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Abstract—We consider the problem of jointly optimizing
ADC bit resolution and analog beamforming over a frequency-
selective massive MIMO uplink. We build upon a popular model
to incorporate the impact of low bit resolution ADCs, that
hitherto has mostly been employed over flat-fading systems. We
adopt weighted sum rate (WSR) as our objective and show that
WSR maximization under finite buffer limits and important
practical constraints on choices of beams and ADC bit resolu-
tions can equivalently be posed as constrained submodular set
function maximization. This enables us to design a constant-
factor approximation algorithm. Upon incorporating further
enhancements we obtain an efficient algorithm that significantly
outperforms state-of-the-art ones.

I. INTRODUCTION

In this paper we consider a critical issue impacting next
generation (5G and beyond) cellular deployments. It is well
recognized that massive MIMO is a key 5G technology that
promises very substantial throughput improvements, at-least
in the presence of accurate channel state information [1],
[2]. However, cost considerations at both the deployment
stage (capex) as well operational stage (opex) have raised
several concerns on large scale adoption of this technology.
Indeed, the number of RF chains must be limited to keep
capex viable, and power consumption needs to be curtailed
both from operational expenditure and environmental impact
points of view. Recent research has increasingly focused
on hybrid architectures that can potentially capture a sub-
stantial portion of available gains using much fewer RF
chains. Simultaneously, adaptive resolution analog-to-digital-
converters (ADCs) have also received wide attention as a
means to significantly cut down power consumption [3]–[5].

Our focus here is to establish a sound theoretical frame-
work for optimally exploiting both hybrid architecture and
adaptive ADC. The setting we choose is a practical wideband
frequency-selective uplink incorporating multi-path in the
propagation and OFDMA as the multiple access scheme. The
objective we seek to maximize via joint optimization is the
(queue-constrained) weighted sum-rate (WSR) metric. WSR
metric is the paramount objective in resource allocation at
fine time scales, since by adapting the weights appropriately
one can enforce any desired policy over longer time-scales.
The model we rely on to incorporate impact of quantization
is based on a simplified approach that comprises of scaling
the input and adding a quantization noise term [6]. This ap-
proach (referred to as AQNM) has been effectively exploited

previously in [5], [7], [8], mostly over flat-fading systems,
with a notable recent exception being [9], which exploits
AQNM over a wideband uplink. By leveraging AQNM we
systematically obtain a model for the wideband uplink by
highlighting all key steps and assumptions. The resulting
model explicitly includes quantization effects and is tractable
in that it facilitates sophisticated optimization techniques
that seek to maximize WSR metric. To the best of our
knowledge, this paper is the first to consider quantization-
aware queue-constrained WSR optimization over frequency
selective systems. Notable recent works have focused mainly
on a flat-fading model and other objectives (such as mean
squared error in [5]) or sum rate [4], [7], [8], with [7]
considering receive antenna subset selection which is a
special case of beam group optimization (with fixed ADC
resolution). We note that the recent contribution in [9]
does consider a frequency selective uplink with two levels
for ADC bit resolutions and analog beam group selection.
However, joint optimization is not rigorously pursued there,
with the criterion used for beam group selection being based
on received power (without considering impact of subsequent
quantization). Also noteworthy are [10] and [11] both of
which consider low-bit resolution ADCs over a frequency
selective uplink. Specifically, [10] focuses on MAP and other
more tractable data detection schemes, whereas [11] derives
achievable rate expressions for 1 bit ADC under different
asymptotic regimes.

Our main contribution in this paper is to cast the con-
strained joint maximization of WSR as a discrete submodu-
lar set function maximization problem. Using this route of
discrete optimization confers several advantages since the
original problem at hand is inherently a discrete optimization
over analog codebook subsets and ADC bit resolutions.
Indeed, we now no longer have to relax the bits to be
continuous variables and we can use any arbitrary look-
up-table to obtain effective quantization gain as a function
of ADC bit resolution. A similar comment applies with
respect to the energy cost of operating an RF chain with
an ADC at any chosen bit resolution. In this context, we
note that proper modeling of quantization gains and energy
costs is essential to obtain true gains. Our work recognizes
that submodularity can be exploited in the joint optimization
of analog beam group and ADC bit resolutions even after
explicitly modeling quantization impact. This allows us to
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derive a constant-factor approximation algorithm1. We then
recast our problem using submodular cost constraints and
obtain a low complexity enhanced algorithm that leverages
the special structure present in our re-formulated optimization
problem. Consequently, we are able to demonstrate signif-
icant performance gains even with a reduced complexity
compared to state-of-the-art schemes [7]. Indeed, we show
that our enhanced algorithm yields upto 50% WSR gains over
other schemes in a regime with tight power (energy) budgets.
At the same time, our algorithm can match or exceed the
near-optimal throughput performance of other schemes albeit
with 40− to− 50% reduction in consumed energy.

