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Abstract

Many different caching mechanisms have been previously proposed, ex-

ploring different insertion and eviction policies and their performance indi-

vidually and as part of caching networks. We obtain a novel closed-form

stationary invariant distribution for a generalization of Least Recently Used

(LRU) and Most Recently Used (MRU) eviction for single caching nodes

under a reference Markov model. Numerical comparisons are made with

an “Incremental Rank Progress” (IRP a.k.a. CLIMB) and random eviction
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(RE a.k.a. random replacement, RANDOM) methods under a steady-state

Zipf popularity distribution. The range of cache hit probabilities is smaller

under MRU and larger under IRP compared to LRU. We conclude with the

invariant distribution for a special case of a RE caching tree-network.

1 Introduction

Caching is a ubiquitous mechanism in communication and computer systems. The

role of a content caching network is to reduce the load on the origin servers of re-

quested data objects, reduce the required network bandwidth to transmit content1,

and reduce the response times to the queries. Caching in computational settings

reduces delays associated with disk IO (page caches). Data actively being, or

likely soon to be, accessed by a CPU is stored in lower-level caches, i.e., memories

closer (with less access time) to the CPU.

The invariant distribution of the widely deployed Least Recently Used (LRU)

eviction mechanism for a caching node was found in [1]. LRU has lower average

miss rate compared to FIFO caching2 [2, 3, 4]. Numerically useful approximations

for LRU caching nodes are found in [5, 6, 7, 8, 9, 10]; in particular the expected

working set miss ratio (WS) approximation of [5, 6] and that of [9] are equiva-

lent [11]. In [12], LRU caching was studied for dependent (semi-Markov) object

demand processes in a limiting regime for certain object popularity profiles. In

[13, 14], time-to-live (TTL) caching networks are studied. Approximations for

1That is, content that is not encrypted for particular end-users.
2Under FIFO caching, the oldest item in the cache is evicted upon a cache miss.
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networks of “capacity driven” caches are studied in [15, 16] (the latter adapting

the approximation of [5, 6, 9] including under non-LRU cache eviction policies).

Under Most Recently Used (MRU) eviction, the youngest object in the cache is

evicted upon cache miss. More specifically, an object is evicted under MRU when

it is the subject of a cache hit or miss (so becomes youngest) and then a cache miss

(query for an uncached object) immediately follows. MRU is used in cases where

the older the object is in the cache, the more likely it is to be accessed [17]. That

is, MRU is used when demand for hot (most popular) objects is such that they

are not likely to be needed again soon after they are queried for, e.g., the inter-

query times of hot objects are a.s. lower bounded by a strictly positive amount,

cf., Section 5.

In this paper, we focus on single caching nodes and present a closed-form

invariant distribution for a standard Markov model of a generalization of LRU

and MRU eviction under the IRM. To this end, we provide a proof for LRU

which we will subsequently adapt. For a Zipf popularity distribution, numerical

comparisons are made with the simple Incremental Rank Progress (IRP)3 and and

Random Eviction (RE a.k.a. random replacement, RANDOM [3]) methods. Our

numerical examples focus on the range of cache-hit probabilities for steady-state

Zipf popularity distributions. We numerically show that the range of cache hit

probabilities is smaller under MRU and larger under IRP compared to LRU, and

conjecture that this is true in general. We next give a result for a special case of

3Called CLIMB in [3], IRP is somewhat related to the insertion scheme based on tandem

virtual caches of “k-LRU” [16].
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an RE caching tree-network. The paper concludes with a summary.

2 Background

The generalized LRU/MRU problem we consider in the following is similar to

permutation-valued Markov chains studied in [18, 19], where all all objects are

ranked, not just those cached.

2.1 Markov model of Least Recently Used (LRU) eviction

policy

The stationary state-space R of a LRU cache is the set of B-permutations of

{1, 2, ..., N} where N is the number of objects that could be cached and B objects

is the capacity of the cache with N > B > 0 (typically N � B) and the objects

assumed identically sized (but cf., (8)). For r ∈ R, define r(k) as the element of

r in the kth position. The entries of r are ranked in order of their position in r:

• the most recently accessed (LRU) object being r(1),

• the oldest object in the cache being r(B), and

• uncached objects n are denoted n 6∈ r.

