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Abstract—In this paper, we propose a novel optimal power
allocation method that features a power limit function and is
able to ensure more users reach the desired Quality-of-Service
(QoS). In our model we use sigmoidal-like utility functions to
represent the probability of successful reception of packets at user
equipment (UE)s. Given that each UE has a different channel
quality and different location from base station (BS), it has
different CQI and modulation. For each CQI zone, we evaluate
the power threshold which is required to achieve the minimum
QoS for each UE and show that the higher CQI the lower power
threshold is. We present a resource allocation algorithm that gives
limited resources to UEs who have already reached their pre-
specified minimum QoS, and provides more possible resources
to UEs who can not reach it. We also compare this algorithm
with the optimal power allocation algorithm in [1] to show the
enhancement.

Index Terms—Resource Allocation, Quality of Service, Power
Limit, CQI, LTE

I. I NTRODUCTION

In recent years, the user demand for higher data rates and
QoS is increasing significantly. The main requirements for
the new access network are higher spectral efficiency and
higher peak data rates [2]. These needs lead to the existing
of 3GPP long term evolution (LTE), the access part of the
Evolved Packet System (EPS), to provide higher modulation
schemes such as QPSK, 16-QAM, and 64-QAM and. LTE
equips the Medium Access Control (MAC) protocol layer as
the distributed solution for scheduling [2]. A lot of research
work has been done to provide an optimal resource allocation
solution for users to seek better QoS. The goal is to provide
better signal-to-noise ratio (SNR) and guarantee minimum
successful transmission probability of packets.

The network resource allocation problem can be considered
as a maximization of utility functions. The utility function is
a representation of each UE’s QoS and it is a function of its
power allocation. Earlier in [3] and [4], the utility function has
been approximated as a sigmoidal-like function. The goal is
therefore to maximize the network utility which is a product
of all users’ utilities.

When designing and deploying a wireless network, it is
essential to consider the signal coverage. There exists various
environments between the BS and UEs, therefore, it is hard to
have a unique model to describe the propagation. The path-
loss model is the core of signal coverage for any environments
[5] and it provides information on the maximum resource that
a UE can receive at a distance from the BS.

During each Transmission Time Interval (TTI), the BS
scheduler prioritizes the QoS requirements among the UEs
and allocates resources to the UEs based on the information
that is feedback from the UEs. This information is the Channel
Quality Indicator (CQI) which indicates the perceived quality
and the data rate can be supported by the downlink channel.
It is carried out when a Block Error Rate (BLER) is smaller
than 10% and the thresholds are set to the SINR values with
the BLER smaller than 10%. Each UE has a different channel
quality, i.e CQI value, based on its location from the BS and
the environment surrounding it. It was shown in [6] that the
sigmoidal-like utility function is a good approximation for
the CQI verses power allocated. Therefore, in our paper we
represent each CQI with a sigmoidal-like function.

Opportunistic resource allocation algorithms has been pro-
posed in [7] to improve the system efficiency, however the
QoS requirements of users and fairness in allocation failedto
be addressed. In our work, we focus on the enhancement of
the resource allocation problem with a sigmoidal-like utility
function for each UE. The optimization problem is to achieve
the fairness in resource allocation and ensure each UE receives
the maximal possible resources to achieve its minimal QoS.

A. Related Work

Early in [8], the authors characterized the resource alloca-
tion problem as a global optimization problem and proposed
utility proportional fairness criterion to solve this problem.
They also showed the bandwidth utility values were ensured
to be proportional fair in equilibrium. In [9], both utility-
based resource management and QoS framework and resource
allocation algorithms were studied. The authors also showed
an efficient resource allocation for heterogeneous traffic with
various QoS requirements.

The study in [10] proposed a non-convex optimization
algorithm to maximize the utility functions in wireless net-
works. This optimization framework included a distributed-
gradient-based algorithm that solves the optimization problems
when the duality gap is zero. In cases of non-zero duality
gap, they presented the fair-allocation heuristic and led to an
approximated optimal solution.

