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Abstract—In this paper, we consider a cognitive setting under the undelivered packets of the PU to be relayed. The authors
the context of cooperative communications, where the cogiiie  optimize over that fraction to achieve the minimum secopndar
radio (CR) user is assumed to be a self-organized relay for queueing delay.

the network. The CR user and the PU are assumed to be . .

energy harvesters. The CR user cooperatively relays some tfe Energy harves“”g .technolqu has b_een recently incorpo-
undelivered packets of the primary user (PU) Specifica”y’the rated to the transm|tt|ng term|na|s Of Wll’eless networkp.— O

CR user stores a fraction of the undelivered primary packetsin ~ timal energy management has been addressed in many papers
a relaying queue (buffer). It manages the flow of the undelived  such as[[4]4[6]. The authors dfl[4], Sharmal., obtained the
primary packets to its relaying queue using the appropriate timal energy management policies for an energy harvester

actions over time slots. Moreover, it has the decision of ctosing In 5] I i finite hori . id d
the used queue for channel accessing at idle time slots (ot n » Energy allocation over a ninité horizon Is consiaere

where the PU’s queue is empty). It is assumed that one data With the objective of maximizing the throughput and taking
packet transmission dissipates one energy packet. The optal into account time-varying channel conditions. [d [6], com-
policy changes according to the primary and CR users arrival munication by an energy harvester over a wireless fading
rates fo the data and energy queues as well as the channelsopanng| is considered. Stochastic dynamic programming is
connectivity. The CR user saves energy for the PU by taking . . . -

the responsibility of relaying the undelivered primary padkets. used to solve for the optl_mal oql|ne policy that maximizes
It optimally organizes its own energy packets to maximize & the average number of bits delivered by a deadline under

payoff as time progresses. stochastic fading and energy arrival processes with causal

Index Terms—Cognitive radio, Markov modulated Bernoulli channel stat_e_ feedbgck. .
processes, energy harvesting, reinforcement learning-learning, In a cognitive setting, there are several works that include
optimal policy. energy harvesting transmitters, e.gl, [7]3[13].[Th [7], arkbv
decision process (MDP) is proposed to obtain the optimal
secondary access policy under perfect spectrum sensirgy. Th
authors of [[8] investigate an energy constrained cognitive
Secondary usage of the licensed frequency bands can effirminal without explicitly involving an energy queue. The

ciently improve the spectral density of the under-utilizeduthors of[[9] investigate a scenario with one rechargeble
licensed spectrum. Cognitive radio (CR) users are intfiig and one cognitive terminal. The maximum stable-throughput
terminals that use cognitive technologies to be fully awaregion is characterized. In_[lL0], the authors investigate t
of the environmental variations. A CR user should exploihaximum stable secondary mean service rate under the sta-
methodologies of learning and reasoning to dynamically rbility of the primary and secondary queues and with MPR
configure its communication parameters. capability added to the receiving nodes. The network model

Cooperative diversity, which is a recently emerging tecleonsists of a PU and an energy harvesting CR user. In
nigue for wireless communications, has obtained a wid@attd11], Krikidis et al. investigate the impact of cooperation
tion recently. Cooperative cognitive relaying, which itwes in a three-node network with energy harvesting nodes and
cooperation between primary and secondary nodes in cegnitbursty data traffic from network layer standpoint. The atgho
radio networks, has been investigated in many existing syorlderive the stability region of the system as well as the
e.g., [1]-13]. In [1], the authors investigate a cognitivtwork required transmitted power for both a non-cooperative and a
with one primary user (PU) and one CR user. The cognitiethogonal decode-and-forward cooperative protocolfL 2},
terminal optimally adjusts its power such that the secondathe authors assume a simple access scheme where the SU
gueue mean service rate is maximized while maintaining aiindomly accesses the channel at the beginning of the time
queues in the network stable. [ [2], the authors considar ttslot without performing channel sensing to exploit the MPR
the CR terminal can use the primary spectrum when the Ridpability of the receiving nodes. The maximum throughput
is inactive under a priority in transmission assigned to th#f a saturated SU is obtained under stability and queueing
relaying queue. The CR user admits a predefined fractionddlay constraints on the primary queue. In][13], the authors

I. INTRODUCTION
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propose a cognitive setting with one energy harvesting PU A
and one energy harvesting SU. The SU randomly selects a pel
sensing duration from a predefined set to discern the primary 0
activity. The authors obtain the maximum stable-throudlmpu pe
the SU under stability of the PU’s queue. [n]14], El Shafie
et al. investigate the impact of cooperation from a network
layer point of view on a network composing of an energy 4,——* 0,

harvesting SU and a PU plugged to a reliable power supply. @
The SU utilizes the spectrum whenever the PU is inactive. The
authors assume that one energy packet is dissipated ir eithe
data decoding or data transmission. Due to the interaction o
gueues, inner and outer bounds are derived for the secondary
throughput.

