the ego-vehicle can see that vehicle and SideEye
performance is not as critical in this case.

An empty road with shadows poses a problem for both
these schemes. Fig. 8 shows that less than 30% of empty roads
with shadows are correctly identified. When an empty road
has shadow from buildings, trees or some other objects, the
intensity of the ROI could be totally random. In some cases,
the shadow makes the overall intensity variation of the ROI
look like a vehicle is present. Therefore, both these schemes
cannot confidently distinguish shadow from a vehicle.

Compared to Intensity Variation, Intensity Variation with
Warping works slightly better when a vehicle only occupies
 30% of the ROI. The reason for the difference in the
performance here is that the warping increases the portion of
the corner area in which the vehicle just entered. On the other
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Fig. 8. Performance break-down of each scheme for different positions in ROI: (left) Intensity Variation; (middle) Intensity Variation with Warping; (c) Chamfer
Matching. “Empty” means there is no vehicle in ROI; “Shadow” means there is no vehicle but shadow from buildings, trees or other things falls in ROI; 10%
means the head part of the vehicle occupies 10% of the ROI at the far corner; 100% means the head part of the vehicle reaches the end-edge of ROI; “Rest”
means the head part of the vehicle has passed the end-edge and only the tail part can be seen.

hand, for the “rest” area, warping increases the portion of the
far corner of the ROI which makes the portion of the end-
edge area decrease. As a result, in that case, Intensity Variation
performs better than Warping scheme.

Now let us consider the performance of Chamfer Matching.
When there is a vehicle in the ROI which occupies 20% or
more of the ROI, it can detect the vehicles with about 80%
accuracy. Though its performance is slightly worse than the
other two schemes for the same scenario, it has a valuable
feature. Different from the intensity variation based schemes, if
the road is empty, regardless it has shadow or not, the Chamfer
Matching scheme can recognize it much more accurately.

C. Efficiency
As a traffic safety system, the efficiency is very important.

In case of an unsafe scenario, the system must alert the driver
in real-time. Here we measured how fast each scheme could
be in detecting. We ran our system on a Galaxy Note and show
the mean computation time on each video frame.

TABLE I. COMPUTATION TIME OF EACH SCHEME.

Scheme Mean Computation Time Per Frame (ms)

Intensity Variation 38
Intensity Variation with Warping 53

Chamfer Matching 128

From Table.I, we can see that all the schemes can process
in less than 130 ms. So our system can alert drivers in real-
time. When new smartphones come out, faster multi-core CPU,
larger memory or even GPU will be equipped. We can expect
that SideEye can run even faster in the new smartphones,
making it practical for improving driving safety.

VI. LIMITATIONS AND FUTURE WORK

Current implementation of SideEye utilizes intensity vari-
ation based schemes. These schemes can not correctly distin-
guish the shadowed empty road from road with vehicle. But by
looking at the performance of Chamfer Matching, we can see
that the weakness of the intensity variation based scheme can
be compensated by the Chamfer Matching scheme. So we plan
to combine these schemes together to build a hybrid scheme,
which will gain the merits of both worlds and improve the
overall performance of this system.

Another aspect we plan to improve is for the ROI construc-
tion. At this moment, for the sake of easy implementation and
evaluation, we manually select four points in that area to get

the ROI. In the future, we will setup the ROI automatically by
detecting the lane marks on the next lane as well as the edges
of window frame of the ego-vehicle on the driver side.

We will build a fully functional smartphone app to make
it available for everyone. We hope that it can help the drivers
to gain safer driving.

VII. CONCLUSION

In this paper we present SideEye, a smartphone-based
application which monitors the driver-side blind spot and alerts
the driver. We evaluated our system on data collected from a
typical highway driving, and also measured the efficiency on
a real smartphone. The result explains that it is possible to
effectively detect and alert the driver when there is vehicle in
the blind spot area. Our system can achieve precision and recall
both at about 85% in identifying the scene in the blind spot
area. Although SideEye needs further refinement to make it
robust, it shows promise in improving the driver safety. If done
well, SideEye can fill yet another safety feature lacking in non-
luxury vehicles by bringing it to the ubiquitous smartphones.
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