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Abstract—Modern research and education networks, such as
ESnet and Internet2, offer the capability to increase the reliability
and predictability of big data transfers through the reservation of
bandwidth in the form of dynamic (on-demand) virtual circuits
interconnecting pairs of geographically distant end sites. Because
each end site utilizes a circuit in the same manner as a VLAN, the
number of circuits that can be simultaneously active is limited.
In this paper, we address the problem of maximizing the number
of bandwidth reservations that can be serviced by a set of virtual
circuits while minimizing the number of required virtual circuits.
We develop an algorithm, called CA, that solves this problem and
compare its performance with a simplified version, called S-CA,
and a baseline FCFS algorithm, through both offline and online
simulations. We demonstrate that CA performs up to 30% better
than S-CA and up to three times better than FCFS.

I. INTRODUCTION

In an effort to address the requirements of its science
community for reliable and predictable big data transfers
over the network, the U.S. Department of Energy (DOE)
has funded a number of projects to research and develop
services that enable user-driven bandwidth reservations (BRs).
The OSCARS project [1] has developed a system for wide-
area networks that allows the allocation of bandwidth in the
form of dynamic virtual circuits. Two major U.S. research and
education networks, ESnet [2] and Internet2 [3], have deployed
the OSCARS system [4] into production, providing on-demand
virtual circuit connectivity between the end-sites they inter-
connect, mainly research laboratories and U.S. universities.
Numerous data transfers between multiple sites serviced by
these networks are initiated through the requests of thousands
of researchers to distribute shared datasets and analysis results
such as those from the Large Hadron Collider.

The TeraPaths [5] project has developed services to bring
the capabilities of this virtual circuit infrastructure to end-site
users. Building on the TeraPaths service, the VNOD project [6]
establishes virtual network instances comprising multiple end-
to-end virtual paths to accommodate data transfers between
multiple pairs of source and destination end-sites. VNOD
provides predictable data transfers in two steps. First, the
system generates an optimized set of bandwidth reservations
(BRs) for data transfer requests submitted by users. Within
each end site, these BRs are enforced using DiffServ [7].

∗The author was with the Computational Science Center at Brookhaven
National Laboratory when this work was performed.
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Fig. 1. An example of two different schedules.

The corresponding data flows are regulated and prioritized
between source/destination hosts and each site’s border router.
Next, the system acquires one or more WAN virtual circuits
to interconnect the border routers with guaranteed-bandwidth
virtual links. Each border router is configured to allocate a
specific VLAN for the circuit and to forward the data flows
into the circuit using Policy Based Routing (PBR). Therefore,
each circuit requires one VLAN identifier (VLAN ID) at each
end site.

Several efforts [8], [9], [10], [11] have been pursued
to solve the problem of mapping user requests onto BRs.
However, none of them considers the problem of allocating
virtual WAN circuits for the generated BRs. In this paper, we
focus on this critical problem, which is complex because of two
main reasons. First, due to hardware and policy restrictions,
the number of VLAN IDs that can be used in practice at each
end site is limited to much smaller numbers than the 4096
VLAN IDs provided for by the 802.1Q standard. For example,
for the TeraPaths project at Brookhaven National Laboratory
only 50 VLAN IDs were allowed for such virtual circuit
utilization, while in collaborating sites as low as 3. Since each
virtual circuit needs one VLAN ID at each end site, such
restrictions also greatly limit the number of simultaneously
active virtual circuits. Therefore, circuit sharing has to be
used to increase the number of requests that can be serviced.
With circuit sharing, multiple BRs with common source and
destination can be mapped onto the same circuit while each of
them maintains its own bandwidth guarantees. However, circuit
sharing also causes bandwidth wastage, which can prevent the
accommodation of other BRs. The main issue here is to strike a
balance between the overall number of circuits and bandwidth
utilization, while maximizing the number of accommodated
BRs. For example, Fig. 1 shows two different schedules of five
BRs. In Fig. 1(a), three circuits (blue dashed line rectangles)
are used to service the five reservations, while only one circuit
is used in Fig. 1(b) but has larger bandwidth wastage (the
white area within the blue dashed line rectangle). Second, the



availability of bandwidth and VLAN IDs varies with time.
This variation is caused by previously allocated circuits which
reserve a portion of the total bandwidth and use up some
VLAN IDs during their lifetime. For the previous example,
if there is only one VLAN ID available from times 0 to 1000,
then the schedule in Fig. 1(a) is infeasible. On the other hand,
if the available bandwidth is only 2 Gb/s from times 600 to
1000, then the schedule in Fig. 1(b) is infeasible.

