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Abstract—Wide area research and education networks, such
as ESnet and Internet2 in the US and GEANT in Europe,
have recently deployed software that makes possible to reserve
bandwidth in the form of dynamic circuits. Such circuits offer
guaranteed QoS to specific data flows, significantly increasing
the reliability and predictability of data transfers. In this paper,
we study the problem of constructing routes and scheduling
bandwidth reservations for data transfers between multiple pairs
of end sites. We develop an algorithm, called RRM, to solve
this problem. Our objective is to maximize the number of
satisfied data transfer requests while minimizing the total data
transfer times. We further prove that our problem is NP-hard
and compare our algorithm with a baseline FCFS algorithm
through simulations. The simulations indicate that our algorithm
accommodates up to 160 % more requests and achieves up to 50 %
shorter average data transfer times than the baseline algorithm.

I. INTRODUCTION

In modern sciences, such as nuclear physics, astrophysics,
and climate prediction, the amount of experimental data that
needs to be transferred between geographically distant end
sites for processing and analysis is increasing at a phenomenal
rate. Researchers (or end users) regularly require data to be
transferred between multiple end sites in a time-bound manner.
In order to support these large-scale time-bound data transfers,
the US Department of Energy (DoE) and the National Science
Foundation (NSF) have invested significantly in research and
education networks such as ESnet [1] and Internet2 [2]. Major
efforts have also been dedicated on developing software that
can be used to reserve resources on these networks (such
as OSCARS [3]). There have been other efforts, such as
TeraPaths [4], that extend the resource reservation capabilities
from WANSs all the way to the hosts sending and/or receiving
data within the end-sites. These projects aim to achieve an end-
to-end (host-to-host) reservation of resources by constructing
virtual end-to-end paths with guaranteed Quality of Service
(QoS), so as to guarantee the data transfer rates and increase
the reliability of the network between pairs of end-sites for
given time periods. The VNOD project [5] is a recent effort
towards establishing virtual network instances comprising mul-
tiple end-to-end virtual paths to accommodate data transfers
between multiple pairs of source and destination end-sites.

*The author was with the Computational Science Center at Brookhaven
National Laboratory when this work was performed.

Sushant Sharma*
Windows Azure,
Microsoft Corp.,

Redmont, WA 98052.
Email: sushant_sharma@ outlook.com

Dimitrios Katramatos
Dantong Yu
Computational Science Center,
Brookhaven National Laboratory,
Upton, NY 11973.
Email: {dkat,dtyu} @bnl.gov

S
D
F}J
h

1

Fig. 1. Separate vs. joint optimization example.

In the context of such virtual network instances, we seek,
in this paper, to develop an intelligent resource reservation
algorithm to efficiently allocate available resources within wide
area networks that support bandwidth reservations (BRs). We
assume that users who want to transfer large amounts of data
are primarily concerned with the end time by which their data
transfers can finish. Therefore, the rate at which these data
transfers progress is secondary, as long as deadlines can be
met. We consider requests for such time-bound data transfers
as flexible, because we have the flexibility to adjust when
a data transfer can start and/or finish based on the transfer
rates we can achieve. In order to accommodate such flexible
data transfer requests, we need to construct routes that (i)
interconnect the source and destination end-sites of each data
transfer, and (ii) have adequate bandwidth! available so that
the data transfer deadlines can be met. In recent work, we
have developed algorithms that seek routing and resource
reservation solutions between a single pair of end-sites [6],
[7]. However, data often have to be distributed from a certain
site to several recipient sites or exchanged between multiple
pairs of sites.The solutions [6], [7] developed for a single
pair of end-sites cannot be efficiently extended when multiple
pairs of end-sites request resources at the same time. In such
a multiple end-site pair scenario, resource utilization can be
significantly improved if the routing and scheduling of flexible
resource reservation requests is performed jointly, i.e., taking
into account the whole picture instead of focusing individually
on each end-site pair.