In [1], the study modeled the user’s utility function using
sigmoidal like functions and it provided an algorithm for opti-
mal power allocation in a cellular network. Utility proportional
fairness was considered and the optimization problem was
stated as a product of utilities of all users. In [11] and [12], a
similar approach for optimal power allocation was introduced.
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In LTE, the frequency domain scheduler allocates a certain
resource block (RB) at a certain transmit rate to a UE basing on
the CQI feedback from UEs [13]. In [13], the authors proposed
a trackable model for the CQI feedback schemes in LTE. And
in [14], the author proposed a dynamic resource allocation
algorithm with imperfect channel sensing. Their algorithm
keeps tracking the change in channel quality and uses discrete
stochastic optimization method to the joint power and channel
allocation problem.

In [15], the authors formulated and solved the power al-
location problem for multihop transmission. They suggested
that the system enhancement is required especially when the
highly unbalanced communication links or a large number of
hops in the systems, and this enhancement is done by the
power optimization. The study in [16] proposed an optimal
resource allocation for a set of time-invariant additive white
Gaussian noise broadcast channels for code division and time
division.

The research work in [17] presented a suboptimal solution
that fairly allocates resources and meets the QoS constraints.
They showed that the algorithm efficiently converges close to
the optimal, and performances well in terms of fair scheduling
among users. In [18], the study presented a resource allocation
framework in multiuser orthogonal frequency division multi-
plexing (MU-OFDM) systems to achieve variable proportional
fairness constraints. This algorithm maximizes the sum chan-
nel capacities while maintaining proportional fairness among
all UEs.

B. Our Contributions

The main contributions of this paper are:
• we proposed a novel optimal power allocation algorithm

that includes the power limit feature.
• we simulated and showed that the optimal power alloca-

tion with power limit would ensure more UEs reach the
desired QoS, and more power would be allocated to UEs
who can not reach the power limit.

• we compared this algorithm with the optimal power
allocation algorithm in [1] to measure the improvements.

This paper is structured as follow. Section II gives the
overview of the system model. In Section III, we present the
process of how we mapped the CQIs to utility functions, and
list the resulted parameters corresponding to each CQI along
with discussions. The optimal power allocation with power
limit algorithm is described in detail in Section IV. Section V
discusses the simulation results and compares the results with
the one of algorithm in [1]. Finally, Section VI concludes the
paper.

II. SYSTEM MODEL

In this paper, we consider a single cellular system consisting
of a single BS andM UEs. Each UE is placed in a different
CQI zone and has a different CQI and corresponding modu-
lation. The set up is shown in Figure 1. The UE feedsbacks
CQI to indicate the downlink channel quality. It scales from
0 to 15 as shown in Table I. A larger CQI indicates a better
channel quality. Based on the CQI information, the BS selects

Fig. 1. System Model
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Fig. 2. Mapping CQI, SNR with distance from the BS

an appropriate modulation scheme and code rate for downlink
transmission. The BS distributes its total powerPT to all UEs
in the cell.

III. CQI M APPING TOUTILITIES

The path-loss is calculated in (1) to map each CQI to its
corresponding distance from BS as shown in Figure 2.α in
(1) is the the path loss exponent and in a urban environment
it equals to 3.5. Therefore each CQI zone will have different
distances from the BS as well as the UEs’ location.

PUE =
PBSf

c(4πd)α
(1)

wheref is the carrier frequency andc is speed of the light.

The probability of the successful package reception is
calculated from the efficiencies of different CQI values in
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Table I. The utility function as a result of CQI mapping is
shown in Figure 3. It is a function of the transmitter power.
It looks like sigmoidal-like function, therefore we can usethe
normalized sigmoidal-like utility function, as in [3] and [4]:

Ui(Pi) = ci(
1

1 + e−ai(Pi−bi)
− di) (2)

whereci = 1+eaibi

eaibi
anddi = 1

1+eaibi
.

To curve fit we used the Levenberg-Marquardt (LM) Op-
timization method to identify the parameters in the utility
functions for different CQIs. The evaluated parameters of 15
utility functions are listed in Table I. The left four columns in
Table I are the standard LTE CQI coefficients. The values for
as andbs in column 5 and 6 are the parameters in (2).