In this paper, we study the problem of allocating circuits
for a set of BRs between the same pair of end sites and
formulate an objective function to evaluate potential solutions.
We develop a Circuit Allocation (CA) algorithm to solve this
problem. The algorithm incorporates several problem-specific
techniques, such as Circuit-to-VLAN map, Multiple Circuits
Consolidation, and Single Circuit Allocation. We study the
performance and effectiveness of the CA algorithm through
both offline and online simulations.

In section II we describe related work, while in section III
we formally define the problem. In section IV we present
the CA algorithm and analyze its runtime complexity, then in
section V we study the performance of our algorithms through
simulations. Finally, in section VI we present our conclusions.

II. RELATED WORK

The problem of scheduling advance and flexible bandwidth
reservation requests has been well studied [8], [9], [10], [11].
Sharma et al. [8] presents a bandwidth scheduling algorithm,
called RRA, to accommodate multiple flexible data transfer
requests between a single pair of end sites. The objective
of RRA is to generate a set of feasible BRs that maximize
the number of accommodated requests. Sharma et al. [9]
continues the work of [8] by developing an algorithm, called
RRPC, to calculate a routing solution as well as accommodate
flexible requests. Balman et al. [10] develops an algorithm to
solve the problem of scheduling a single flexible reservation.
Lin et al. [11] considers four types of advance bandwidth
scheduling problems. However, none of these works considers
optimizing the assignment of multiple BRs to virtual circuits,
which is necessary for overcoming scalability limitations when
implementing BRs in practice.

Problems similar to the one under consideration here can
be found in other fields such as operations research. The
personnel task scheduling problem (PTSP) has been studied
in multiple papers [12], [13], [14]. In this problem, multiple
tasks with fixed start and end time need to be assigned to
the available personnel. Each task can only be assigned to
a specific subset of the personnel. Our problem is similar
to the PTSP problem in the view that every BR is a task
and every VLAN ID is a worker. In our problem, however,
multiple tasks can be merged into one task, and the maximum
number of simultaneously active tasks (BRs) is restricted not
only by the number of available workers (VLAN IDs) but also
by the time-varying availability of bandwidth. These critical
differences make our problem more complex than the PTSP
problem. The two-dimensional bin packing problem has also
been well studied [15]. While this problem seems similar to
ours if a circuit reservation is considered a bin and each BR
an item, the variation of bandwidth and VLAN ID availability
with time makes our problem quite different.
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Fig. 2. An example of BAGin and V IAGin.

III. PROBLEM DESCRIPTION

We consider two end sites interconnected with a given
route through a WAN. The system has received a set of data
transfer requests between these end sites, and has generated a
set of BRs. Given the limitations on bandwidth and VLAN ID
availability, our goal is to map these BRs on a set of virtual
circuit reservations (CRs) that maximizes a certain objective
function. We can formally describe the input, output, and
objective function of the algorithm as follows:

Input: The input to our algorithm has three components. The
first component is a set of BRs, represented as set R. The BR
ri in R is defined as {sti, eti, bwi}, where sti is the beginning
time; eti is the end time, and bwi is the amount of bandwidth
to be reserved between sti and eti. As an example, the five
BRs shown in Fig. 1 can be represented as: {0, 1000, 1 Gb/s},
{100, 600, 1 Gb/s}, {100, 500, 1 Gb/s}, {0, 500, 1 Gb/s}, and
{600, 1000, 1 Gb/s}.

The second component is the bandwidth availability graph
(BAG) that describes the time-varying availability of band-
width represented as BAGin. The BAGin is a step function
with multiple steps stepi defined as {starti, endi,maxBWi},
where starti is the start time of stepi, endi its end time, and
maxBWi the available bandwidth between starti and endi.
Fig. 2(a) shows an example of BAGin with two steps: {0,
700, 4 Gb/s} and {700, 1000, 3 Gb/s}.