Over the past decade results establishing submodularity
for a variety of problems are increasingly available. These
include sensor placement, single-user scheduling (that sched-
ules users on orthogonal time-frequency resources) with fixed
transmit powers [12] as well as optimized powers [13].
Submodularity has also been shown to hold in formulations
considering the user and base-station association problem
[14], [15], caching [16] and to some extent even multi-user
MIMO scheduling (that schedules multiple users on same
time-frequency resource) [17]. The main motivation for these
works is the availablitly of increasingly effective approxi-
mation algorithms for constrained submodular set function
maximation [18]–[20]. Our work here adds to this growing
body of knowledge by establishing submodularity for a
problem where the impact of imperfect (finite resolution)
quantization is explicitly modeled, and also by deriving an
effective approximation algorithm that considers submodular
constraints.

II. SYSTEM MODEL

We focus on a single-cell uplink that comprises of a base
station (BS) which is equipped with a large array of Nr
(Nr >> 1) receive antennas. Due to cost restrictions the
BS has a fewer number, M : M ≤ Nr, of RF chains.
The BS communicates with K users, with each user being
equipped with a single transmit antenna. Suppose the uplink
access scheme to be OFDMA and let N denote the number
of subcarriers. Further assume that the transmit powers used
by all users on all subcarriers are given as inputs. In addition,
the queue size (amortized to per symbol) and the weight of
each user k, denoted by Qk and wk, respectively, are also
specified. Our objective here is to determine a rate assignment
that maximizes queue-constrained WSR

∑K
k=1 wkRk among

all achievable rate assignments, where Rk ∀ k denotes
the rate assigned to user k in bits per OFDM symbol
(satisfying Rk ≤ Qk). The set of achievable rate assignments
{[R1, · · · , RK ]} depends on certain BS receiver attributes
that are illustrated by the system schematic in Fig. 1. The
diagram in Fig. 1 assumes that an analog beamforming code-
book is employed at the BS receiver. Using this codebook the
BS can activate any subset of up-to M analog beamformers
and connect the output of each selected beamformer to a

1Such an algorithm guarantees that the WSR it yields will be at-least a
constant-fraction of the optimal WSR for every input instance.

(unique) RF chain.2 Each RF chain also houses an ADC
whose bit resolution can be configured. The set of achievable
rate assignments thus depends on the subset of chosen analog
beamformers as well as the bit resolutions configured for the
ADCs on RF chains those beam outputs are connected to.

Let us proceed to formally specify a system model. Con-
sider any analog beamforming codebook comprising of a set
of orthonormal analog beams. Suppose that M analog beams
are chosen which activates all M available RF chains. For our
purposes here the mapping between activated RF chains and
outputs post-analog beamforming is not important, as long as
it is one-to-one. Then, let W denote an M×Nr matrix whose
rows comprise of M selected (mutually orthogonal and unit-
norm) analog beamforming vectors, so that WW† = I. Next,
model the received vector at the input of the bank of ADCs
via the standard baseband multi-user MIMO-OFDMA [21]
time-domain input output relation as

y = Hx + η, (1)

where y = [yT1 , · · · ,yTN ]T denotes the NM × 1 vector of
observations received over N chip durations (equivalently
over the OFDM symbol duration). Notice here that the
observations in y are post analog beamforming and after
removal of the cyclic prefix. η denotes the additive circularly
symmetric complex Gaussian noise vector with E[ηη†] = I.
The vector x = [xT1 , · · · ,xTN ]T is the NK×1 vector of time-
domain transmissions from the K users. Recall that each user
obtains its time-domain signal by applying an inverse DFT
matrix to an N length frequency domain symbol vector. Thus,
we can express x as x = (F†⊗ IK)s, where F is an N ×N
DFT matrix so that F† is its inverse. We parse the circularly
symmetric complex normal vector s as s = [sT1 , · · · , sTN ]T

