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Abstract

A plethora of research shows that recreational drug overdoses result in major social and economic 

consequences. However, current illicit drug use detection in forensic toxicology is delayed and 

potentially compromised due to lengthy sample preparation and its subjective nature. With this in 

mind, scientists have been searching for ways to create a fast and easy method to detect 

recreational drug use. Therefore, we have developed a method for automatic detection of opioid 

intake using electrodermal activity (EDA), skin temperature and tri-axis acceleration data 

generated from a wrist worn biosensor. The proposed system can be used for home and hospital 

use. We performed supervised learning and extracted 23 features using time and frequency domain 

analysis to recognize pre- and post- opioid health conditions in patients. Feature selection 

procedures are used to reduce the number of features and processing time. For supervised learning, 

we compared three classifiers and selected the one with highest accuracy and sensitivity: decision 

tree, k-nearest neighbors (KNN) and eXtreme Gradient Boosting utilizing modified features. The 

results show that the proposed method can detect opioid use in real-time with 99% accuracy. 

Moreover, this method can be applied to identify other use of additional substances other than 

opioids. The numerical analysis is completed on data collected from 30 participants over a span of 

4 months.

Index Terms—

Opioid; Drug; Real-time; Wearable

I. Introduction

Various risks of recreational drugs such as cocaine and opioids differ tremendously. They 

pose a serious problem that affects health, social and economic state of all societies 

worldwide. The opioid use has been steadily increasing over the past couple of decades. It is 

estimated that opioids affect million people in the USA alone and 26.4 million to 36 million 

around the world. About 67% of these people can be treated with medical therapy. However, 

25% of them cannot be treated with these medical resources [1]. The aftermath of opioid 

HHS Public Access
Author manuscript
Int Conf Comput Netw Commun. Author manuscript; available in PMC 2019 December 18.

Published in final edited form as:
Int Conf Comput Netw Commun. 2018 March ; 2018: 784–788. doi:10.1109/ICCNC.2018.8390334.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



abuse is devastating and on the rise. Opioid abuse and misuse is one of major reasons 

scientists and lawmakers are looking for a reliable and quick solution to detecting drug use 

and misuse.

As an opioid produces a sense of pleasure and well-being when it affects the brain, 

monitoring electroencephalography (EEG) or chemical analysis could be an efficient way to 

observe opioid use in a clinical routine [2]. However, as the EEG recording takes tedious 

preparation and requires the patient under surveillance to restrict their movement, most 

patients are reluctant to use the EEG for long periods of time. Furthermore, it requires a 

complex design and tremendous effort to make a wearable EEG monitoring system capable 

of fetching a high-quality signal. Hence, it is not practical for continuous patient monitoring. 

The current drug testing method consists of urine tests and self-reports. The issue with this 

method is that the self-reports can be biased and are not a real-time solution. Also, the urine 

tests, although they are the most widely used technique for drug detection in patients, they 

are not able to deliver satisfactory results since they take almost 72 hours to complete 

excluding sample preparation protocols.

Aforenebtioed drawbacks are calling for a system that is user friendly, non-evasive and can 

reliably detect as well as predict opioid use in real-time. We have seen very few studies 

specifically for the non-evasive detection of opioid use over the past several years [3]-[4]. 

Most research is based on apps or text-messaging platforms that can detect substance 

overuse. iMstrong proposed a biosensor based cocaine detection system which can transmit 

different physiological signals such as electrodermal activity (EDA), temperature and 

acceleration [5], [16]-[18]. However, automatic identifying and detecting of drug intake 

remains a challenge in natural environment. Therefore, a real-time detection of opioid use 

has even greater advantages compared to just observing data. This method has a potential to 

be useful both in preventing drug overdoses and in improving early treatments. In this paper, 

we observed changes in the locomotion, temperature and EDA readings of opioid users via a 

wrist worn wearable sensor with high sensitivity. Accurate information taken from these bio-

physiological signs can help us to robustly detect and predict drug use in a real-time manner.