The last component is the VLAN ID availability graph
(VIAG) that describes the availability of VLAN IDs denoted
as V IAGin. The V IAGin also contains a series of steps stepi
defined as {starti, endi, Ti}, where starti is the start time of
stepi, endi its end time, and Ti the set of available VLAN
IDs between starti and endi. Fig. 2(b) shows an example of
V IAGin with two steps: {0, 700, {v1,v2,v3,v4}} and {700,
1000, {v1,v2,v4}}. Based on the operational requirements of
the mechanisms that establish the virtual circuits and forward
traffic into them at the end sites, we assume that the VLAN
IDs at the two end sites are used in a manner of fixed one-to-
one mapping. As a result, we can represent the availability of
VLAN IDs for the circuit allocation with the VIAG of one of
the end sites.

Objective: Our goal is to generate a set of virtual CRs that
maximizes an objective function incorporating three criteria:
first, it should help maximize the number of BRs that are suc-
cessfully assigned to circuits; second, it should help minimize
wasted bandwidth caused by mapping multiple BRs onto the
same circuit; finally, it should help minimize the total number
of required CRs. For a given set of BRs, an objective function
that balances all three criteria can be written as follows:

Maximize α
r

|R|
− β c

|R|
− γw (1)

Variable r is the number of BRs that got assigned to a CR, and



variable c is the number of CRs allocated to accommodate the
set of given BRs. |R| represents the total number of input BRs.
It is used to normalize r and c. Because the maximum value
of r and c equals to |R|, the value of r

|R| and c
|R| is in the

range of [0, 1]. The variable w represents bandwidth wastage
and can be calculated as:

w =
DT −DN

DT
(2)

in which DT is the total amount of data that could be
transferred with the reserved bandwidth and DN is the amount
of data that actually needs to be transferred, corresponding to
the BRs that were assigned to circuits. As an example, the
value of w for the circuit shown in Fig. 1(b) (blue dashed line
rectangle) is 3

10 . Observe that the value of w is also in the
range of [0, 1]. The exponents α, β and γ represent the weight
of their corresponding variable in the objective function. Since
maximizing r is the most important goal in our problem, we
usually set α to be larger than β and γ.

Output: The output of the algorithm is a set of CRs. We
denote this set by C. Each circuit reservation ci in C is
defined as {tai

, tdi
, reservedBWi, vlanIdi,Rci}, where tai

is the activation time of ci; tdi
is the deactivation time;

reservedBWi is the total amount of bandwidth reserved by
ci; vlanIdi is the VLAN ID assigned to this CR; and Rci is
the set of BRs sharing ci.

In order to be feasible, the set of CRs should satisfy the
following constraints: (i) Any overlapping circuits should not
use the same VLAN ID; (ii) At any time t, the VLAN IDs
used by all active circuits should belong to the set of available
VLAN IDs; (iii) At any time t, the total amount of bandwidth
reserved by all active circuits should not exceed the amount
of available bandwidth. For example, the three circuits shown
in Fig. 1(a) can be presented as: {0, 600, 3 Gb/s, v1, {r2, r3,
r4}}, {0, 1000, 1 Gb/s, v2, {r1}}, and {600, 1000, 1 Gb/s, v1,
{r5}}. Note that a certain VLAN ID can be used in different
circuits as long as those circuits are not overlapping in time.

IV. THE CIRCUIT ALLOCATION (CA) ALGORITHM

A. Algorithm Description

We develop an algorithm, called CA, to solve the problem
described in the previous section. The CA algorithm begins
with the set R, and runs in iterations. During each iteration,
the algorithm allocates virtual circuits to a subset of R. Each
iteration consists of four phases, as follows:

1) Phase I: Identify Maximum Overlapped Subset: In this
phase, the CA algorithm identifies subset M ⊆ R that has
the largest number of overlapping BRs. For each ri ∈ M, a
CR, denoted by cri , is created. It has the same start time and
end time with ri. Its reserved bandwidth is equal to bwi of
ri, and only ri is mapped to it. The VLAN ID for this CR,
however, is unknown for now. Set CM contains all CRs created
in this manner. For the five BRs shown in Fig. 1(a), Fig. 3(a)
shows the maximum overlapped subset M identified by the
CA algorithm in the first iteration. Four CRs (shown as blue
dashed line rectangles) are created for set M. Note that the
CA algorithm removes all BRs in M from R at the end of
current iteration. As a result, a new subset M is identified in
the next iteration.
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Fig. 3. An Example of: (a) Maximum overlapped subset, (b) CtoV map.