where sn = [sn,1, · · · , sn,K ]T , 1 ≤ n ≤ N denotes the
vector of symbols transmitted by the K users on the nth sub-
carrier. Then, we let Dn = E[sns†n], 1 ≤ n ≤ N denote the
given (power loading) diagonal covariance matrix on the nth

subcarrier. We note here that we allow for Dn to be any given
diagonal positive semi-definite matrix. Further, we form the
matrix D = E[ss†] such that D = BlkDiag{D1, · · · ,DN}
is a diagonal matrix whose nth diagonal block is Dn. Finally,
the matrix H in (1) representing the effective channel post
analog beamforming is an NM×NK block circulant matrix.
To specify H we expand it in terms of its constituent N
blocks as

H =


H(1) H(2) · · · H(N)

H(N) H(1) · · · H(N−1)

...
. . . · · ·

...
H(2) H(3) · · · H(1)

 . (2)

Consequently, it suffices to specify the first block row of H,
which in turn is given by

[H(1),H(2), · · · ,H(N−L+1),H(N−L+2), · · · ,H(N)] =

W[H0,0, · · · ,0,HL−1, · · · ,H1], (3)

2Note that the switching setup is shown in Fig. 1 for convenience. Each
RF chain can instead also employ a beam formed via a dedicated bank of
finite resolution phase shifters.
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Fig. 1. System Schematic

where we note that each one of the matrices H(k), 2 ≤ k ≤
N −L+1 has all of its entries to be zero. Further the matrix
Hi, 0 ≤ i ≤ L − 1 denotes the Nr × K matrix modeling
the (i+ 1)th tap (or path) and L is the number of paths. We
assume that accurate estimates of these per-tap matrices are
available at the BS. 3 Notice that without loss of generality
we have assumed an identical number of paths for all users.
This is because we can always choose L (and cyclic prefic
length) based on the user corresponding to the largest delay
spread and then use zero-padding.

A. Modeling Quantization

We are now ready to consider quantization performed by
the bank of ADCs. We assume that each ADC independently
quantizes only the input received by it (scalar quantization).
Accordingly, let y(q) denote the vector after element-wise
quantization of y in (1). Note further that each ADC is in-
fact a pair quantizing the real and imaginary parts separately
(both using the assigned bit resolution). We will adopt a
particular additive quantization noise model (AQNM) which
bestows tractability while being relevant [6]. This particular
AQNM model has been effectively adopted recently in [3],
[5], [8] and its accuracy improves at low to moderate SNRs
[4]. Noting that for a given channel realization and analog
beamforming matrix, y is a zero mean complex normal vec-
tor, the key entities we need to determine in order to employ
the said AQNM model are variances E[|yj |2], 1 ≤ j ≤ NM ,
where yj is the jth entry of y. We have the following result
which follows from some careful algebra and states that for
each analog beamformer output these variances are identical
across time.

Lemma 1. Let C = E[yy†] denote the covariance matrix of
the input to the quantizer bank. Then, C is a block circulant
matrix with M ×M constituent blocks. The MN diagonal
elements of C can be expressed as

1⊗ψ, with ψ = [ψ1, · · · , ψM]T, (4)

where 1 denotes the N × 1 vector of all ones and ψm, 1 ≤
m ≤ M denotes the identical variance of all the outputs
corresponding to the mth analog beamforming vector across
time. Further, the entries of ψ are the diagonal elements of
the M ×M matrix:

3With adaptive ADCs we can set each ADC resolution to be highest
possible during channel estimation phase which somewhat justifies assuming
availability of accuarate channel estimates at the BS.

I + W[H0,0, · · · ,0,HL−1, · · · ,H1](F† ⊗ IK)D(F ⊗
IK)[H0,0, · · · ,0,HL−1, · · · ,H1]†W†.
Thus, for each m : 1 ≤ m ≤ M , ψm is invariant to choice
of all analog beamforming vectors other than the mth one.