The following simple example demonstrates the concept
and explains our motivation: consider four end sites connected
via a WAN as shown in Fig. 1. Furthermore, assume that the
bandwidth availability along all eight hops is the same and as
shown in Fig. 2: bandwidth of 5 Gb/sec is available from O to
500 seconds and of 10 Gb/sec from 500 to 1000 seconds. Let’s

In this paper, we consider bandwidth as the reservable resource and use
the terms “bandwidth” and “resource” interchangeably.
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Fig. 2. Bandwidth availability for each hop shown in Fig. 1.

also assume that 3 Tb of data become available for transfer
from end-site A and end-site B at time 0. The deadline to
finish the data transfer from A to D is by time 1000, and from
C to B by time 600. Irrespectively of the routes chosen to
interconnect the end-site pairs, there will be at least one hop
shared by both transfers. If scheduling is done separately (as
opposed to jointly), it is possible that pair-1 may be scheduled
first (e.g., according to some random selection scheme), and
5 Gb/sec bandwidth may be reserved for it for the first 600
seconds (box A). As a result, trying to schedule the second
pair will fail because the transfer deadline for that pair is by
time 600, but all available bandwidth for the first 600 seconds
will have been already reserved for pair-1. However, if the
two transfers were to be scheduled jointly and the algorithm
took this potential exhaustion of bandwidth into consideration,
it could eventually find a solution satisfying the deadlines of
both transfers, e.g., reserve 5 Gb/sec for pair-2 for the first
600 seconds (box A) and 10 Gb/sec for pair-1 for 300 seconds
starting at time 600 (box B).

The scheduling problem becomes more complex if the
construction of the route interconnecting an end-site pair is
also taken into account. Furthermore, consider the challenge
of performing route construction and scheduling multiple data
transfer requests, each with its own deadline, between multiple
end-site pairs. Given these factors, our goal in this paper is to
design an algorithm that performs joint optimization of route
construction and bandwidth reservation for multiple pairs of
end-sites in order to maximize the number of satisfied requests
and minimize the total data transfer times. The rest of the paper
is organized as follows: in section II, we formally define our
problem and show that it is NP-hard; in section III, we develop
an efficient heuristics, called RRM, to solve the problem; in
section IV, we present simulation results to demonstrate the
function of our heuristics; in section V, we present related
work, and, finally, in section VI we summarize the presented
work.

II. PROBLEM DESCRIPTION

We consider multiple end sites connected to a single
wide area network domain (multiple WAN domains can be
combined and treated as a single domain). We model this
network as a graph G(V,H, B), where V is the set of all nodes,
in which each end site and intermediate router corresponds
to one node; H is the set of all hops; and B is the set of
Bandwidth Availability Graphs (BAGs) for all the edges in
H, |H| = |B|. Each BAG),, € B describes the time-varying
bandwidth availability of hop h; € H. The BAG can be
represented as a step function with multiple steps step; defined
as {start;, end;, bw;}, where start; is the start time of step;,
end; its end time, and bw; the available bandwidth between
start; and end;. Fig. 1 shows an example of a graph G with 8
nodes and 8 hops. The BAG of all eight hops is the same and

TABLE 1. EXAMPLE INPUT REQUESTS.

Sou- | Destin- | Vol. | Start Time | Deadline | Rate Limit
-rce -ation (Tb) (sec) (sec) (Gb/s)
1 0 500 5
A B T2 0 900 2
B C 1 500 800 5
A D 0.8 600 1000 4
TABLE II. EXAMPLE OUTPUT.
Sou- | Destin- Path Start End Reserved
-rce -ation (sec) | (sec) | BW (Gb/s)
0 200 5
A B {hoshs, I} 50600 2
B C {h1,he,h7,ha} 500 700 5
A D {ho, ha, k7, h3} | 600 | 800 Z

as shown in Fig. 2. This BAG has two steps: {0, 300, 1 Gb/s}
and {300, 600, 2 Gb/s}. Note that obtaining such bandwidth
availability is currently possible through recent extensions to
OSCARS [3] developed by the ARCHSTONE [8] project of
Internet2 [2].