2) Phase II: Construct Circuit-to-VLAN (CtoV) Map: To
be able to actually allocate the circuits corresponding to the
CRs in set CM, we first need to assign VLAN IDs to the
CRs. It is feasible to assign a VLAN ID vk to a CR ci if
and only if vk is always available during the active period of
ci. We devised the concept of Circuit-to-VLAN (CtoV) map
to express the relationship between circuits and VLAN IDs.
The CtoV map contains two columns of nodes. If V is the
set containing all available VLAN IDs, each node in the left
column represents a circuit corresponding to a CR in CM, and
each node in the right column represents a VLAN ID in V .
Each circuit ci is connected with dashed lines to the nodes
of VLAN IDs that can be assigned to it. Fig. 3(b) shows the
CtoV map of the subset in Fig. 3(a). In Fig. 3(b), there are 4
nodes in each side, corresponding to circuits and VLAN IDs.
Circuits cr2 , cr3 and cr4 are connected to all VLAN IDs, while
cr1 is only connected to v1, v2 and v4.

3) Phase III: Allocate Circuits: In this phase, the goal
is to generate a set of implementable CRs (with complete
information) to accommodate the BRs in M. In this phase,
there are two steps: the multiple circuits consolidation (MCC)
step and the single circuit allocation (SCA) step. Fig. 4 and
Fig. 7 shows the pseudocode of the two steps respectively.

Step 1: Multiple Circuits Consolidation (MCC) step. Before
introducing the MCC step, we need to clarify two concepts.
The first concept is the merging of multiple CRs into a new CR.
The time duration of this new CR is the time duration for which
at least one of the original CRs is supposed to be active, while
its reserved bandwidth is equal to the total bandwidth reserved
by all original CRs. The merged CR can accommodate all
the requests that are assigned to the original CRs. The second
concept is the bandwidth wastage occurring when merging two
or more CRs. We express this with the wastage coefficient,
which is the value of variable w the new CR gets due to the
merging of the original CRs. We use Eq. 2 to calculate this
value, only taking into account the new circuit and the BRs
accommodated by it. For example, the wastage coefficient of
cr1 and cr2 is 5

20 .

The MCC step runs in iterations. Each iteration begins by
selecting from the current set CM a pair of CRs for which the
wastage coefficient is minimum (ties are broken randomly).
Assume that the two CRs in such a pair are ci and cj . The CA
algorithm then finds all the VLAN IDs that can be assigned to
both ci and cj and adds them to a set, denoted by Vcommon.
For each vk ∈ Vcommon, we calculate a new objective value
corresponding to the merged CR and assign ID vk to it. ci+j

could now be allocated. Because an allocation uses up one of
the total available circuits and also increases the number of
accommodated BRs, the value of the objective function can
change. Assigning a different VLAN ID in Vcommon to ci+j

may cause the objective function to take a different value.
This is because some VLAN IDs in Vcommon may be already



MCC step (Cm, CtoV map, Object, BAGin, V IAGin)
1. while true do
2. for all Pair(ci, cj), ci, cj ∈ Cm do
3. wasteij ← waste coefficient of Pair(ci, cj).
4. Add Pair(ci, cj) to List P .
5. end for
6. while List P 6= {} do
7. Pair(ci, cj)← argminpair∈P{wasteij}
8. Identify Vcommon for Pair(ci, cj).
9. for all vk ∈ Vcommon do
10. if vk is not assigned to other circuit then
11. Ok

ij ← new objective value based on
merging ci and cj .

12. else /*Suppose vk is assigned to co*/
13. Ok

ij ← new objective value based on
merging ci, cj and co.