The contributions of this paper are as follows:

• Use wearable biosensor collects raw data and monitor physiological changes.

• Extract features using time and frequency domain analysis and reduce the 

number of features.

• Apply machine learning algorithm to distinguish pre- and post-opioid use in real-

time.

In addition, the moving average is implemented to reduce motion artifacts, environmental 

and other noises. Finally, we compared the results with three classification methods to select 

the best performance output.
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II. Literature Review

Recently, with the advancement of sensor technologies, wireless communication, and longer 

battery life in electronics, a new generation of constant health monitoring has been created 

for patients. In the case of substance detection, qualitative analysis of urine tests and self-

reports are most popular for observing drug intake [5]. Although they are still considered the 

golden standard for testing drug use in patients, studies show that other vital signs such as 

EDA also have a correlation to the sympathetic nervous system (SNS) and thus provide a 

powerful tool to study the physical reactions to substance use [6]. Although ample studies 

have started to develop illicit drug use detection, most of them involve either chemical tests 

or mobile applications and both have the deterrent of lacking the ability to detect drug use in 

patients instantly.

An innovative approach was designed to detect opioid usage using a chemical based sensor. 

For example, in [7], authors claim to identify opioid glucuronides using a urine drug 

screening. they proposed a new technique to identify opioids in patients systems in a cost-

effective way. Utilizing direct sample analysis of mass spectrograms on the chemical 

structures of illicit drugs to help identify if any were present in the patients. Danni et al. 

proposed a method to detect illcit drug overdose using dry urine specimens [8]. Which is 

also a time consuming procedure and takes laboratory setup. Above mentioned methods are 

still unable to serve the purpose of real-time detection of drugs and they require forensic 

laboratories as well as an extra set of skills to help interpret the data received from the 

sample analysis of each patient.

As of now, wearable sensors have proven to be new potential candidates to detect drug 

overuse in patients. One of the advantages of these wearable devices is that they can monitor 

physiological information continuously throughout the daily activity of the wearers. Also, 

the sensors can be used wirelessly and they do not hamper the daily activity of the patients. 

Autosense is a project to detect stress and other human behavior based on heart rate, EDA, 

skin temperature and acceleration. They developed a chest band using six wireless sensors to 

monitor vital signs. Nijsen et al. uses a 3-axis accelerometer on both legs and arms to 

observe a drug use pattern in 2005 [9]. They studied patterns for simple motor seizures 

based on visual data inspection with an accuracy of 48%. In their later work, they described 

a method for automatic detection of myoclonic seizures based on linear discrimination 

analysis using the time domain features of the accelerometer [10]. Dalton et al. proposed a 

study of false alarms during the daily activities of wearable devices [11]. They combined 

accelerometer and EMG data to extract features and performed decision tree classification. 

They claimed to have 98% accuracy in their data sets consisting of 48 hours of patient 

information. In [12], they utilized a Wii remote to detect motion based drug use detection. 

The remote was attached to the forearms, and they performed experiments on three patients 

with 100% sensitivity and 88% specificity. Natarajan et al. investigated a 2-dimensional 

accelerometer attached to the left and right arms for the detection of motor behavior of 

human body during drug use [14]. Also, they developed wearable ECG sensor to extract 

features of heart rate for cocaine detection. The wireless system was capable of detecting 

alcohol in the patients systems using an artificial neural network (ANN) with an accuracy of 

85%. They used time and frequency analysis to feature extraction and applied shifting 
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dataset method to evaluate the model. iHeal is a biomedical system which utilizes artificial 

intelligence to assess its patients through continuous monitoring [15]. However, it uses a 