Data transfers take place between certain pairs of end-sites.
For each such pair, there exists a set of flexible data transfer re-
quests. We denote the set of such pairs as P. Each end-site pair
p; € P is defined as {src;, dst;, R;}, where sre; is the source
end site; dst; is the destination end site; and R; is the set of
data transfer requests between src; and dst;. Each request
ri; € R; is defined as {start;j, dead;;,vol;j, maxBW;;},
where start;; is the start time when the data will become
available to be transferred; dead;; is the deadline by which the
data transfer to the destination end site should finish; vol;; is
the amount of data that needs to be transferred, and max BW;;
is the maximum achievable data transfer rate imposed by the
end sites, for example, this rate could reflect the limits on
the read/write speeds of the end-site storage systems. As an
example, Table I shows four flexible requests that belongs to
three different pairs.

Objective: Our goal is to jointly construct the paths (one
path between every pair of sites) as well as the schedule of
bandwidth reservations (BRs) along the hops of constructed
paths. BRs along such paths should satisfy the data transfer
deadlines for the submitted flexible requests. It is, however,
not always possible to construct paths and reserve bandwidth
so as to satisfy all the given requests. As such, our objective
is to develop an algorithm that can construct the paths and
bandwidth reservation schedules in a manner that maximizes
the number of satisfied requests while minimizing the total data
transfer time. We call this the PBM problem (Path construction
and Bandwidth reservation for data transfer among Multiple
pairs of end-sites). For every pair p; € P, the output can be
represented as {path;, BR;}, where path; is the route selected
to transfer data between src; and dst;, and BR; contains the
BRs of all satisfied requests in R;. Each BR br;; € BR; is
defined as {st;;, et;;, bw;; }, where st;; is the beginning time;
et;; is the end time; bw;; is the amount of bandwidth to be
reserved between st; and et;. Table II shows an example of
output for the input described in Fig. 1, Fig. 2 and Table. 1.

Note that we do not consider multi-path solutions between
a single pair of end sites. The reasons for this are technical
rather than theoretical. In our context, bandwidth reservations
are implemented in the form of virtual end-to-end paths. A



virtual path comprises a guaranteed-bandwidth path segment in
each end site from one or more host nodes to the site’s border
router and a WAN dynamic virtual circuit that interconnects
these border routers. Each border router is configured to
allocate a specific VLAN for the circuit and to forward selected
traffic with Policy Based Routing (PBR), therefore, each circuit
requires one VLAN identifier (VLAN ID) at each end site. Due
to hardware and policy restrictions, the number of VLAN IDs
that can be used in practice at each end site is limited to much
smaller numbers than the 4096 VLAN IDs provided for by
the 802.1Q standard. In our system model, given that many
users may want to reserve resources within the WAN, and
each reserved path requires allocating at least one VLAN tag,
there is a strong incentive to minimize VLAN utilization. We,
therefore limit a set of requests between two sites to use only
one path (to minimize VLAN tag usage). Note, however, that
different pairs of sites can still use different paths. Similarly,
for technical reasons, we consider that the path and reserved
bandwidth for each request remains constant throughout the
reserved time period. Allowing the bandwidth or path for
individual requests to change over time requires updating the
configurations of network devices along that path, a time-
consuming operation, During such an operation, the affected
traffic may have to fall back to the default best effort service,
which would violate the QoS guarantees.

A. Problem Complexity

We use an existing NP-hard hard problem, called

SMR? [6], to prove the NP-hardness of our problem.
Theorem 1: PBM is an NP-hard problem.