In this paper, we assume that the CR user senses the channel
for 7 seconds from the beginning of the time slot to detect the
activity of the PU. Based on the sensed primary state, the SU
has to take an action. Thus, the action is taken aftseconds s 9
from the beginning of the time slot; exactly after sensing th
channel. If the PU is sensed to be inactive, the CR user h&g 1. Primary and secondary links and queues. The solie lare the

to choose between being idle to the end of the time slot ggmmunication channels, while the dotted lines are theference channels.

o . . The primary and secondary receivers are denoted by PR andeS§fectively.
transmitting a packet either from its own packets or from tt}é;te that the number of arrivals &), in time slot is A,

relaying packets. If the PU is active, the CR user has to ahoos
between being idle or accepting the primary packet. Unlike
most of the existing works, we do not assume a decouplgd . . :

M/D/A with unity service rate model for the energy queueﬁsas three buffersy); to store its own arrived data traffi@y

(for further details, the reader is referred|to [9] and [104 éhe o store the accepted primary packets for relaying, _@ggi
X T - . to store the harvested energy packets from the environment.
references therein), which is a trivial model and provides

inner bound on the performance. Moreover, it makes the qu e assume that all bufters afiaite length. Precisely, queue

edje . oo

X . J € {p,pe,s,ps,se}, can maintain at mosB; packets.

c_a_pacny useless as shown ILJ[15]. Moreover, we assUM&R consider a time-slotted transmissions. The duratiomef o

finite length energy and data queues. We do not c0n5|detre|tQFzt is T seconds. All packets have the same size and each

dominance system approach or always nonempty queues 0 ' . ' .

decouple the queues as proposed in many works, B.gL T3], [ ntainsb bits. The packets arrival processes to the PU and_

[16]. Furthermore, in contrast to the conventionai m'ocgebm’ U queues are assumed to be Markov modulated Bernoulli
i ' . processes [17] where the probability of arrival occurreate

the ar_rlval Processes, vyhere_ the ar_rlva_ll processes aren aslsua Bernoulli process evolves over time according to a Markov

to be independent and identically distributed Berno_uhldam chain. The arrivals at each queue are assumed to respect the

processes [9][[10]L[14], we assume correlated arrivaésah following two state Markov chain (shown in Figl 2):

gueue and model the arrival processes of the queugiad®v '

modulated Bernoulli processe$he proposed approach and 1— M\ &

the analysis presented in this paper are generic and can be B 1— B

applied to any system.
where\;. denotes the probability of having no arrived packet at

Il. SYSTEM MODEL queueQy, k € {p, pe, s, se}, in time slott+ 1 when there was
no arrived packet in time sldgtand 5, denotes the probability

The network model adopted in this paper composes of tv&tf having no arrived packet at quew, in time slot¢ + 1

energy harve_sters sharing the same Channe_l resources Wilhn there was an arrived packet in time gloiWe assume
different priority of channel accessing. The PU is the usn w that arrivals are independent random variables from queue t

thﬁ h|ghesr;[ prclcglty anq achce.lc,ses the f:hgnnel uncogdlhyon ueue. We denote the number of arrival€at by Al where
whereas the user is the lowest priority User and access@s_ 4 it there is an arrived packet in time slotand zero

the channel whenever the PU is declared to be inactive. erwise.

inactivity of the PU occurs due to the lack of either the egerg The radio channel gain of the links between any pair of

packets in its energy queue or/and data packets in its data P . :
queue. The network model is depicted in Fiy. 1. nodesh; is assumed to be zero mean circularly symmetric

We assume that the PU has two different types of bu]cf(ar(c?omplex Gaussian random variable with variancg i.e.,

5 . . [
a data buffer to store its incoming data packets, denotedté\/(o’al’)’ and independent for all, where reads p" for

2 rimary link, &' for the secondary link, ps’ for the link
@Q)p, and an energy buffer to store the energy packets (toke%%i P y 5 y , S

. ween the PU and the CR user, asd for the link between
harvested from the environment, denotedxs. The CR user the CR user and the primary destination. Each link is peeitirb

1The notation of discrete-time M/D/1 queue is used to desaailueueing by a th.ermal r_10|se which is mOdeled as complex add'_t“/e white
system with Bernoulli arrival process and deterministicvise process. Gaussian noise (AWGN) with zero mean and varianée




Fig. 3. Two state Markov model for link
Fig. 2. Two state Markov model of Markov modulated Bernopliocess
for queueQy, k € {p, pe, s, se}.

has to send acknowledgement/negative-acknowledgment
(ACK/NACK) message to the PU based on the result
decoding of the packet. These packets are then dropped
from the primary queue.