Dynamic Bayesian Network (DBN), which has high computational complexity. Drug & 

Alcohol Impairment Detection Services (DAIDS) is a mobile app that can detect drug use 

based on eye scanning. Though it is still in the testing phase, they have reported that their 

app has an accuracy of more than 80%. They observed 62 events among 32 users, which was 

recorded wearable sensors. The system recorded 81 false positives, but almost 50% of them 

were manually canceled by the users. Use of combined sensor data has also been researched 

in recent years. The use of both acceleration and EDA data is reported in [16] to attempt to 

be able to detect substance overuse. It has also been reported that changes in sweat glands 

during a drug overdose is also thought to relate to EDA and skin temperature changes. The 

use of EDA, skin temperature and acceleration data to detect cocaine use has shown 

promising results [17]. This research group have conducted experiments on four patients and 

the system they have established can distinguish cocaine use. However, the detection of real-

time drug use is still a challenge.

III. Method

The data collection and experimental protocol for this project has already been discussed in 

our previous work [17]. The observational study was performed on patients admitted as for a 

painful condition being treated with opioid analgesics. The protocol including the informed 

consent process was approved by the University of Massachusetts Medical School 

Institutional Review Board A Q-sensor (Affectiva) was used as a biosensor [5]. After 

informed consent was obtained, data sets were acquired from 30 patients as described 

previously [17]. After the enrollment the Q-sensor was placed on the patient’s non-dominant 

wrist and continuous physiological data was collected at baseline, during administration of 

an opioid medication and for 30–60 minutes after administration. Participants were then 

given detailed instructions on how to wear and recharge the biosensor. Also, they were 

requested to wear the biosensor on their non-dominant wrist and recharge the Q-sensor 

while they were sleeping.

A complete description of the Q-sensor is described in [6]. Briefly, it measures EDA which 

is also known as the patient’s Galvanic Skin Response (GSR). EDA is known to vary 

depending on the state of the patient’s sweat glands, which are controlled by the 

Sympathetic Nervous System. Hence, EDA is a good indicator of physiological arousal. In 

addition, the Q-sensor consists of a tri-axis accelerometer and a temperature sensor. The 

sensor measures EDA in microsiemens, temperature in Celsius and 3-dimensional 

acceleration in g, including wireless data transmittance capability. All parameters for each 

measured bio-signals were recorded in the device on board memory and uploaded upon 

completion of the recording. The sampling frequency of the system is 8 Hz. Figure 1 shows 

a complete block diagram of the proposed architecture of the system.

The continuous monitoring of physiological information generates an ample amount of data, 

whereas the behavioral changes due to an opioid use event lasts only minutes. Due to this 

reason, there was a plethora of unwanted data that needed to be processed which made the 

computational processing very tedious and complex. Hence, pre-processing is required to 
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reduce the workload and degree of the data for machine learning. We first trimmed the data 

into a myriad of overlapping segments of the same length. As mentioned above the sampling 

frequency was 8Hz and we used a window of 16 seconds with 25 samples of repeated 

overlapping. Also, the sampling rate can be slightly changed during data recording due to 

hardware and wireless limitation. Interpolation could be applied in order to disrupt the 

uniformity of the sampled data. This helped to extract features and classification 

performance. Figure 2 shows the skin temperature, acceleration and EDA changes with 

overlapping windows. The output signals break down into different noise components such 

as noise from the environment, noise from the body, gravitational acceleration, noises from 

motion etc. We filtered out these noises and extracted a desired signal, however we 

encountered a dilemma caused by the complex filter architecture since it had the ability to 

slow down the real-time preprocessing. The proposed method in this research utilizes a 

moving average filter for preprocessing the raw data. The equation for the moving average is 

given below:

X0 = X i −
∑−L

L X i + 1
2L + 1

(1)

Where X (i) is the received signal, Xo(i) is the output signal, 2L+1 is the size of the sliding 

window [8].

As this is a real-time detection, the feature selection is made based on a simpler algorithm, 

and at the same time avoiding overfitting. Over fitting causes bad output in generalization 

with new features, although fits well in the training dataset.