Note that in a transient regime, the cache may be in a state 6∈ R with fewer than

B objects cached.

For a single node, we assume that demand process for object n ∈ {1, 2, ..., N}

is Poisson with intensity λn. The Poisson demands are assumed independent. Let
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the total demand intensity be Λ =
∑N

n=1 λn. So, this is the classical “Independent

Reference Model” (IRM) with query probabilities pn = λn/Λ [3, 4].

For LRU, a cache miss of object r(1) at state M−1
n (r) resulting in a transition

to state r ∈ R occurs at rate λr(1), where n 6∈ r and

(M−1
n (r))(k) =


n if k = B

r(k + 1) if k < B

i.e., n 6∈ r is the oldest object in the cache in state M−1
n (r).

For LRU, a cache hit of object r(1) at state H−1k (r) resulting in a transition

to state r occurs at rate λr(1) where 1 ≤ k ≤ B and

(H−1k (r))(`) =


r(1) if ` = k

r(`+ 1) if ` < k

r(`) if k < ` ≤ B

i.e., r(1) is the kth youngest object in the cache in state H−1k (r) and H−11 (r) = r.

As commonly assumed with the IRM [15], we also assume (i) that cache misses

cause the query to be forwarded, possibly to a server holding the requested object,

and once resolved, the object is reverse-path forwarded so that caches that missed

it can be updated; and (ii) the required time for this query resolution process is

negligible compared to the inter-querying times of the caching network.

2.2 LRU stationary invariant distribution

The following invariant of LRU found by W.F. King in [1].

Theorem 2.1 The unique invariant distribution of the LRU Markov chain is

π(r) =
B∏
k=1

λr(k)

Λ−
∑k−1

i=1 λr(i)
(1)
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for r ∈ R, where ∀k,
∑k−1

i=k (...) ≡ 0.

proof The full balance equations are: ∀r ∈ R,

(Λ− λr(1))π(r) = (2)∑
n6∈r

λr(1)π(M−1
n (r)) +

B∑
j=2

λr(1)π(H−1j (r)).

Under (1), for all n 6∈ r,

π(M−1
n (r)) =

λn

Λ−
∑B

i=2 λr(i)

B∏
k=2

λr(k)

Λ−
∑k−1

i=2 λr(i)

Also under (1), for all j ∈ {2, 3, ..., B},

π(H−1j (r)) =

j∏
k=2

λr(k)

Λ−
∑k−1

i=2 λr(i)
·

λr(1)

Λ−
∑j

i=2 λr(i)

·
B∏

k=j+1

λr(k)

Λ−
∑k−1

i=1 λr(i)

Substituting into (2) and after some term cancellation, we see that (1) satisfies

(2) if and only if

1 =
B+1∏
k=3

Λ−
∑k−1

i=1 λr(i)

Λ−
∑k−1

i=2 λr(i)
(3)

+
B∑
j=2

j∏
k=3

Λ−
∑k−1

i=1 λr(i)

Λ−
∑k−1

i=2 λr(i)
·

λr(1)

Λ−
∑j

i=2 λr(i)

where
∏2

k=3(...) ≡ 1.

Regarding (3), consider the following sequence of independent random exper-

iments to fill the cache. Suppose we’re given initially that the first cache entry

is r(2). Now sequentially, according to the distribution (1), object r(1) attempts

to enter the cache after r(2). If it fails to enter in the kth attempt, then r(k + 2)

is placed in the cache instead and r(1) tries again. The summand of (3) with
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j = 2 is the probability that r(1) enters in the second position right after r(2):

λr(1)/(Λ − λr(2)). Generally, the summand for j ∈ {2, 3, ..., B} is the probability

r(1) enters in the jth position (after having failed to enter in one of the more highly

ranked ones). The first term of the right-hand-side of (3) is the probability r(1)

fails to enter the cache. So, (3) must generally hold by the law of total probability.

Finally, since the stationary LRU Markov chain is irreducible on R, there is a

unique invariant.

This result was generalized in [20] to add object-dependent insertion proba-

bilities interpreted as access costs. Also note that, generally, the LRU Markov

chain is neither time-reversible nor quasi-reversible [21]. Obviously, more popular

objects (larger λ) are more likely stored, and the LRU invariant is uniform in the

special case that all the mean querying rates λn are the same. Finally, by PASTA,

the stationary hit probability of object n in a LRU cache is

hn =
∑

r : n∈r

π(r),

where the approximations of hit probabilities in [9, 10] are obviously substantially

simpler to compute.