1-T; T « In case both the CR user and the primary destination fail
( G 1—q ) to decode the primary data, a retransmission of the packet
is initiated by the PU at the following time sidls.

We assume that the overhead for transmitting the ACKs
) ; e e 1 and NACKs is negligible relative to packet sizes. The second
the probability of the link being in outage in timier 1 given  455umption we make is that the errors in packet acknowledge-
that it was not in outage in time slot ment feedback are negligible. This assumption is reasenabl

Let X' = 1-X, 1[F] = 1 if the eventF is true, and;, be for short length ACK/NACK packets as low rate and strong
the indication of the channel state and is equal to unityKti  coges can be employed in the feedback channel [16]. In
is connected and zero otherwise. We consider that the chardigyition, nodes cannot transmit and receive at the same time
is ON (connected) if the transmitted rate is less than or lequygich is a common assumption where terminals are equipped
to the channel capacity; otherwise, it is OFF (disconngctegith single transceiver$ [3].

We assume that the SU knows the channels gains perfectiyccording to the previous description, the SU has four

at the beginning of the time slot. The primary channel caf|stinct actions. Afterr seconds from the beginning of the
be sent from the primary destination over a dedicated narrojyne slot. the SU has to select one of the possible actions.

and independent for all links. We assume a two state Markov
channels. Specifically, thah link follows (shown in Fig[B):

whereT’; is the probability of linki being not in outage in
time ¢t + 1 given that it was in outage in time slotandg; is

band during the sensing phase of the specfum. Note that the CR user should optimally distribute its energy
The medium access control is assumed to obey the followiggckets among the transmissions of the data packets tosachie
rules. the highest possible performance.

« At the beginning of the time slot, the CR user senses the
channel forr seconds from the beginning of the time slot
to declare the state of activity of the Bu.

e The Sensing process outcome is recorded as a binarﬁs mentioned earlier, the CR user has four possible actions.
value at the secondary terminal. In particular, it ighe set of actions ist={a1,az,as, a4}, wherea,: transmit-
recorded as1” if the PU is active or ¢’ if the PU is ting a packet fron®Qs, a»: transmitting a packet fror@,s, as:
inactive. accepting a packet from the PU, angt remaining idle (CR

. If the PU is sensed to be inactive, the CR user has tger is idle). Note that the optimal action vector in a given
choose between being idle till the end of the time slot dtme slot satisfies the following constraint:

I1l. QUEUESARRIVAL AND SERVICE PROCESSES

transmitting a packet either from its own queudg,, or 4
from the relaying queuey,.. Z at =1, Vt=0,T,2T,... (1)
« If the PU is active, the CR user has to choose between n=1
being idle till the end of the time slot or accepting therhis condition means that there is only one action per time
primary packet. slot.

o If the primary destination could not decode the A packet from Qs is served if the CR user has energy

PU packet correctly and the CR user could d&sackets in its energy queue, the CR user accesses the channel
code and decide to accept the packet, the

ing Qs, the channel to the respective receiver is ON, and

, the PU is inactive. Mathematically, the service proces§of
We V\{ould emphasize here that the pr_oposed protocol_ is basetheo can be modeled as:
cooperation between users. Thus, the primary system awlsselcondary
system for increasing the performance of the system. ‘ + PR 4
3The sensing duration should be large enough for channeis statimation Rs = alIcs 1- IQPIQPC IQSO (2)
and perfect channel sensing. Note that the channels &gigian be sent using
one-bit feedback signal from nodes to SU. The nodes needtorsgnd the
state of the channel, i.e., ON or OFF. This can be sent dufiegsensing 4If the PU receives at least one ACK in a time slot, it drops theket
duration either sequentially or at the same time using rdiffe narrow-band from its queue. If the PU receives two NACKSs, it retransmiie packet at
frequency bands for each node. the following time slots.