The feature selection plays a vital role for most detection algorithms. Therefore, out feature 

selection was design based on physiological phenomena from opioid intake. A total of 17 

features was calculated from each epoch of locomotion and additional 3 time domain 

features were gathered from each skin temperature and EDA readings. The time domain 

features are mean, standard deviation and root mean square. These features and their 

descriptions are listed in Table 1. Time domain features such as mean, standard deviation 

and median were calculated from the magnitude of the total acceleration. For frequency 

domain features, the majority of the energy band lies between 0 to 5 Hz.

Three classification methods were utilized to detect opioid use: the decision tree, support 

vector machine and K-Nearest Neighbor (KNN). Decision tree classifier is widely used in 

machine learning; it uses a decision tree as a predictive model to map observation on items 

until it reaches the conclusion with the highest probability. It can be compared to a flow 

chart, where a non-leaf node represents a test on an attribute and each leaf denotes a label. 

There are different algorithms to determine the split on the root node. This method is well 

suitable for a series of Boolean comparisons. eXtreme Gradient boosting follows the 

principle of gradient boosting. This maximizes the limit of the computational resources for 

boosted tree algorithm. This method is highly customizable base on the needs of application, 

for example learning with regards to different loss function.KNN uses a memory-based 
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approach and is usually used for pattern recognition. It classifies based on the nearest 

training data in a featured space.

IV. Results and Discussion

We evaluated 30 patients in this study over a period of four months. To compare the results 

from our previous paper we used the same dataset as [12]. The demography of the patients is 

given in Table 2, and most of the patients were right-hand dominant. The observation time 

for patients varied from 5–48 minutes with an average of 16.5 minutes. This work is 

implemented with the help of piSpark and the configuration of the machine as follows: 

Windows 7 platform with Intel(R) Core(TM) i7–3520M 2.9 GHz CPU and 8 G memory 

[b16].

In the present work, detecting an opioid use event was affected by a small number of false 

positives and false negatives. We implemented a multilayer perceptron classifier for 

classifying opioid use events in patients. The modified features of each class were randomly 

divided into the training and test datasets in an estimate ratio of 70% and 30% respectively. 

Table 2 shows the accuracy and the latency for each applied classifier using all features to 

train the model. Decision tree and eXtreme Gradient Boosting shows the best result compare 

to KNN classifier. The correlation analysis has also been performed on EDA and skin 

temperature. The results show that locomotion has high correlation with EDA and skin 

temperature for opioid intake. We further evaluated EDA, skin temperature and locomotion 

before we applied it to the classification.

It would be possible to use all the features reported in Table 1 for the classification of the 

data sets, however, this can reduce the performance of the output. Thus, a feature selection 

method is important due to the curse of dimensionality. The WEKA tool was used to 

evaluate and select the attributes. The exhaustive search method was used, and the subsets 

that had the highest total classification accuracy were selected. With WEKA, we narrowed 

down the attributes to 10 features from locomotion to temperature to EDA. This feature 

reduction method reduces the computational time. It is different from dimension reduction, 

as it does not create new attributes, instead was able to omit irrelevant features. This method 

also helped to avoid over fitting, however only locomotion and skin temperature were 

evaluated. Our previous research showed that EDA does not change extensively during 

opioid administration. So by not collecting EDA data the degree of computation was 

automatically reduced. Hence, the latency of the detection for opioid intake was at a 

minimum.Table 3 shows the output of the classifier with modified features.

The confusion matrix is shown in figure 3, the detection rate of decision tree and extreme 

Gradient boosting is 99.3% and 99.8% respectively. The performance of these two classifiers 

is reasonably good. But the computation time for eXtreme Gradient boosting is relatively 

lower than the decision tree. In case of KNN we tested the variable with K equal to 1 and the 

detection rate is 77.8%.