Now we are ready to model the vector y(q) obtained
post quantization. Suppose that the ADC for the mth analog
beam vector output is assigned a resolution of bm bits. For
the given resolution bm, we define M positive quantization
scalars αm ∈ [0, 1], 1 ≤ m ≤ M . A popular choice
(which corresponds to scalar non-uniform mmse quantizer
for Gaussian inputs) is to set αm = 1 − a2−2bm whenever
bm > 5 (for some positive constant a). On the other hand,
αm is read from a look-up-table for bm = 1, · · · , 5. For
our purposes, we can employ any arbitrarily specified look-
up-table to read αm as a function of bm so long as αm is
increasing in bm. Building upon the simplified AQNM [6],
we assume y(q) can be expanded as

y(q) = AHx + η̆(q)

where A = IN ⊗ diag{α1, · · · , αM} and η̆(q) is the total
noise (including additional quantization noise) that is zero-
mean and uncorrelated to x. Next, following standard OFDM
processing at the BS, y(q) is transformed by using a DFT
matrix on the outputs corresponding to each analog beam
separately, i.e., we obtain

z = (F⊗ IM )y(q) = (F⊗ IM )AHx + (F⊗ IM )η̆(q)

= (F⊗ IM )AH(F† ⊗ IK)s + (F⊗ IM )η̆(q)

= AGs + η̃(q) (5)

where for the last equality we have defined η̃(q) 4
= (F ⊗

IM )η̆(q) and used the fact that (F ⊗ IM )AH(F† ⊗ IK) =
AG. G = BlkDiag{WG1, · · · ,WGN} is a block diagonal
matrix whose nth diagonal block is given by WGn =
W
∑L−1
`=0 H` exp(−j2π(n − 1)`/N), 1 ≤ n ≤ N . Anal-

ogous to typical modeling (cf. [9]) we also suppose the
transformed total noise in the frequency domain, η̃(q), to
be a circularly symmetric complex normal vector that is
independent of s.

A key factor that will determine the extent of tractability
of (5) is the form of the covariance of η̃(q). If we further
follow the simplified AQNM assumptions, we will first obtain
that E[η̆(q)(η̆(q))†] = A2 + A(I − A)Ψ where Ψ is an
MN ×MN diagonal matrix whose diagonal elements are
identical to the variances of the corresponding quantizer
inputs, i.e., identical to the respective diagonal elements of
C = E[yy†] . Then, invoking Lemma 1 and in particular the
special structure of the diagonal elements of C in (4), yields
that Ψ = IN ⊗ diag{ψ}. This in turn results in

E[η̃(q)(η̃(q))†] = A2 + A(I−A)Ψ = IN ⊗ Γ (6)

wherein Γ = diag{γ1, · · · , γM} is an M × M diagonal
matrix whose mth diagonal element is given by γm =
α2
m + αm(1 − αm)ψm, 1 ≤ m ≤ M . Now, expanding

z in (5) in terms of its per-subcarrier components, we
see that tractability holds. This is because the covariance
derived in (6) implies that noise across different subcarriers



is uncorrelated. Then, upon whitening the total noise on each
subcarrier we obtain our desired model

z̃n = T1/2WGnsn + ζn, 1 ≤ n ≤ N, (7)

where E[ζnζ
†
n] = I, with E[ζnζ

†
m] = 0 ∀n 6= m, and the

diagonal matrix T = diag{α2
1/γ1, · · · , α2

M/γM} is invariant
across all subcarriers. Notice that (7) is a wideband model
incorporating multi-path in propagation and quantization at
the receiver. Specializing (7) to the single-path flat fading
case (L = 1), we recover the narrowband model of [5].

We remark here that a more general (finer) modeling is one
under which total noise covariance E[η̆(q)(η̆(q))†] is approx-
imated by any positive definite MN ×MN block circulant
matrix whose constituent M ×M blocks are all diagonal.
Clearly the choice E[η̆(q)(η̆(q))†] = A2 + A(I − A)Ψ is
a special case under this more general framework wherein
we further set all off-diagonal blocks to be zero. Indeed, the
more general framework also maintains tractability and yields
a per-subcarrier model

z̃n = T1/2
n WGnsn + ζn, 1 ≤ n ≤ N, (8)

where each Tn = diag{Tn1, · · · , TnM}∀ n and E[ζnζ
†
n] =

I ∀n with E[ζnζ
†
m] = 0 ∀n 6= m as before. In the sequel, for

notational simplicity we consider the model in (7) but note
that all our results immediately extend to the one in (8), so
long as two natural conditions are satisfied by the model in
(8). These conditions, which are both met by the special case
in (7), are: (i) for each m, {Tnm} ∀n, must not depend on
the choice of bit resolutions or analog beamformers made for
chains other than the mth one. (ii) For each m, {Tnm} ∀n
are all positive and monotonically increasing in the mth ADC
bit resolution, bm.