14. end for
15. vt ← argmaxvk∈Vcommon{Ok

ij |O
k
ij > Object}

16. if vt == null then
17. Remove Pair(ci, cj) from List P . continue
18. else
19. Merge co(if exists), ci and cj to cnew .
20. Assign vt to cnew , and add cnew into Cm.
21. Remove co (if exists), ci and cj from Cm.
22. Update CtoV map and BAGin.
23. Object← Ot

ij . break.
24. end while
25. if List P == {} then break.
26. end while
27. Add all CRs with VLAN ID to Set C.
28. Remove all CRs with VLAN ID from Cm.

Fig. 4. Pseudocode for the MCC step.

assigned to some other CR co in a previous iteration. If we
assign an already assigned VLAN ID to CR ci+j , we then
need to merge ci, cj and co together because a single VLAN
ID cannot be assigned to two overlapping circuits. In such
cases, we accommodate more BRs but don’t use up yet another
circuit out of the total number available. After calculating the
new objective value for each vk ∈ Vcommon, we merge the
selected CRs and assign to the resulting CR a VLAN ID vt
when the following three feasibility conditions are satisfied:

(i) The available bandwidth allows the merge.

(ii) The objective value improves after the merge.

(iii) Compared with assigning other VLAN IDs in
Vcommon to the new CR, assigning vt improves the
objective value the most.

If the two selected CRs cannot be merged, the CA algorithm
does not consider this pair anymore and moves to the next
pair with the minimum wastage coefficient. If the two CRs ci
and cj are merged and assigned a VLAN ID vt, then they are
removed from the set Cm, and the new CR ci+j is added to
Cm. Subsequently, the CA algorithm updates the CtoV map.
It merges nodes ci and cj into a new node ci+j , and connects
the new node only to node vt by using a solid line (see, for
example Fig. 5(a)). Since ci+j already uses VLAN ID vt, its
node is connected only to the node for vt. Finally, the CA
algorithm updates the BAGin and starts the next iteration.

As an example, consider the CRs in Fig. 3(a). The MCC
step begins by selecting the pair (cr3 , cr4). A new CR cr3+r4
({0, 500, 2 Gb/s, {}, {r3, r4}}) is generated by merging cr3
and cr4 . By checking the current BAGin, the algorithm finds
that cr3+r4 can be accommodated. Next, it checks whether
assigning a VLAN ID to cr3+r4 improves the objective func-

(a) CtoV map.
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Fig. 6. CtoV map and BAGin after the 2nd iteration of MCC step.

tion value. The set Vcommon for this pair contains v1, v2,
v3, and v4. For each VLAN ID in Vcommon, a new objective
value is calculated1. In this example, the new objective value
is the same for each assignment of VLAN ID, equal to
10 × 2

5 −
1
5 −

1
10 = 3.7. Therefore, a VLAN ID is randomly

selected from Vcommon and assigned to cr3+r4 . Assume that v1
is selected in this example. We can see that all three feasibility
conditions are satisfied, so cr3 and cr4 can indeed be merged
and v1 assigned to the merged CR. The CA algorithm then
updates the CtoV map and the BAGin. Fig. 5(a) shows the
updated CtoV map. In Fig. 5(b), the shaded area represents
the updated BAGin and the yellow rectangle is the allocated
CR. In the second iteration, the CA algorithm merges the pair
(cr2 , cr3+r4). and assigns v1 to the new CR. The objective
function value increases to 5.58. The updated CtoV map and
BAGin are shown in Fig. 6(a) and Fig. 6(b) respectively.

If in an iteration the objective value does not improve
because it is not feasible to merge any pair of CRs, the MCC
step finishes and the CA algorithm moves to the next step,
SCA. For the previous example, in the third iteration, the
only CR pair left (cr1 , cr2+r3+r4 ) cannot be merged because
of insufficient bandwidth availability, which causes MCC to
finish.

Step 2: Single Circuit Allocation (SCA) step. In this step, we
further improve the objective value by individually allocating
the CRs still in CM. The SCA step begins by removing all the
nodes that are connected by a solid line from the CtoV map.
Fig. 8(a) shows an example of the updated CtoV map.