As shown, our method can identify the opioid use event with the accuracy of 99%. These 

results demonstrate the effectiveness of the developed algorithm to classify the pre- and 
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post-opioid use. We also evaluated this method with all features however modified features 

shows higher accuracy with low latency. Specifically, using the reduced features increased 

the accuracy and sensitivity of drug detection. The use of modified features also lowers the 

training time of the proposed method, making it fit for real-time.

The main findings of this study fit the description of a fully automatic detection of an opioid 

use event. The identification relies on only two parameters; the Z-axis movement and the 

skin temperature of patients, consistent with our previous finding in cocaine detection [5]. 

The development of the algorithm, which goes through a time series of the locomotion and 

skin temperature data with a 15 second epoch, allows it to quickly detect the drug use event 

making it suitable for a real-time solution. Data with long recordings can be analyzed using 

the proposed algorithm, which has the ability to detect substances other than just opioids.

The skin temperature and magnitude of the motion data changes abruptly after opioid 

administration, opposite to the findings from our cocaine study [5]. Although, there were no 

noticeable changes of EDA during and pre- and post-opioid use, this could be an indicator 

for other drug usage. Rise in skin temperature was noted during sleep time, which was to be 

expected.

V. Conclusion

Accurate detection of opioid use allows caregivers to observe the severity of a patient’s drug 

use and deliver timely intervention. Wearable biosensors present a consistent result to 

identify instances of opioid use based on our previous and current findings. Moreover, 

patients undergoing drug abuse treatment can be applied to gather the episodes of drug use. 

Above mentioned results have indicated that the proposed method can automatically detect 

opioid use fast and reliably. Initially we extracted 23 features from acceleration, EDA and 

temperature. In order to improve the performance and run time we reduced the number of 

features. Beyond the sensors uses in continuous monitoring and patient care, they can also 

allow increased granularity of neurological disease data, thereby improving the risk 

assessment and predictive analysis of drug use. Although, the experiment was done on 30 

patients, the results are still promising and they have the ability to distinguish opioid use in 

real-time.

The study was performed on a limited number of patients. Therefore, in the future we expect 

to add more subjects to assess pre- and post-drug administration. We would also like to 

improve the wearable biosensor because the core temperature of the body may be different 

than the wrist temperature. Also, in the next phase of our research, we would like to add 

heart rate measurement data and observe the changes due to substance overdose.
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Fig. 1. 
Complete architecture of data analysis procedure.
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Fig. 2. 
Time series data of EDA, Skin temperature and locomotion with overlapping windows.
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Fig. 3. 
Performance of a) Decision Tree b) eXtreme Gradient Boosting and c)KNN classifier for 

detecting opioid use event.
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TABLE I

LIST OF ALL THE FEATURES EXTRACTED FROM EACH EPOCH OF THE SIGNAL

S/N Name Description

1 Mean The mean value of the time series signal

2 Median The median value of the time series signal

3 RMS The root mean square value of the time series signal

4 Max Maximum value of the signal

5 Min Minimum value of the signal

6 SD Standard deviation of the signal

7 MedFreq The median value of the frequency

8 FreqPX1 Cutoff value of the first peak

9 FreqPX2 Cutoff value of the second peak

10 FreqPY1 Ordinate of the first peak

11 FreqPY2 Ordinate of the second peak

12 PFreq Peak value of frequency

13 NPeak Number of peaks in a spectrum

14 IntFreq Integral of the frequency spectrum

15 Avg Average value of the sample points

16 SqrMag25 The square sum of the magnitude below 25%

17 SqrMag75 The square sum of the magnitude below 75%
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TABLE II

CLASSIFICATION ACCURACY AND LATENCY USING ALL FEATURES

Decision Tree eXtreme Gradient Boosting KNN

Accuracy 98.5% 99.4% 89.4%

Speed (Sec) 21 9 23
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TABLE III

CLASSIFICATION ACCURACY AND LATENCY USING MODIFIED FEATURES

Decision Tree eXtreme Gradient Boosting KNN

Accuracy 98.5% 99.4% 77.8%

Speed (Sec) 21 9 6
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