Proof: Sharma et al. [6] has shown that SMR? is an
NP-hard problem. The SMR? problem considers a single
Bandwidth Availability Graph (BAG) for a single given path
and a set of requests that need to be accommodated within
the BAG. An example of a BAG can is shown in Fig. 2.
The objective of SMR? is to create a bandwidth reservation
schedule for the requests in order to maximize the number
of accommodated requests while minimizing the total data
transfer time (same as our objective in this paper). The SMR?
problem is a special case of PBM when there is only one pair
of end sites between which multiple data transfer requests are
to be accommodated, and where there is exactly one possible
path between the two end sites. Since a special case of PBM
is NP-hard, the PBM problem is at least NP-hard. [ |

III. RRM: RESOURCE RESERVATION AND ROUTE
CONSTRUCTION FOR MULTIPLE END-SITE PAIRS

A. Algorithm Description

We develop an algorithm, called RRM, to solve the prob-
lem described in the previous section. The pesudocode of RRM
is shown in Fig. 6. The RRM algorithm runs in iterations. The
goal of each iteration is to selectively obtain a solution for
one pair of end sites. The number of iterations is equal to the
number of pairs in the submitted requests. In each iteration,
there are two phases as follows:

Phase I: During the first phase, the goal for each pair is to
construct a route from source to destination and determine
a bandwidth schedule on that route independently of other
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Fig. 3. Example of avaialble and reserved bandwidth of hop hs.

pairs. In other words, for each pair, the RRM algorithm
calculates the route and bandwidth schedule based on current
bandwidth availability of each hop and without considering
possible schedule of other pairs. To calculate such a route
and reservation schedule,we use the RRPC heuristic [7] for
each pair of end sites. This heuristic can calculate a route
and a reservation schedule for a single pair of end sites. The
goal is maximizing the total number of reservation requests for
that pair while minimizing the total data transfer time. RRPC
relies on a modified Dijkstra’s algorithm for route construction
and on another algorithm, called RRA [6], for calculating the
resource reservation schedule along the route between source
and destination. Note, that although we use RRPC as a building
block for the RRM algorithm in this phase, RRPC is not a
mandatory part of RRM. We could plug in any heuristic that
calculates routes and reservation schedules for individual end-
site pairs.

As an example, given the input described in Fig. 1, Fig. 2
and Table. I, the RRM algorithm generates the following paths
and bandwidth reservations: for pair p; (A and B), path; is
{ho, hs, h1} and BRy is shown in Fig. 3(b); for pair p2 (B and
C), paths is {h1, hs, ha, ho} and BRo is shown in Fig. 3(c);
for pair p3 (A and D), paths is {hg, hs, he, hg} and BRj is
shown in Fig. 3(d). Note that all paths contain the hop hs.

Phase 1I. In this phase, the RRM algorithm checks the
feasibility of paths and schedules constructed in the previous
phase. That is, the RRM algorithm checks if there is enough
bandwidth available on each hop to accommodate the reserva-
tions requested by all pairs of end-sites. The RRM algorithm
uses the concept of stress factor for every hop to indicate such
feasibility.

Stress Factor: Each pair of end-sites that was considered dur-
ing the first phase has specific bandwidth reservation require-
ments. These requirements are represented by a Bandwidth
Reservation Graph (BRG) as bandwidth value vs. time. For
each network hop, the sum of such time-varying bandwidth
reservation values can be represented as a consolidated BRG.
For the previous example, the consolidated BRG for the hop
hs whose BAG is shown in Fig. 3(a) depends on the BRGs
in Fig. 3(b), Fig. 3(c), and Fig. 3(d). This consolidated BRG
is shown in Fig. 4. The BRG of a hop is subtracted from the
BAG of that hop to obtain a residual BAG. This residual BAG
can be used to determine the time intervals for which the total
bandwidth requested by the end site pairs on that hop exceeds
the available bandwidth. The residual BAG of hs, shown in
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Fig. 5. Residual BAG (Shaded area) of hop hs.

Fig. 5, is obtained by subtracting Fig. 4 from Fig. 3(a). Because
for intervals [6,7] the requested bandwidth exceeds what is
actually available, the residual BAG shows negative values.
The RRM algorithm calculates the stress factor of the hop as
equal to the area under the residual BAG for which bandwidth
values are negative. If the residual BAG does not have any
negative bandwidth values, the stress factor then equals to 0.
It also means that the available bandwidth of this hop is large
enough to accommodate all bandwidth reservations scheduled
on it. In Fig. 5, the stress factor of h5 can be calculated as
equal to 1.