For example, in Figure 3, we set the minimum QoS require-
ment to achieve at least a 95% successful packet transmission.
For UE with CQI 15, the power that required to achieve the
minimum QoS is about 5.22W whereas the UE with CQI 1
needs 23.24W to have the minimum QoS. A lower amount of
power is required to achieve the desired QoS by the UE with
a better channel quality, and this fact motivates us to include
a power limit in our optimal power allocation algorithm.

IV. OPTIMAL POWER ALLOCATION WITH POWER L IMIT

In Section II, we discussed that the user with a better
channel quality will require less power to achieve the same
QoS than the user with a worse channel quality. In this section,
we introduce a robust distributed algorithm with power limits.

A. Problem Formulation

We form the utility proportional fairness power allocation
problem as following:

max
P

M∏

i=1

log(Ui(γi(Pi)))

subject to
M∑

i=1

Pi ≤ PT

Pi ≥ 0, for i = 1, 2, ...,M and PT ≥ 0.
(3)

TABLE I
UTILITY PARAMETERS

CQI
Index Modulation

Code Rate
X 1024 Efficiency a b

1 QPSK 78 0.1523 0.8676 6.2257

2 QPSK 120 0.2344 0.8761 6.1657

3 QPSK 193 0.3880 0.8466 6.3812

4 QPSK 308 0.6016 0.8244 6.5526

5 QPSK 449 0.8770 0.8789 6.1467

6 QPSK 602 1.1758 1.0188 5.3029

7 16QAM 378 1.4766 0.5077 9.8303

8 16QAM 490 1.9141 0.6086 8.1999

9 16QAM 616 2.4063 0.7524 6.6333

10 64QAM 466 2.7305 0.3697 12.5005

11 64QAM 567 3.3223 0.4722 9.7873

12 64QAM 666 3.9023 0.6248 7.3974

13 64QAM 722 4.5234 0.8376 5.5177

14 64QAM 873 5.1152 1.1510 4.0153

15 64QAM 948 5.5547 1.6471 2.8058

wherePT is the total power of the BS,M is the number of
UEs andP = {P1, P2, ..., PM}.

Given that the objective function in (3) is strictly concave,
the optimization problem is convex [1] and therefore there
exists a unique tractable global optimal solution.

B. Robust Distributed Algorithm with Power Limits

The power limit is the transmitter power that a UE requires
to achieve his/her QoS. In our model, we assume the minimum
QoS is to reach 95% successful package, and the pre-specified
power limits are the amount of power required to achieve this
QoS. The algorithm is shown in Algorithm (1) and (2):

The algorithm is divided into a UE algorithm shown in
Algorithm (1) and a BS algorithm shown in Algorithm (2).
Each UE starts sending an initial bidwi(1) to the BS. The BS
calculates the difference between the received bidwi(n) and
the previously received bidwi(n− 1) and compares its value
to a pre-specified thresholdδ. If it is greater than the threshold

δ, the BS calculates the shadow pricep(n) =
∑

M

i=1
wi(n)

R
and sends it to UEs. Each UE receives the shadow price
p(n) from the BS and solves the powerPi that maximize
(logUi(γi(Pi)) − p(n)Pi), then comparesPi to its power
limit PowerLimiti and the user stays in the process ifPi <

PowerLimiti. If it is greater theUEi exists the power allo-
cation andPi is subtracted for the total powerPT . After that
each remaining UE calculates a new bidwi(n) = p(n)Pi(n)
and decreases the difference between the current bid and
previous bidwi(n) − wi(n − 1) using exponential function
∆w(n) = l1e

n/l2 . The reason that we use this exponential
function is that when

∑M
i=1 P

inf
i =

∑M
i=1 bi ≥ PT the con-

vergence to the optimal powers can no longer be guaranteed
as it fluctuates about the global optimal solution. Therefore
the exponential fluctuation decay function is introduced to
resolve the problem. Each remaining UE sends the new bid
wi(n) = wi(n− 1) + sign(wi(n)−wi(n− 1))∆w(n) to BS.