The SCA step then runs in iterations. In each iteration, SCA
identifies every feasible single CR allocation. An allocation
needs to satisfy the following three feasibility conditions: (i)
The available bandwidth allows the allocation, (ii) The targeted
VLAN ID can be assigned to the CR of interest, (iii) The
objective value improves after the allocation. Subsequently, the
CA algorithm performs the allocation that causes the largest
improvement to the objective function value, breaking ties
randomly. After updating the CtoV map and BAGin, SCA
then starts a new iteration. If no single CR allocation can be
made in some iteration, SCA stops. For the previous example,
the SCA step starts with the updated CtoV map shown in
Fig. 8(a). In the first iteration, SCA identifies two feasible

1In all examples the objective value is calculated using α = 10 and β =
γ = 1.



SCA Algorithm (Cm, CtoV map, Object, BAGin, V IAGin)
1. Update CtoV map.
2. while true do
3. for all ci ∈ Cm, all vk that is feasible to ci do
4. Ok

i ← new objective value after
allocating ci with VLAN ID vk .

5. end for
6. (cp, vt)← argmaxci∈Cm,vk∈V{O

k
i |O

k
i > Object}

7. if (cp, vt) == null then break
8. else
9. Assign vt to cp, and update Object to Ot

p.
10. Remove cp from Cm, and add it to C.
11. Update CtoV map and BAGin.
12. end while
13. Return C.

Fig. 7. Pseudocode for the SCA step.
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Fig. 8. (a) Updated CtoV map, (b) Circuits allocated after running SCA step.

single CR allocations: (cr1 ,v2) and (cr1 ,v4), which have the
same new objective value of 7.46. SCA randomly selects
(cr1 ,v2) and then updates the CtoV map and BAGin. In the
next iteration, since there are no more circuit nodes in the
CtoV map, no allocation can be performed. Therefore, the SCA
step stops. Fig. 8(b) shows the allocated CRs after running
SCA. The shaded area represents the updated BAGin. After
completing the SCA step, the CA algorithm starts its last phase.

4) Phase IV: Update Information: In this phase, the CA
algorithm removes all BRs inM fromR and adds all allocated
CRs to set C, as part of the output. The CA algorithm then
starts the next iteration. The initial objective value in the next
iteration is the current objective value.

5) Termination of the CA Algorithm: In each iteration of
CA, a subset of BRs is removed from set R. If set R becomes
empty at the end of an iteration, the CA algorithm terminates.
The current set C contains the final output CRs which will be
submitted for activation. For the previous example, the three
CRs shown in Fig. 1(a) are the final output.

B. Runtime Complexity

Assume that the number of BRs in R is N , the number of
maximum overlapped subsets is M , and the number of BRs
in each subset is ni. Also assume that the number of steps in
BAGin and V IAGin is S and the number of available VLAN
IDs is V . The total complexity of the CA algorithm can be
written as:

O
(
MNlog(N) +NSV +MVN2

max +MN3
max

)
(3)

where
Nmax = max(ni), i ∈ [1,M ] (4)

Note that, in practice, the value of S (number of steps in a
BAG) and V (number of available VLAN IDs) is usually much
smaller than Nmax. As a result, MN3

max usually dominates the
complexity of the CA algorithm. We omit the procedure of
arriving at Eq. 3 and Eq. 4 due to space limitations.

(a) Histogram of the start time of data
transfer requests.

(b) PDF of beta prime distribution.

Fig. 9. Distributions used to generate data transfer requests as input.

V. PERFORMANCE EVALUATION

A. Simulation Setup

We evaluate the CA algorithm through simulating the
complete scheduling procedure, which has two steps. In the
first step, we utilized the RRA algorithm [8] introduced in
section II to map user requests onto BRs. Next, we run the
CA algorithm to map the BRs onto CRs.

We generate the user requests based on statistics of file
transfer requests between the High Performance Storage Sys-
tem (HPSS) of National Energy Research Scientific Computing
(NERSC) Center [16] and other locations, like the National
Center for Atmospheric Research (NCAR). The time period is
from 2010 to 2012. Fig. 9(a) shows the histogram of start time
of each request in the scale of 24 hours. In the simulations, we
use this statistical data as probability distribution to generate
the start time of each request. We also observe that most
of the requests have a transferred file size between 100 MB
and 500 MB, while the maximum file size is 12 GB. We
believe that this observation indicates a significant trend that
transfers of smaller files are much more common, at least
in this category of scientific data transfers. Based on these
observations, we decided to use in our simulations the beta
prime distribution with α = 1.3 and β = 2, which is strongly
positively skewed, to approximate the real distribution of the
file size of each request. Fig. 9(b) shows the probability
density function (PDF) of the beta prime distribution. The rate
limitation of each request, i.e., the maximum bandwidth can
be reserved for this request, is randomly selected from 0 to
400 Mb/s. Furthermore, we also use the normal distribution
and the uniform distribution to generate the file size in our
simulations. The normal distribution has µ = 6 GB and σ = 2
GB. The uniform distribution has a uniform density of 1