The RRM algorithm first calculates the stress factor for
each hop, and then identifies the hop with the largest stress
factor. If the largest stress factor is 0, then the RRM algorithm
stops because all bandwidth requests for all pairs can be
satisfied. However, if the largest stress factor is greater than
0, RRM subsequently identifies the end-site pairs which use
the hop with the largest stress factor. Out of all identified
pairs, RRM selects the pair that has accommodated the largest
number of requests in this iteration. This pair gets the route
and bandwidth schedule that was calculated for it during phase
L. For the path assigned to the selected pair, RRM updates the
BAG for each hop by subtracting the bandwidth assigned to
that pair. The updated (reduced) bandwidth along these hops
is treated as the available bandwidth for the next iteration of
the RRM algorithm.

Once RRM finalizes the path and bandwidth reservation
schedule for the selected pair, the algorithm does not consider
the same pair again in future iterations. The next iteration
executes with one less pair and reduced bandwidth availability
along certain hops. Fig. 6 shows the pseudocode for RRM.

For the previous example, after calculating the stress factor
for each hop, the RRM algorithm identifies hop hs as the
hop with the largest stress factor (equals to 1). Since all the
three pairs use h;, RRM then selects the pair p; which has
accommodated the largest number of requests. In the next,
RRM finalizes the path path; and bandwidth schedules BR,
constructed for p; and starts its next iteration. In the second
iteration, RRM finalizes the pair po with path {hq, hg, h7, ha}
and BRo shown in Fig. 3(c). In the last iteration, RRM
finalizes the pair p3 with path {hg, h4, h7, h3} and BR3 shown

RRM Algorithm (G{V, H, B), P)
1. while true do
2 for each p; € P do
3 Calculate path; and BR; by using RRPC [7].
4. end for
5. for each h; € ‘H do
6 Calculate the consolidated BRG.
7 Calculate the residual BAG.
8 Calculate StressFactory,.

Nl .

. end for
10.  if all StressFactory, == 0 then break
11.  hymax < argmazn,cn{StressFactorh;}.

12.  pi + argmazy,ep{|BR:| | hi € path;}.
13.  Finalize path: and BR:.

14.  for each h; € path: do

15. Reduce BAG); by BRG,,.

16.  end for

17.  Remove p; from P.

18.  if P == {} then break

19. end while

Fig. 6. Pseudocode for the RRM algorithm.

in Fig. 3(d). Note that none of the hops in the network is used
by all three pairs now. As a result, although the three pairs
maintain their original bandwidth reservation schedule, none
of the hops has now a stress factor larger than 0.

B. Runtime Complexity

In this section, we analyze the worst case runtime com-
plexity of the RRM algorithm. Let the number of hops in the
network be |7{| and the number of end-site pairs be |P|. The
RRM algorithm finalizes the route and bandwidth schedule of
one pair during each iteration. As a result, in the worst case,
the number of iterations in the RRM algorithm will be equal
to the number of end-site pairs (i.e., |P]).

During every iteration, the RRM algorithm performs phase
I and phase II. In phase I, RRM executes the RRPC algorithm
for all pairs of end sites. Runtime complexity of the RRPC
algorithm (for a single pair j7) is given in [7], and can be written
as O (|| [N} + N7 -3, c5Ms,]), where Nj is the number
of requests between the j® pair of end sites, B is the set of
BAGs along all hops in the network, and M}, is the number
of steps in BAG b, € B. As a result, the total complexity of

(171 S22 (V3 + N2 504 Mo )

In phase II, the first step is to calculate the stress factor
for every hop in the network. For each hop, the cost of
calculating the BRG in the worst case is O(Z‘J‘ill N;). The
cost of comparing a BRG with a BAG b; is equal to the
sum of the number of steps in the BAG and the BRG,

which is O (ZbieB[Mbi + Z‘jzll Nj]). The RRM algorithm
then calculates the stress factor of each hop by using the

consolidated BRG and the BAG for that hop. In the worst case,
the cost can be expressed as O (ZbieB {Mbi + Z‘ﬁ‘l Nj]).