III. JOINT ANALOG BEAMS AND BIT RESOLUTIONS
OPTIMIZATION VIA SUBMODULAR OPTIMIZATION

In this section we will jointly optimize the choice of analog
beams and bit resolutions of their corresponding ADCs.
Towards this goal, we suppose that the set of all available
Nr length analog beam vectors, denoted by W , is finite4

and comprises of mutually orthogonal beam vectors so that
|W | ≤ Nr. Similarly, the set of all possible (strictly positive)
bit resolutions that we are allowed to assign to quantize the
output of any selected beam is also assumed to be finite and
is denoted by B. Recall that Qk denotes the given number of
bits in the queue of user k ∈ U where U = {1, · · · ,K}
is the user pool. Furthermore, in order to target the best
possible performance that can be obtained using analog
receive beamforming and ADCs with adaptive bit resolution,
for any choice of analog receive beam vectors and ADC
bit resolutions, we assume that the subsequent decoding at
the BS is optimal. Thus, all beam outputs post-quantization
are used to jointly decode all user signals. We accordingly
define a ground set comprising of all possible tuples or pairs,
where each such tuple denotes a selection of an analog beam
and a bit resolution for its associated ADC. In particular, we

4 This is a practical case where BS employs a finite codebook of beams.

define the ground set as Ω = {(w, b) : w ∈ W & b ∈ B}
so that its cardinality equals |Ω| = |W ||B|. Then for any
choice of subset G ⊆ Ω of tuples, we have a set of analog
receive beams and bit resolutions specified in those tuples.
Note that when the beams across all tuples of G are distinct,
they must be mutually orthogonal (since any two beams
in W are mutually orthogonal). To enforce that a feasible
choice of G includes each beam in at-most one of its tuples,
we can define I to denote a family of subsets of Ω such
that: each member in I contains only distinct beams across
its constituent tuples and any subset of Ω in which the
constituent tuples have distinct beams is a member of I . The
family I defined this way can be seen to be a matroid (cf.
definitions given in the appendix). Then, for any G ∈ I , using
the beams and bit resolutions in G we can form the matrix
W and determine the matrix T in (7), where we note that
M must now be replaced by |G|. To explicitly indicate the
dependence on G, we will denote the corresponding matrices
by WG and TG , respectively, where WG is a |G| × Nr
matrix while TG is a |G| × |G| diagonal matrix. Indeed,
for each tuple (w, b) ∈ G, the beam w is present as a
row of WG . The corresponding diagonal element of TG

can be computed as α2

α2+α(1−α)ψ , where the quantization
scalar α is obtained using the given look-up-table and the
bit resolution b specified for beam w in tuple (w, b) of G.
The scalar ψ is the variance of the time-domain outputs that
would be seen along beam w, which is given by (cf. Lemma
1), 1 + w[H0,0, · · · ,0,HL−1, · · · ,H1](F† ⊗ IK)D(F ⊗
IK)[H0,0, · · · ,0,HL−1, · · · ,H1]†w†. Using WG and TG
we write the model in (7) as

z̃G,n = T
1/2
G WGGnsn + ζG,n, 1 ≤ n ≤ N. (9)

Note here that WG and TG are invariant across subcarriers
and since WGW

†
G = I, our normalization ensures that

E[ζG,nζ
†
G,n] = I,∀ n. Let us now proceed to determine

the optimal weighted sum rate that can be achieved for
any choice of G ∈ I . Without loss of generality, let us
suppose that the user weights are ordered as w1 ≥ w2 ≥
· · · ≥ wK . Considering the model in (9) define the matrices
LG,n

4
= T

1/2
G WGGnD

1/2
n , ∀ G ∈ I & n = 1, · · · , N .