12 in
the range of [0, 12 GB]. In the simulation results, each data
point represents an average value of 50 runs.

We develop two algorithms to compare with the CA
algorithm. The first algorithm, called Simple-CA (S-CA), is
a simplified version of the CA algorithm. S-CA does not use
other strategies developed in the CA algorithm, except the
concept of wastage coefficient. The S-CA algorithm processes
the BRs one by one in the increasing order of their start time.
In each iteration, S-CA selects a BR and tries to merge it
with a previously allocated CR that has the minimum wastage
coefficient with the selected request. The second algorithm,
called FCFS, is a simple heuristic that simulates a mechanism
potentially used by a scheduling system without any optimiza-
tion strategy for circuit allocation. The FCFS algorithm also
processes the BRs one by one in increasing order of their
start time. In each iteration, however, FCFS simply tries to
merge the selected BR into the CR allocated in the previous



(a) Accommodated BRs. (b) Circuit reservations.

(c) Bandwidth wastage. (d) Objective value.

Fig. 10. Performance of CA for different number of BRs.

(a) Accommodated BRs. (b) Objective value.

Fig. 11. Performance of CA for different number of available VLAN IDs.

iteration. If such merge is invalid, FCFS then allocates a new
CR for the selected BR. By comparing with S-CA and FCFS,
we demonstrate the effectiveness of the optimization strategies
used by the CA algorithm. Note that we attempted to use the
well-known heuristics [13], [15]. However, due to the complex-
ity of our problem, we cannot apply these heuristics without
significant modifications. Therefore, comparisons between CA
and these heuristics might be considered unconvincing.

B. Simulations based on Statistical Data

Based on the method of generating input requests from
statistical data, we perform three sets of simulations. In these
simulations, the CA, S-CA, and FCFS algorithms run after
running the RRA algorithm first.

In the first simulation, we study how the CA algorithm
performs as the number of requests increases from 100 to
12,000. A multi-step BAG and a VIAG are randomly gen-
erated. For every step in the BAG, the value of available
bandwidth is randomly selected between 0 and 10 Gb/s. The
maximum number of available VLAN IDs in each step of
VIAG is 24. Fig. 10(a) shows the number of accommodated
BRs. The CA algorithm performs nearly four times better
than FCFS and 35% better than S-CA. Fig. 10(b) shows the
number of circuit reservations created by each algorithm. The
CA algorithm creates nearly 45% less circuit reservations than
that of S-CA, but more than that of FCFS. Fig. 10(c) shows the
bandwidth wastage of each algorithm. The FCFS algorithm has
the largest bandwidth wastage, followed by the S-CA and CA
algorithms. From Fig. 10(b) and Fig. 10(c), we observe that
the CA algorithm achieves good balance between c and w and
accommodates the largest number of BRs. Fig. 10(d) shows
the objective value of each algorithm. The CA algorithm has
the largest objective value, followed by the S-CA and FCFS

(a) Accommodated BRs.

Fig. 12. Performance of CA in online simulations.

algorithms. As far as the running time is concerned, when the
number of BRs in R is 12000, all three algorithms finish a
single run in less than 40 seconds. All the simulations were
performed on a 2.7 GHz processor.

In the second simulation, we demonstrate the performance
of the CA algorithm when the maximum number of available
VLAN IDs increases from 1 to 60. Such an increase also
increases the number of circuits that can be simultaneously
activated. We present the results obtained for 6000 BRs. A
BAG and a VIAG are randomly generated as in the first
simulation. Fig. 11(a) shows the number of accommodated
requests. The CA algorithm accommodates 20% more BRs
than S-CA and nearly 230% more than FCFS. Simulation
results (which we have to omit due to space limitations)
also show that S-CA allocates the largest number of circuit
reservations and FCFS has the largest bandwidth wastage.
This is similar to the results of the first simulation. Finally,
Fig. 11(b) shows that the objective value of CA is nearly 20%
superior to that of S-CA and nearly 230% superior to that of
FCFS. For the running time, when the maximum number of
available VLAN IDs is 60, all three algorithms finish a single
run in less than 30 seconds. All the simulations were, again,
performed on a 2.7 GHz processor.