2.3 Incremental Rank Progress (IRP or “CLIMB” [3])

upon query

Under LRU, a query for any object n results in it being ranked first in the cache.

One can also consider slowing the “progress through the ranks” of objects as they

are queried, leading to some obvious trade-offs with LRU: Slowing progress would
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mean less popular content does not enter the cache at first rank, but also more

popular content will take longer to reach the cache. Such issues are important

when there are dynamic changes/churn in objects cached and their popularity.

Under an Incremental Rank Progress (IRP) caching mechanism, a query for

object n results in its rank improved by just one (or zero if the object is already

ranked first), i.e., for 1 ≤ k ≤ B − 1, r ∈ R,

(Tk(r))(`) =


r(k) if ` = k + 1

r(k + 1) if ` = k

r(`) else

where the transition Tk(r)→ r with rate λr(k). Missed objects enter the cache at

lowest rank, i.e., for n 6∈ r, define

(Sn(r))(`) =


r(k) if ` < B

n if ` = B

where the transition Sn(r) → r occurs with rate λr(B). The invariant for IRP is

found in [3] and can be immediately shown using detailed balance.

Theorem 2.2 IRP is time-reversible with unique stationary invariant

π(r) =

∏B
k=1 λ

B+1−k
r(k)∑

r′∈R
∏B

k=1 λ
B+1−k
r′(k)

. (4)

2.4 Random Eviction (RE or “RANDOM” [3]) upon cache

miss without cache rankings

Suppose that a cache miss of object n at state M−1
`,n (r) results in a transition to

state r ∈ R at rate B−1λn, where n ∈ r, n 6∈ M−1
`,n (r), ` ∈ M−1

`,n (r), and ` 6∈ r.
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That is, a cache miss for object n results in n inserted into the cache and evicting

of an object ` selected uniformly at random from the cache. The cache state r

does not change if a cache hit occurs. The stationary state-space R is the set

of B-combinations of N different objects. The following invariant for RE is also

found in [3] and can also be immediately shown by detailed balance.

Theorem 2.3 The RE Markov chain is time-reversible with unique stationary

invariant distribution

π(r) =

∏
n∈r λn∑

r′∈R
∏

n∈r′ λn
. (5)

2.5 Aggregate cache-hit rates

Define the aggregate hit rate for a caching discipline as

H :=
N∑
n=1

hnpn =
N∑
n=1

hn
λn
Λ
, (6)

i.e., the probability that a query is a cache hit. This is a single criterion that

can be used to compare different caching disciplines. Typically H is largest for

LRU eviction under the IRM. Note that under the IRM, by PASTA and Fubini’s

theorem the following holds for all of the above capacity-driven caching disciplines,

N∑
n=1

hn =
N∑
n=1

∑
r∈R:n∈r

π(r) =
∑
r∈R

π(r)B = B. (7)

2.6 Considering objects with different lengths

To account for objects of different lengths for capacity-driven caches (with ranked

objects) like LRU, simply consider a “complete-rankings” LRU variation, where
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the ranking of all objects is maintained whether the objects are cached or not.

That is, the state-space R is now the set of permutations of all N objects.

Corollary 2.1 The unique stationary invariant π of complete-rankings LRU is

(1) with B replaced by N .

Additionally consider the different sizes `n bytes of objects n, where the cache

capacity B is in bytes. The number of objects in the cache is given by

K(r) = max{K |
K∑
k=1

`r(k) ≤ B, 1 ≤ K ≤ N}.

So, the hit probability of object n when the objects are of variable length is

hn =
∑

r : r(n)≤K(r)

π(r). (8)

See the byte-hit performance metric of [22].