For each such matrix, we also adopt the convention that
L

(A)
G,n,∀ A ⊆ U = {1, · · · ,K} denotes the submatrix of

LG,n formed by its columns with indices in A. Next, we
define several set functions, all of them over all subsets of U
and one set function for each group G ∈ I , as

f
(A)
G =

N∑
n=1

log
∣∣∣I + L

(A)
G,n(L

(A)
G,n)†

∣∣∣ , ∀ A ⊆ {1, · · · ,K}. (10)

Note that the model in (9) (under our assumption on noise
distribution) represents a vector Gaussian multiple access
channel. Thus, for any feasible choice of beams and bit
resolutions G ∈ I , f (A)

G can be recognized to be the maximal
sum rate that can be achieved for users inA (in the absence of
queue constraints) when the messages of other users U \ A
are known and expurgated [22]. Recall that in our setting
the transmit powers of users on each subcarrier are fixed



inputs which cannot be changed and joint power and rate
control is left for future work. We note that transmit power
optimization is further complicated by the fact that changing
user transmit powers even while keeping the choice of beams
and bit resolutions fixed, can alter the variance of the input
at each ADC and thereby the total noise covariance post-
quantization. Indeed, even switching off some users (binary
power control) can reduce the variance of the input at each
ADC and potentially further improve the rates that can be
achieved for other users by boosting the effective channels
seen by the BS from those users (post-quantization and noise-
whitening). Then, since we are interested in the WSR under
queue constraints, we need to define the set of all achievable
rate vectors (or assignments) under the given fixed transmit
powers. Let Rk denote the rate assigned to user k ∈ U and
define RA =

∑
k∈ARk ∀ A ⊆ U . Then, for any G ∈ I , the

set of all achievable rate vectors is given by

PG =
{

[R1, · · · , RK ] ∈ IRK+ : RA ≤ f (A)
G ∀ A ⊆ U

}
(11)

The rate region PG is known to be a polymatroid [22]. To
impose the condition that Rk ≤ Qk ∀k we only consider
rate vectors in PG satisfying these queue constraints. The
region formed by all such rate vectors, denoted by P ′G , can be
shown to be another polymatroid [23]. Then, we can invoke
a fundamental result on polymatroids to deduce that a rate
vector which maximizes the weighted sum rate among all
vectors in P ′G , i.e., arg max[R1,··· ,RK ]∈P′

G
{
∑K
k=1 wkRk}, is

the one corresponding to its corner point determined solely
by the assigned user weights [23], [24]. This holds true
for all choices of the subset G. Therefore, without loss of
optimality, we can associate the weighted sum rate achieved
by that corner point as the metric value for each choice of G.
To formulate this metric, we define QA =

∑
k∈AQk ∀ A ⊆

{1, · · · ,K} and use the set functions defined in (10) to
further define K functions, each over I , as

g
(`)
G = min

A⊆{1,··· ,`}

{
Q{1,··· ,`}\A + f

(A)
G

}
, ∀ G ∈ I, (12)

where ` = 1, · · · ,K. Note here that for any choice of beams
and bit resolutions G ∈ I , g(`)

G , ∀ ` is the maximal sum rate

that can be achieved for users in U`
4
= {1, · · · , `}, in the

presence of queue constraints (when the messages of other
users U \ U` are known and expurgated). Further, the rate
assignment corresponding to the desired corner point assigns
rate R1 = g

(1)
G to user 1 having the highest weight, rate

R2 = g
(2)
G − g

(1)
G to user 2 having the second highest weight

and so on, till rate RK = g
(K)
G −g(K−1)

G to user K having the

smallest weight. We also note that each g(`)
G can be efficiently

computed (without brute-force search over subsets of U`)
using efficient submodular function minimization routines
[23]. Next, letting wK+1 = 0, we define a normalized non-
negative function over I , h : I → IR+, as

h(G) =

K∑
`=1

(w` − w`+1)g
(`)
G , ∀ G ∈ I. (13)

For any choice G ⊆ Ω : G ∈ I the beams specified by its
constituent tuples are all mutually orthogonal and h(G) yields
the desired optimal weighted sum rate metric. In order to
specify other constraints that any choice of G must satisfy, we
associate a cost εw +ε′b,bref +θ2b with each tuple (w, b) ∈ Ω.
Note here that θ2b denotes the energy consumed on using b
bit resolution ADC whereas εw can account for additional
circuit energy incurred on activating the RF chain and we
allow for dependence of this energy term on w. Moreover,
the term ε′b,bref can incorporate any arbitrary (look-up-table
based) switching costs incurred on changing the resolution
from a given reference setting bref to b (cf. [5]). Then, we
define a normalized non-negative set function c : 2Ω → IR+

such that for any subset G ⊆ Ω, c(G) yields the sum of costs
of all tuples in G. Clearly c(.) is a modular set function.
Thereby, we can pose our problem of interest as

max
G∈I
{h(G)} s.t. c(G) ≤ Ê, |G| ≤M ′ (P1)

Notice that in (P1) Ê denotes given energy budget, and via
the cardinality constraint on |G| we have imposed another
practical constraint that only M ′ RF chains, where M ′ : 1 ≤
M ′ ≤M is a given input, can be activated at the BS.