Algorithm 1 UE Algorithm

Send initial bidwi(1) to eNodeB
loop

Receive shadow pricep(n) from eNodeB
if STOP from eNodeBthen

Calculate allocated rateP opt
i = wi(n)

p(n)
STOP

else
SolvePi(n) = argmax

Pi

(logUi(γi(Pi))− p(n)Pi)

if Pi > PowerLimiti then
Allocate rates:P opt

i = Pi andPT = PT −Pi to user
i

UEi quits the Optimal Power allocation and rest
UEs continue to bid

end if
Calculate new bidwi(n) = p(n)Pi(n) for remaining
UEs
if |wi(n)− wi(n− 1)|> ∆w(n) then
wi(n) = wi(n−1)+sign(wi(n)−wi(n−1))∆w(n)

{∆w(n) = l1e
n/l2}

end if
Send new bidwi(n) to eNodeB

end if
end loop

Algorithm 2 eNodeB Algorithm
loop

Receive bidswi(n) from UEs{Let wi(0) = 0 ∀i}
if |wi(n)− wi(n− 1)|< δ ∀i then

Allocate rates:P opt
i = wi(n)

p(n) to useri
STOP

else
Calculatep(n) =

∑
M

i=1
wi(n)

PT

Send new shadow pricep(n) to remaining UEs
end if

end loop

This process repeats until|wi(n)−wi(n− 1)| is less than the
pre-specified thresholdδ.

V. SIMULATION RESULTS

The BS has total powerPT = 150W to distribute to 15 UEs.
Each UE stands in a different CQI zone and is represented by
a sigmoidal-like utility function. Algorithm (1) and (2) were
simulated in MATLAB. The simulation results showed that the
optimal powers were allocated to all users as shown in Figure
4. The bidding process for 15 UEs is plotted in Figure 5.

We also provided a comparison of the allocated power for
each UE between the optimal power allocation algorithm with
power limit and without it [1] in Table II. We assumed the
minimal QoS is to reach at least a 95% success package
transmission at UEs. Column 2 in Table II indicates the power
that required by each UE to achieve the minimal QoS, and we
set those values to be the power thresholds. For example, UE
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algorithm with PL
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algorithm with PL

TABLE II
COMPARISON BETWEENPOWER ALLOCATION WITH AND WITHOUT

POWER L IMITS

UE
Power to

reach QoS (W)
Power with

PL (W)
Power without

PL (W)
Reach desired

QoS

1 23.240 10.491 9.122 No

2 18.210 10.401 9.045 No

3 17.650 10.723 9.318 No

4 14.720 10.978 9.5337 No

5 13.760 10.373 9.0218 No

6 11.910 9.0968 7.9388 No

7 11.350 11.502 13.6145 Yes

8 11.060 11.223 11.6935 Yes

9 10.790 10.849 9.7709 Yes

10 10.690 12.291 16.7008 Yes

11 10.650 11.376 13.6879 Yes

12 10.260 10.397 10.8536 Yes

13 9.181 9.2056 8.4798 Yes

14 7.485 7.4862 6.4664 Yes

15 5.213 5.2229 4.7468 Yes

15 requires 5.213W to reach the minimal QoS, after it receives



5.2229W from the BS it quits the algorithm and the remaining
power is allocated to the rest of the UEs. There are more UEs
achieving their minimal QoS, e.g. UE 13 receives 9.2056W
and achieves the desired QoS using our algorithm while it
only receives 8.4798W and fails to meet the QoS with the
algorithm without power limit. With our new algorithm there
are 9 UEs achieving the minimal QoS while the algorithm
without power limit in [1] only has 5 UEs meeting the QoS
requirements. Even for those UEs who do not reach the desired
QoS, our algorithm still allocates higher power to them than
the algorithm without power limit. For example, UE 1 receives
10.491W by using our algorithm while 9.122W is allocated to
it with the algorithm without the power limit.

VI. CONCLUSION

In this paper, we proposed a new optimal power allocation
algorithm with power limit feature that ensures more UEs
achieve the desired QoS and guarantees more power to be
allocated to UEs that can not meet the QoS requirements. We
simulated this algorithm with one BS and 15 different CQI
UEs. We showed that this new algorithm allows more users
to reach their desired QoS, and at the same time more power
is allocated to the users who do not reach the power limits
comparing to the algorithm in [1].
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