Finally, we study the performance of the CA algorithm
through a set of online simulations, in which the time axis
is divided into multiple time slots with length ∆t. Essentially,
we simulate a real-world scenario where the scheduling system
periodically runs the scheduling algorithms to address the data
transfer requests received in the latest period. A submission
time is randomly generated for each request. All requests
whose submission time is in the same time slot are addressed
together at the end of that time slot, except for those requests
whose start time is within that time slot. The system addresses
the latter type of requests immediately and individually. In the
simulations, a set of 6000 BRs is generated as input. In each
simulation, at any time t, the initial available bandwidth is 10
Gb/s and the initial number of available VLAN IDs is 24. This
simulates the initial state in which no circuit reservation has
been allocated. Fig. 12(a) shows the number of accommodated
BRs by each algorithm at the end of an online simulation.
In online simulations, we treat the number of accommodated
BRs as the most important metric. We can see that the CA
algorithm accommodates nearly 20% more requests than S-
CA and nearly 200% more than FCFS in the beginning. As
∆t increases, the number of requests accommodated by CA
increases slightly and then stabilizes at approximately 5800
requests. Even though the difference between the performance
of CA and S-CA decreases as ∆t increases, we notice that the
acceptance rate of CA reaches 97% after stabilizing.



(a) Simulations with increasing num-
ber of BRs.

(b) Simulations with increasing num-
ber of available VLAN IDs.

(c) Online simulations with increas-
ing value of ∆t.

Fig. 13. Performance of CA when using the normal and uniform distributions.

C. Simulations using other probability distributions.

In this section, we demonstrate the performance of the
CA algorithm when the normal and uniform distributions
introduced in section V-A are used to generate the file size of
each request. Due to the space limitations, we only present the
number of requests accommodated by each algorithm, because
this is the most important goal in our objectives. Fig. 13
shows the results of the simulations. In the graph legends,
the letter “N” after the algorithm’s name indicates that the
normal distribution is used, and the results are plotted with red
solid lines; the letter “R” indicates that the uniform distribution
is used, and the results are plotted with green dashed lines.
Finally, the simulation results obtained in previous sections
are shown with blue dotted lines.

In Fig. 13, we can see that each algorithm generally ac-
commodates less BRs, when the normal or random distribution
is used to generate input. This is because more data transfer
requests with larger file size are generated when using the
normal or random distribution. Fig. 13(a) shows the results
of simulation with increasing number of BRs. We can observe
that the CA algorithm accommodates nearly 40% more than S-
CA and nearly 100% more than FCFS, when either the normal
distribution or the uniform distribution is used. Fig. 13(b)
shows the results of simulation with increasing number of
available VLAN IDs. The performance of CA is around 25%
superior than that of S-CA and around 200% superior than that
of FCFS. Fig. 13(c) shows the results of online simulations.
The CA algorithm accommodates 20%-40% more requests
than S-CA and 250%-400% more requests than FCFS.

VI. CONCLUSION

In this paper, we studied the problem of optimizing the
number of bandwidth reservations that can be serviced by a
set of virtual circuits. We formulated an objective function,
and proposed an algorithm called CA to solve the problem by
maximizing the objective function. We studied the performance
of the CA algorithm with both offline and online simulations.
In the simulations, we generated the input based on the statistic
data of the NERSC HPSS and developed two algorithms to
compare with CA. One of these algorithms, called S-CA, is a
simplified version of CA; the other, called FCFS, is a simple
heuristic. Simulation results shows that the CA algorithm

outperforms S-CA by a factor of 0.1-0.3 and FCFS by a
factor of 2-4. Furthermore, when using the normal and random
distributions to generate input, the CA algorithm performs up
to 40% better than S-CA and up to 4 times better than FCFS.
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