In order to obtain an approximation algorithm we will first
reformulate (P1). The reformulated problem is equivalent
to (P1) in the sense that each feasible solution of (P1) is
also feasible for the new problem, whereas each solution
feasible for the latter can be mapped to one feasible for
(P1) and yielding identical WSR objective. Towards this end,
we extend definition of h(.) to all subsets of Ω, i.e., even
those not in I . For any choice G /∈ I , we can simply
define h(G) as before but doing so ignores the noise coloring
caused by non-orthogonal analog beams and thus is not a
physically meaningful metric although it is mathematically
well defined. To circumvent this problem, we introduce
a simple but key mathematical trick which permits us to
obtain a formulation equivalent to (P1) but in which the
matroid constraint is essentially absorbed into the objective.
In particular, for any G ⊆ Ω : G /∈ I , let us define the
matrices LG,n = T

1/2
G WGGnD

1/2
n , ∀ n = 1, · · · , N but

where the matrix WG now contains as its rows only the
distinct beams specified by G, and the matrix TG is formed
by using only the highest bit resolution specified in G for each
of its distinct beams. With this understanding let us follow
all other steps made to obtain the functions set function h(.)

as before. In particular, we define one set function f
(.)
G in

(10) for each G ⊆ Ω. Further, we define K set functions
g

(`)
(.) , ` = 1, · · · ,K as in (12), with each function now defined

over all subsets of Ω. Let h′ : 2Ω → IR+ denote the resulting
extension of h(.) following (13), which we remind is now a
set function defined over all subsets of Ω. Then, consider

max
G⊆Ω
{h′(G)} s.t. c(G) ≤ Ê, & |G| ≤M ′ (P2)

Note here that for given system dimensions (K,Nr, |B|)
each input instance of (P2) comprises of budgets Ê,M ′,
sets W ,B, cost of each tuple (w, b) ∈ Ω along with all



user channel matrices, transmit powers and a look-up table
specifying quantization scalars as a function of ADC bit
resolutions, which together enable evaluation of the WSR
objective for any choice G. We offer our key result which is
proved in the appendix.

Proposition 1. The problem (P2) is equivalent to (P1) and
itself is the maximization of a normalized monotone non-
decreasing submodular set function subject to one knapsack
and one cardinality constraint.

Remark 1. We note that upon considering the flat fading
case (L = 1) with infinite queue sizes for all users and setting
all their respective weights to be identical, our weighted sum
rate metric reduces to the narrowband sum rate considered in
[5], [7]. The latter metric was optimized in [7] over receive
antenna subsets after assuming any arbitrarily specified but
fixed bit resolution for all ADCs. This simplified receive
antenna subset selection problem itself can be shown to
be NP-hard which suffices to deduce that the problem in
(P2) (and (P1)) is NP-hard. Thus, there is no hope of
designing a polynomial-time optimal algorithm for (P2) or
(P1). Our submodularity result in Proposition 1 assures
us that the natural greedy algorithm proposed in [7] for
receive antenna subset selection upon explicitly modeling
quantization, achieves 1− 1/e approximation guarantee for
the subset selection problem, since it is being applied on a
normalized non-decreasing submodular objective subject to a
cardinality constraint (cf. [25]). We note that submodularity
for this latter problem without quantization (i.e., infinite bit
resolution ADCs) has been previously established in [26].

We also remark that the joint optimization over beams
and bits being considered in (P1) or (P2) requires a more
sophisticated algorithm compared to the natural greedy one.
In this context, note that (P2) can be approximately solved
with a lower complexity and a better approximation factor
compared to (P1) using known algorithms for submodu-
lar maximization subject to multiple modular (knapsack)
constraints. Indeed, upon applying one such multiplicative
updates based algorithm [19] on (P2), we can deduce the
following corollary.

Corollary 1. There exists a polynomial time approximation
algorithm that yields a constant factor 1

2(1+2e) guarantee for
(P2), i.e., for each input instance it yields a WSR that is
at-least 1

2(1+2e) times the optimal WSR.