3 Most Recently Used (MRU) eviction

Again define the state-spaceR as the set of B-permutations of {1, 2, ..., N}. Under

MRU [17, 22], a cache hit of object r(1) at state H−1k (r) resulting in a transition

to state r occurs at rate λr(1) where 1 ≤ k ≤ B and (H−1k (r))(`) is given by (1)

as LRU. But for MRU, a cache miss of object r(1) at state M−1
n (r) resulting in a

transition to state r ∈ R occurs at rate λr(1), where n 6∈ r and

(M−1
n (r))(k) =


n if k = 1

r(k) if k > 1

i.e., n 6∈ r is the youngest object in the cache in state M−1
n (r).
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Theorem 3.1 The unique invariant distribution of the MRU Markov chain is,

for r ∈ R,

π(r) =

λr(1)

Λ
· 1(

N−1
B−1

) B−1∏
k=2

λr(k)

Λ−
∑k−1

i=1 λr(i) −
∑

n 6∈r λn
. (9)

proof The full balance equations are as for LRU but with a different definition

for M−1
n .

Let Λr = Λ −
∑

n6∈r λn. By substituting (9) into the full balance equations

(and moving the cache-miss terms to the left-hand side), we get that (9) satisfies

the full balance equations if and only if

1 =
1

Λr − λr(1)

λr(1) B−1∑
j=2

j−1∏
k=2

Λr −
∑k−1

i=1 λr(i)

Λr −
∑k

i=2 λr(i)

+ λr(B)

B−1∏
k=2

Λr −
∑k−1

i=1 λr(i)

Λr −
∑k

i=2 λr(i)

)

=
B−1∑
j=2

(
j−1∏
k=2

Λr −
∑k

i=1 λr(i)

Λr −
∑k

i=2 λr(i)

)
λr(1)

Λr −
∑j

i=2 λr(i)

+
B−1∏
k=2

Λr −
∑k

i=1 λr(i)

Λr −
∑k

i=2 λr(i)
(10)

where
∏1

k=2(...) ≡ 1.

Regarding (10), consider the following sequence of independent random exper-

iments to determine the position of object λr(1) when filling the cache, given that

only objects ∈ r will be chosen and that λr(2) has already been chosen first. λr(1)

is chosen on the first try with probability λr(1)/(Λr − λr(2)), otherwise λr(3) enters

the cache - this is the summand of (10) with j = 2. Generally, the jth summand

is the probability that λr(1) enters the cache on the (j − 1)th try, otherwise object

λr(j+1) is placed in the cache. The final term of (10) is the probability r(1) fails to
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enter the cache before the last (Bth) position, because in the penultimate choice

only objects r(B) and r(1) remain, i.e., λr(B) = Λr −
∑B−1

i=1 λr(i). So, (3) must

generally hold by the law of total probability.

Finally, since the stationary LRU Markov chain is irreducible on R, there is a

unique invariant.

Note that it’s easily directly verified that (9) satisfies (2) for the cases B = 2

and B = 3, e.g., for B = 3 and N = 4,

π(r) = λr(1)λr(2)/(3Λ(λr(2) + λr(3))).

To interpret (9): λr(1) is chosen with probability λr(1)/Λ; then the remaining B−1

objects in r are chosen from the remaining N − 1 objects uniformly at random

with probability
(
N−1
B−1

)−1
; finally, the order of the remaining items λr(2), λr(3), ...

are determined as the LRU invariant distribution (1).

Finally, we make an observation about cache-hit probabilities under MRU evic-

tion. Consider a MRU cache under the IRM that is “synchronized” so that a query

for object n occurs at time 0. Thus, immediately thereafter, n is the MRU object

in the cache. The next query for object n will be at time Tn ∼ exp(λn). Again,

under MRU eviction, the only way an object n is evicted is when a cache miss

occurs immediately after a query for n, i.e., a cache miss when n is the MRU

object. So, the stationary hit probability hn of object n equals the probability

that a hit occurs at time Tn, which is

• the probability that no other queries occurred in the interval (0, Tn) plus

• the probability that a query does occur in (0, Tn) and the first such query is
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a hit.

Thus, we can write ∀n,

hn =

E

e−Tn
∑

j 6=n λj + (1− e−Tn
∑

j 6=n λj )
∑
j 6=n

λjhj|n∑
i 6=n λi

 ,

where hj|n is the probability that a query is a hit on j given that object n is MRU.

We have therefore shown the following.