In the next, the RRM algorithm identifies the most stressed
hop and selects the end-site pair hat is using that hop and
has the largest number of accommodated requests. The cost of
this operation is O(|H| + |P|). After assigning a route and a
reservation schedule to the selected pair, the algorithm updates
the BAGs for all the hops along that particular route. The cost
of this step is O (|H| - (My, + N;)).

phase I'is O



Fig. 7. Network topology of Internet2.

After integrating the complexity of each step together, the
total complexity of the RRM algorithm can be written as:

|P|
O[PS IHI-D NP+ N> My, | +
Jj=1 b;eB
Pl P
> | My, +>°N; +Z[\P|+|H|'(Mbi+Nj)] (1)
b;eB j=1 j=1

The above expression can be simpliﬁed into the following:

(|H| ‘B‘ |IP|2 max Mmax) ()
where
Nmax = max(Nj),j € [L |S” (3)
and
Max = max(Mbl.)7 b, €B @

Note that even in large WANs (e.g., Internet2 shown in
Fig. 7), the value of |H| (number of hops), |B| (number of
BAGs), and |S| (end-site pairs) is usually much smaller than
N (number of input pairs) or M (number of steps in a BAG).
As such, N3 usually dominates the complexity of the RRM
algorithm.

IV. SIMULATION RESULTS

In this section, we demonstrate the performance of the
RRM algorithm using simulations.

A. Simulation Setup

Instead of generating a random network, we consider the
actual topology of Internet2 as the topology of the network on
which we are going to test our algorithms. The topology of
Internet2 is available from [10] in xml format. Figure 7 shows
the topology of Internet2. It consists of 9 routers. Routers
are connected to other routers through one or more direct
links. Typically, end-sites (e.g., educational institutions) are
connected to the Internet2 routers through regional provider
networks utilizing links of dedicated capacity. For simplicity,
however, in our simulations we consider that these routers
represent individual end sites.

To the best of our knowledge, no algorithm exists currently
in the literature that can be used to solve the same or similar
problems. Therefore, we compare RRM to a simple heuristic
algorithm, called First Come First Serve (FCFS). FCFS repre-
sents the typical method that resource reservations take place
in a network, which does not have a system that can schedule
reservations with optimization strategies. The FCFS algorithm
processes data transfer requests in the order of their submission
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Fig. 8. Performance of RRM with increasing number of request per pair.

time. Once a data transfer request arrives, the FCFS algorithm
calculates the BAG of the default routing path between the
two end-sites specified in the request, and then tries to reserve
bandwidth for the request, in a manner that minimizes the
transfer duration. In our simulation, we set the default routing
path between two end sites to be the shortest path. If a suitable
reservation slot with sufficient bandwidth cannot be found,
FCFS rejects the request. In our simulations, each data transfer
request is generated in random. The file size of each request is
between 0 and 35 TB. The rate limit is between 0 and 10 Gb/s.
Furthermore, we generate a random submission time for each
request with the restriction that it be earlier than the earliest
start time for that request. This submission time is used by the
FCFS algorithm.

B. Performance with Increasing Number of Requests per End-
Site Pair

In this simulation, we study the performance of the RRM
algorithm as the number of requests per pair increases from 1
to 1000. We present the results for 30 random pairs of end-
sites. All results in this section were obtained with the exact
same set of end-site pairs. For every hop in the network, we
generate a multi-step BAG in which the available bandwidth of
each step is randomly selected between 0 and 10 Gb/s. Every
data point in our simulation is an average of 50 simulation
runs.