The termIEQj equals to unity if the queu®; is not empty and will be able to achieve the adaptive optimal policy accogdim

zero if the queue is empty. Note that the PU is active if bothe mean arrival rates of the queues and outage probabilitie

its data and energy queues are nonempty, ]25,;.122% = 1. of all channels in order to maximize its expected payoff as

Thus, the terml —ItQpItQpc indicates the inactivity of the PU. time progresses. MDPs are considered powerful frameworks
Consider the relaying queue. A packet depdpts if the for solving problems of sequential decision making under

CR user has energy in its energy queue, the CR user decidasertainty [19]-4[21]. Bellman’s equation, which formseth

to access the channel with a packet frépys, the channel foundation for many dynamic programming approaches to

to the respective receiver is ON, and the PU is inactiveolving MDPs, is given by:

Mathematically, the service process can be modeled as:

V(s) = R(s,a) +7)_ P(3ls,a)V () ()
Rb. = asll <1 ~1, 1 pc)It ) ses
whereV(s) is the discounted cumulative reward ands a

The arrival process to the relaying queue is described @snstant that determines the relative value of delayedusers
follows. A packet is arrived to the relaying queue if the paijn  immediate rewards. Choosing the discount factosmaller
gueue is nonempty, the relaying queue is not full, the chlanrtean 1 ensures convergence of the sum. For every state
between the PU and its respective receiver is OFF, the chanmey investigate what the best policy (action) is, and wist it
from the PU to the SU is ON, and the SU decides to acceplue would be. Let us define the optimal value function as the
the packet. Mathematically, the arrival procesg}q is given maximum value function among all value functions, it satisfi
by the Bellman equation, and is given by

At = gl T 1 T1Qp < Byl @)

A packet from the secondary energy queue is consumed

in either one of the following events. If the SU accesses the

channel either from its data queue or from the relaying quedé'ere V" (s) gives the maximum discounted cumulative re-
Mathematically, the process is given by ward that the agent can obtain starting from statethat

is, the discounted cumulative reward obtained by following
Ree = a1l +asly | (5) the optimal policy beginning at state [19]. The policy is

Given that the PU has energy in its energy gueue, a pacﬁe{unctmn that maps the state space to action space, i.e.,

from the PU’s data queue is served in either one of the' & — 4. The optimal policy is given by:

following events. If the channel between the PU and its
respective receiver is ON and the SU remains idle; or if the
channel between the PU and its respective destination is OFF o ) )
the channel between the PU and the SU is ON, the relayiEBe reward function is defined according to the states and

queue is not full, and the SU decides to accept the packet. TH&IONS and it aims at maximizing the weighted sum of the
process is modeled as follows: service rates of the CR user queues subject to some predefined

constraints. Mathematically, the immediate reward fuorcis
Ry, =1g,. (a412p+a31§,m§1 [Qps < Bps]> (6) given by
) N R(s,a) = wRIg, + (1 —w)Rpslg,.
Since the PU accesses the channel unconditionally whenever
it has energy and data packets, a packet from the PU energy s
gueue is consumed if the primary queue is nonempty. That is,

V*(s) = max [R(s, a)+7 Y P(ls, a)V(g)} (10)

3€S

7 (s) = argmax [’R(s, a) 4+ Z P(3]s, a)V(é)] (11)
“ 3€s

Ig,1g,. (a1 + az2) + a1l 1o 1g..

Rf)e = It (7) + a2IC})SIQ[)S IQse +a31[st :Bps]
P
We assume that departures occur before arrivals, and the +as(L, Ig,1o,. + I,.10,10,.)
queue size is measured at the beginning of the ldt [18]. The
evolution of queud; is then given by 12)

wherew is a fixed number that belongs to the $&t1] and
Q%" =min {max{Qz-—RE, O}—FA;-, Bj},j € {p,pe,s,ps,se K is a penalty constant. The rational behind this cost functio

is that the CR users cannot transmit at the same time with

the PU to avoid a sure collision event, which is specified
wheremax{-,-} and min{-,-} return the maximum and theby —Klg,lg,.(a1 + a2); to avoid wasting the secondary
minimum among the values in the argument, respectively. €énergy when channels are in outage, which is specified by
—K(a1(I.Ig,1q..) + a2l 1g,.1q..); to avoid decoding the
primary packet when the relaying queue is full, which is
specified byas1[Qps = Bps); and to avoid using an action
The prime goal in the reinforcement learning (RL) is tevhen the corresponding queue is empty or the secondary

choose actions over time so as to maximize the expected vadyergy queue is empty or to take packet acceptance action
of the total payoff of the learner (agent or user). The CR user