Proposition 3.1 For a MRU-eviction cache under the stationary IRM: ∀n, hn =

pn +
∑

j 6=n pjhj|n =
∑

j pjhj|n, where pj = λj/
∑

i λi and hj|j = 1; equivalently,

a kind of balance equation: ∀n,

∑
j

pjhn|j =
∑
j

pjhj|n.

4 Generalization of LRU and MRU

“kth Recently Used” (kRU) is a simple generalization of LRU and MRU wherein

object r(k), for some fixed k ∈ {1, 2, ..., B}, is evicted upon cache miss; otherwise

cache insertion (at rank 1) upon misses and promotion (to rank 1) and demotions

(by 1) upon hits are the same as both MRU and LRU. That is, BRU is LRU and

1RU is MRU.

Corollary 4.1 The invariant distribution of kRU is

π(r) =

k∏
j=1

λr(j)

Λ−
∑j

i=2 λr(i)
(11)

× 1(
N−k
B−k

) B−1∏
j=k+1

λr(j)

Λ−
∑j−1

i=1 λr(i) −
∑

n6∈r λn
.
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5 Numerical results for small N,B

In this numerical study, we directly computed the invariants π by generating all

possible object permutations representing cache state by the Steinhaus-Johnson-

Trotter algorithm. So, we considered only small values for the number of objects

and the cache size. Figure 1 is representative of our numerical study on cache-hit

probabilities using a Zipf popularity model λn = n−α for with α = 0.75 (see Table

1 of [23]) and most popular object indexed 1 with normalized rate λ1 = 1.

kRU with 1 < k < B gives hit-probability performance between MRU (k = 1)

and LRU (k = B). That is, one can see that the range of hit probabilities for

LRU is larger than that of MRU.

Figure 1: kRU cache hit probabilities hn and popularity λn versus object index n

for a cache of size B = 6, N = 12 objects, and Zipf popularity parameter α = 0.75,

where LRU= 6RU and MRU=1RU
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Figure 2 shows the results of a typical simulation study of kRP with cache

entry at lowest rank B upon cache miss compared to LRU. Note that kRP has

greater range of hit probability values than LRU. We postulate that generally for

Zipf popularity distributions, the range of hit probabilities of IRP is larger than

those of LRU which is larger than those of MRU.

Figure 2: kRP (with cache entry upon cache miss) and LRU cache hit probabilities

hn and popularity λn versus object index n for a cache of size B = 6, N = 12

objects, and Zipf popularity parameter α = 0.75

For the example of Figure 3, RE has a range of hit probabilities between MRU

and LRU. Recall (7), i.e., that the sum of the stationary hit probabilities is the

same for all of these caching disciplines under the IRM

Though our derivations herein are for the IRM, MRU may out-perform LRU

for non-Poisson arrivals in terms of aggregate hit rate (6). Recall mention in
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Figure 3: Cache hit probabilities h versus popularity λ for a cache of size B = 3,

N = 12 objects, and Zipf popularity parameter α = 0.75

the Section 1 that MRU is used when demand for hot (most popular) objects is

such that they are not likely to be needed again soon after they are queried for.

Consider the case where inter-query times are lower bounded by a constant D.

Specifically, inter-query times equal D plus an exponentially distributed quantity,

such that D = 0 corresponds to the IRM (here with intensities following a Zipf

popularity distribution). In Table 1, we see that LRU has best aggregate hit rate

under IRM (mean hit rate increases with k when D = 0), while MRU is best when

D = 1, 2 (mean hit rate decreases with k when D = 2).
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k D = 0 D = 1 D = 2

1 (MRU) 0.52 0.4578 0.45

2 0.54 0.4213 0.40

3 0.56 0.4014 0.35

4 0.58 0.4026 0.31

5 0.60 0.4187 0.29

6 (LRU) 0.62 0.4423 0.29

Table 1: kRU aggregate hit rate (6) for N = 12 objects, cache of capacity B = 6

objects, and Zipf popularity distribution with exponent α = 0.75 (D = 0 corre-

sponds to the IRM).