Figure 8(a) shows the number of accommodated requests
for the selected range of requests. The performance of the
RRM is nearly 150% superior to that of the FCFS algorithm.
We attribute this to our algorithms having the flexibility select
the hops of a path for each end-site pair. With this strategy,
RRM may route requests of different end-site pairs to different
paths, and thereby alleviate the occurrence of congestion. Fig-
ure 8(b) shows the total amount of data for the accommodated
requests. The RRM algorithm transfers 20%-80% more data
than the FCFS algorithm. There is an interesting observation
one can make based on Fig. 8(b): even though the number



of accommodated requests increases (Fig. 8(a)), the total data
transferred actually decreases slightly for RRM algorithm. This
happens for the following reasons: first, the maximum amount
of data that can be transferred given a certain bandwidth
availability is constant; second, RRM tries to accommodate
as many requests as possible while fully utilizing the available
bandwidth; finally, given a certain bandwidth availability, as
the number of accommodated requests increases, the fragmen-
tation of available bandwidth also increases. This results in
much more wasted bandwidth and lower amounts of total
data transferred. Also, note that maximization of total data
transferred is not one of our objectives.

Due to these reasons, Fig. 8(c) shows that the total sum
of times required to transfer the data for accommodated
requests also decreases for RRM algorithm. As we can see,
the total data transfer time of RRM is longer than that of
FCFS. The reason is that the RRM algorithm accommodates
many more requests. Fig. 8(d) shows the average data transfer
time of requests. We define as average transfer time the total
data transfer time divided by the number of accommodated
requests. Although the RRM algorithm has longer total data
transfer time, Fig. 8(d) shows that the average data transfer
time of RRM is nearly 50% shorter than that of FCFS.
Finally, Fig. 8(e) shows the actual running time of the three
algorithms on a 2.7 GHz processor. The running time required
by FCFS minimally increases with increasing numbers of
requests and/or end-sites due to the simplicity of the heuristic.
However, the runtimes of RRM are in the order of several
seconds to a few minutes and are negligible compared to the
actual data transfer times shown in Fig. 8(c). For example,
the longest running time shown this figure (for 30 pairs and
1000 requests) is approximately 12 minutes corresponding to
a solution for a set of data transfers that takes approximately
130 hours (0.15% of the total duration). For 100 requests, the
algorithm takes just 50 seconds for a solution corresponding
to 160 hour-long data transfers. This indicates the efficiency
of our algorithms.

Summarizing, in this simulation, the RRM algorithm ex-
hibits a significant advantage over the baseline FCFS algorithm
by accommodating nearly 160% more requests and achieving
approximately 50% shorter average data transfer times. Ad-
ditionally, RRM manages to transfer up to 80% more data
than the baseline, although this is not explicitly pursued by its
objectives.

C. Performance with Increasing Number of End-Site Pairs

We now study the performance of RRM when the number
of end-site pairs increases from 2 to 30. We present the results
obtained for a number of 500 requests for each pair. These
results are in agreement with those obtained for increasing
number of requests per end-site pair, but from a different
perspective. Fig. 9(a) shows the number of accommodated
requests as the number of pairs increases. RRM accommo-
dates about 150% more requests than FCFS. In Fig. 9(a),
the difference between RRM and FCFS is increasing as the
number of pairs increases. This is because the flexibility of
selecting paths is increasing along with the increasing of
number of pairs. This higher flexibility can better alleviate
competition for bandwidth, and thereby accommodate more
requests. Fig. 9(b) shows the amount of data transferred. We
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Fig. 9. Performance of RRM with increasing number of end-site pairs.

can see that the trend in Fig. 9(b) (for constant number of
requests and increasing number of pairs) is different than the
trend shown in Fig. 8(b) for constant number of pairs and
increasing number of requests. In Fig. 9(b), when the number
of pairs is small, the amount of data transferred is also small
compared to Fig. 8(b) where the amount of data peaks. The
reason for this is our problem setting. Due to the use of circuits,
we are restricted to selecting a single path between a single
pair of end sites (see Section II). As a result, the requests
between 30 different end-site pairs corresponding to Fig. 8(a),
may follow up to 30 different paths. However, for smaller
numbers of end-site pairs, the same number of accommodated
requests has to follow a correspondingly smaller number of
paths, thus the overall available bandwidth is also smaller.
Fig. 9(c) shows the sum of data transfer times for individual
requests and Fig. 9(d) shows that the average data transfer
time of RRM is about 50% shorter than that of FCFS. We
can see that the average data transfer time of RRM is about
50% shorter than that of FCFS. Fig. 9(e) shows the running
time of the algorithms on a 2.7 GHz processor. Again, the
running time of RRM is shown to be negligible compared to
the duration of the data transfers.