IV. Q-LEARNING ALGORITHM



Algorithm 1 Q-learningalgorithm idea of update rule is that the paRi(s, a) + ymaxQ(3, a) is
Initialize: an estimate of th&@-value Q(s, a). Watkins proved that this
lett =0 method will converge to th€-valuesfor the optimal policy,
for. .e_aghs € S anda € A do Q*(s,a), if two conditions were met, every state-action pair

initialize the Q value has to be visited infinitely often and the learning ratdecays

e"?‘?' ff’r . over time. A proof of convergence f@-learningbased on that
Inmah_ze 5 outlined in Watkins was presented n_[22]. The authors show
Learning: that Q-learning converges to the optimum action-values with
loop babili :
probability 1 so long as all actions are repeatedly sampled
generate a random numbébetweer0 and1 in all states and the action-values are represented dibgcret
if £ < pu then . The objective of the CR user is to find an optimal policy
Iselect one of the actions randomly 7*(s) € A for each states, to maximize some cumulative
else

measure of the cod®(s, a) received over time. We define the

.y . : .
select the actiom” characterized by the evaluation function, denoted b9(s, a), as the expected total

maximumQ-value discount cost over an infinite time and it is given by
end if
executea’ { Z YR(s,m(s))|s0 = s} (14)
receive an immediate rewaf(s’, a")

observe the next staté ™!
update the table entry as follows:
st st

where£{-} denotes the expected value. If the selected action
in time slott following the policyn(s) which is corresponding
o to the optimal policyr*(s), the Q-functionis maximized with
Q(s,a)« Q(s, a)+a (R(Sv aHVmng(Sv a)—=Q(s, “)> respect to the current state. It can be shown {hdt (14) imgive
end loop by

0(s,0) = {Ris,0) p 49 X PlEls. ) Qs.a)  a5)
when the PU is inactive. Note that, the maréndicates more _ 565 3
emphasizing on the service rate@f (secondary throughput), Recall thatP(ss, a) is the transition probability from state

and the lower thes the more emphasizing on the service rati next states, when actioru is executed. Eqn[(15) indicates
of Qps- that the Q-function of the current state-action pair, camepe

In Q-learning the agent, which is the CR user in thigesented in terms of the expected immediate cost of therurre

work, interacts with the environment to obtain the consieeut State-action pair and th@-valueof the next state-action pairs.
actions that maximize the accumulative payoff of the weight Q-learningaims at determining an optimal Stationary policy
sum of the secondary queuég, andQ,, mean service rates. 7(s), without knowingE€{R(s,a)} and P(5[s,a). The states
In particular, the CR user aims at maximizing the expectéde defined as follows. Without loss of generahty we divide
weighted sum of the its queue service rates. It is assunf&@ CR user’s queues " portions. In particular, each queue
that the environment is a finite-state discrete time staghadn the CR terminal is divided tdV" portions as follows:

dynamical system. 0 if Q=0
The interactions between the CR user and the environment 1 if0<Qn<nini

at every time slot is described as follows. 9 i v ina 4+ 1< Qn < vpino
« The CR user senses the channel faseconds. L(Qn) =1 3

if Un,th,2 +1 S Qn S VUn,th,3 (16)
o The CR user observes its state : :
« Based ons, the CR user chooses an actiarfrom the ' .
feasible actions setl. N=1 it Qn 2 vnnn—2+1
o The CR user receives an immediate rew&, a). wheren € {s, ps,se} and vy, 4,5, is the hth threshold of the
« A transition to the staté takes place. queueq),.
« The learning process is repeated until convergence to theThe state vector, at any time instantis formed as
optimal policy.
The Q-learning algorithm (Algorithm[3) is the most popular S'= {Iéplt o L(Qpe)s £(Qge), L£(Q9): T o T o Te s T, pr
powerful and widely used form of reinforcement learning due (17)
to the naive implementation of this method. It obtains thghere It It _ represents the activity of the PU and is
optimal Q-values rather than state-values. The update rule fefscertained from channel sensing. According to the above
Q-learningis description, the total number of states2s x N3, where?2
l represents the possibility of the binary valued channelest

Q(s, a)  Q(s,a) +a|R(s, a) + 7y max Q(3,a) — Q(s,a) With respect to th®-learningalgorithm, the learning rate is
(13) « = 0.5 and the discount factor ig = 0.9. We also introduce
whereq is the learning rate and is the discount factor. The a probability,, = 0.05 of visiting random states in the initial
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60% of the Q-learningiterations. This parameter is used in th&onsidered finite queue lengths and characterized thensyste
action selection procedure to guarantee that the finalyalic Performance with the existence of strong queue interaction
a global optimum and not a local orie [23]. We also have considered Markov modulated Bernoulli arrival
processes at queues. The optimal policy has been obtained
using Q-learning algorithm where each state is assigned an
action.
In this section, we provide some simulations of the system.
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