6 Discussion: Networks of RE caches

The performance of Markovian networks of such capacity-driven caches are approx-

imated in e.g., [15, 16]. To illustrate the difficulties with capacity-driven caching

networks, now consider the simplest ones based on RE. Though RE caches are

time-reversible, a tree of independent local caches whose collective query-misses

are forwarded to an Internet cache (also running RE, see Figure 4), is not time-

reversible and its non-local nodes do not operate under the IRM. To see why it’s

not time-reversible, consider a cache miss of object n of local cache q of size Bq in

state rq, so that object nq is evicted, and suppose it’s also a miss on the Internet

cache of size b in state R, so that object n is evicted; this can be reversed with

one query (so that states rq and R are restored) only if n = nq.

The following result is for the very special case that the Internet cache holds

17



Figure 4: A tree-network of caching nodes that feeds forward cache misses with

assumed independent local caches

only one object.

Proposition 6.1 The invariant distribution π of the network Figure 4 with RE

caching and b = 1 satisfies

π(R|r) =

∑
q 1{R ∈ rq}Λq,rq/Bq∑

q Λq,rq

(12)

where

Λq,x =
∑
`6∈x

λq,`,

∑
∅(...) ≡ 0, and indicator 1X = 1 if X is true otherwise = 0.

proof For n ∈ rq,m 6∈ rq, let δq−n+mr be r but with n in rq replaced by m.

18



Similarly define δ−n+`R. The full balance equations are

π(r,R)
∑

q,m:m6∈rq

λq,m

=
∑

q,m,n:m 6∈rq ;n∈rq∩R
π(δq−n+mr,R)

λq,n
Bq

+

∑
q,m,n,`:m6∈rq ;n∈rq∩R;`6∈R

π(δq−n+mr, δ−n+`R)
λq,n
Bqb

Dividing by π(r, R) = π(R|r)
∏

q π(rq) and then substituting the stationary joint

distribution of the independent RE local caches (5) into the full balance equations

gives: ∀r, R,

π(R|r)
∑

q,m:m6∈rq

λq,m =
∑

q,m:m6∈rq

λq,m
Bq
×

∑
n∈rq∩R

π(R|δq−n+mr) +
1

b

∑
`6∈R

π(δ+l−nR|δq−n+mr)


For the special case of b = 1, i.e., R (= n) is a single object, we get that the

right-hand-side simplifies to

∑
q,m:m 6∈rq

λq,m
Bq

1{R ∈ rq}

×

π(R|δq−R+mr) +
∑
` 6=R

π(`|δq−R+mr)


=

∑
q,m:m 6∈rq

λq,m
Bq

1{R ∈ rq} =
∑
q

Λq,rq
Bq

1{R ∈ rq}

The invariant is unique since (R, r) is irreducible.

In steady state, R ⊂ ∪qrq a.s., i.e., if ∀q, R 6∈ rq then π(R|r) = 0. Note

that (12) is the eviction probability of object R upon local cache miss in local

cache state r. An individual RE cache r is not quasi-reversible since the miss

rates (“departures”), 1
π(r)

∑
m 6∈r,n∈r λnπ(δ−n+m(r)) depend on the state r. Though
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quasi-reversibility is not a necessary condition [21], Proposition 6.1 shows that RE

networks generally do not have product-form invariants. More specifically, one can

identify the incident mean rate of queries for object n to the Internet cache, λ̂n :=∑
q λq,n(1 − hq,n) =

∑
q λq,n

∑
rq :n 6∈rq π(rq), where 1 − hq,n is the stationary miss

probability of local cache q for object n under RE4. According to this proposition,

π(R) does not depend on the λ̂n in the way the IRM invariant π(rq) depends on

the λq,n in (5), i.e., π(R) =
∑

r π(R|r)π(r) =
∑

r π(R|r)
∏

q π(rq) 6= λ̂R/
∑

n λ̂n.

Finally note that, since the capacity of the Internet cache is one object (b = 1), it

could obviously be operating any eviction policy.

7 Summary

In this paper, under the IRM, a closed-form expression for the invariant distri-

bution was derived for a caching node using kRU eviction. Numerically, it was

shown that under IRM and Zipf popularity distributions for the data objects, the

range of cache-hit probabilities of the data objects under IRP caching is larger

than LRU, which is larger than RE, which is larger than MRU (also, a non-IRM

example was given where MRU had higher aggregate hit rate than LRU). Finally,

the invariant distribution of a special case of a Markovian RE caching tree-network

was also derived.

4In this way, one can easily identify the “flow-balance equations” for more general caching

networks [15].
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