V. RELATED WORK

A significant amount of research on network QoS exists
in the literature. A large portion of the existing research,
however, is focused on providing QoS guarantees when users
submit requests without any flexibility in terms of reservation
times and the amount of resources they would like to reserve.
Such QoS guarantees are usually achieved by developing QoS
or constraint-based routing mechanisms [11]. In this section,
we will focus on network QoS for “flexible” rather than
“inflexible” resource reservation requests.

Sharma et al. [6] presents an algorithm, called RRA, to
accommodate multiple flexible requests between a single pair
of end sites along a pre-determined path. Sharma et al. [7]



continues the work of [6] with developing an algorithm, called
RRPC, which can calculate a routing solution as well as
accommodate flexible requests between a single pair of end
sites. In contrast to the work presented in this paper, the
RRA and RRPC algorithms cannot be used to perform joint
bandwidth reservation and route construction between multiple
pairs of end sites.

Balman et al. [12] solves the problem of scheduling a
single flexible reservation with an objective of optimizing the
completion time or transfer duration. In contrast to this work,
the RRM algorithm schedule reservations for multiple requests
between multiple sources and destinations.

Gu et al. [13] considers accommodating requests,in the
order that they arrive, between a single pair of end sites. Such
a first-come-first-serve mechanism of accommodating requests
has been shown to perform worse than the RRA algorithm [6].
Furthermore, in contrast to the RRM algorithm, the work
in [13] cannot handle resource reservations when the route
construction is part of the problem.

In [14], multiple requests between a single pair of end sites
are again processed sequentially in the order of their arrival.
In [15], the scheduling of bandwidth reservation is considered
as an optimization problem that can answer the question if all
requests can be satisfied or not. For a given set of requests,
the solution procedure in [15] rejects all requests following a
particular request that cannot be satisfied. This procedure may
lead to lower performance and rejection of subsequent requests
that could otherwise be accommodated. The RRPC algorithm,
which is used in phase I of the RRM algorithm in the paper,
does not suffer from such drawback as it selectively rejects the
requests that cannot be accommodated and accepts those that
can be.

Ghosh ef al. [16] presents a distributed algorithm that per-
forms QoS routing in IP networks. Norder et al. [17] considers
the QoS routing problem at the inter-domain level, and reviews
the critical issues that need to be considered when designing
new QoS routing protocols. The QoS routing aims at selecting
a specific path that satisfies a set of QoS requirements for a
data flow. It cannot, however, reserve (guarantee) resources for
data flows. Our approach in this paper is quite different because
we assume the utilization of recently developed mechanisms
to schedule and enforce end-to-end reservations of network
resources through the establishment of virtual end-to-end paths
with guaranteed QoS.

VI. CONCLUSION

In this paper, we studied the problem of scheduling band-
width reservations on various hops within a wide area network
for efficient data transfers between multiple pairs of end-sites.
We proved that this problem is NP-hard and developed a joint
routing and bandwidth scheduling algorithm with the objective
to maximize the number of satisfied data transfer requests
while minimizing the total data transfer times. Furthermore,
we calculated the time complexity of this algorithm and
compared its performance, through simulations, with a baseline
FCFS algorithm. Our simulations indicate that our algorithm
accommodates more requests than the baseline algorithm and

achieves shorter average data transfer times. We have observed
scenarios where our algorithm accommodates up to 160%
more requests and achieves up to 50% shorter average data
transfer times than the baseline FCFS algorithm, while trans-
ferring up to 80% more data. Furthermore, the running time of
our algorithm is low — practically negligible — when compared
with the overall duration of the data transfer requests submitted
for scheduling.
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