A. An Enhanced Algorithm

We observed that there is significant scope for improving
the performance obtained by a direct application of the algo-
rithm from [19] on (P2). To design our enhanced algorithm
we define two set functions, one for each constraint in (P2).
In particular, let c′ : 2Ω → IR+ denote a set function such that
for any subset G ⊆ Ω, c′(G) yields a net cost of all tuples in
G. This net cost is determined as the sum of normalized costs
of all distinct beams that are each present in at-least one tuple
of G. The normalized cost associated with each such distinct
beam in turn is set to be the maximal normalized cost (cost

divided by Ê) among all tuples of G containing that beam. It
can be verified that c′(.) is a non-decreasing sub-modular set
function over Ω. Similarly, we define d′ : 2Ω → IR+ to be a
set function such that for any subset G ⊆ Ω, d′(G) equals the
ratio of the number of distinct beams present across tuples of
G and M ′. Clearly, d′(.) is also a non-decreasing sub-modular
set function. Then, we can formulate a problem as

max
G⊆Ω
{h′(G)}

s.t. c′(G) ≤ 1, & d′(G) ≤ 1 (P2b)

Using arguments similar to those used to prove equivalence
of (P1) and (P2), we can show that (P2) and (P2b) are equiv-
alent. While replacing modular constraints by submodular
ones may seem counter-intuitive, the key insight is to see
equivalence of (P2) and (P2b) and noting that

c′(G) ≤ c(G)/Ê & d′(G) ≤ |G|/M ′ ∀ G ⊆ Ω.

Thus, compared to modular constraints, using submodular
constraints in (P2b) preserves equivalence while expanding
the space of feasible subsets. This allows sub-optimal meth-
ods to have a better chance of escaping from poor choices.
Next, without loss of generality, we suppose that each tuple
of Ω is feasible, i.e., c′(w, b) ≤ 1, ∀ (w, b) ∈ Ω (else we can
simply remove such tuples). Further, we can also suppose that
c′(Ω) > 1 and d′(Ω) > 1. Indeed, otherwise we can drop the
constraints which are vacuous (i.e., met by the ground set)
and in case both c′(Ω) ≤ 1 and d′(Ω) ≤ 1 hold, an optimal
solution to (P2b) is trivially to choose all beams in W , each
with the highest possible resolution in B.

Algorithm I details the main steps of our enhanced method,
where we have used φ to denote the empty set, h′G(w, b)

to denote marginal gain h′(G ∪ (w, b)) − h′(G) (similarly
c′G(w, b) and d′G(w, b)). Our algorithm modifies and applies
the multiplicative updates based method, originally designed
in [19] for submodular maximization subject to modular
constraints, on (P2b) containing submodular constraints in-
stead5 Algorithm I has several enhancements compared to
the original form in [19]. In particular, it has an improved
termination criteria (conditions in the While-Do loop) as
well as a different metric in the search step (step 4) that is
derived based on the formulation in (P2b). Further, it has an
improved post-processing (steps 12-through-15). Notice that
in each iteration, in the search step we need to determine
the locally best tuple by solving (14). While this entails
a linear pass over Ω, i.e., O(|Ω|) complexity, we exploit
lazy evaluations (cf. [27]) to avoid computing metrics of
several tuples that can ascertained to not be the locally
optimal choice based on the partial ordering of marginal
gains resulting from submodularity of h′(.). Thus, while
the overall worst-case complexity of Algorithm I scales as
O(|Ω|2) we observed a much faster average case runtime.
Building upon the methodology of [19] we can prove that
Algorithm I can yield a worst-case approximation that is at-
least as large as the factor claimed in Corollary 1. While, we

5The input parameter θ is a tuning factor which we fixed to be 2 in our
simulations.



Algorithm 1 Joint Optimization
1: Set G = φ, V = 0
2: Initialize θ ∈ IR+, ζ1 = 1, ζ2 = 1.
3: while ζ1 ≤ θ & ζ2 ≤ θ do
4: Solve via Lazy Evaluations

max
(w,b)∈Ω\G:h′

G(w,b)>0

{
h′G(w, b)

ζ1c′G(w, b) + ζ2d′G(w, b)

}
s.t. c′(G ∪ (w, b)) ≤ 1 & d′(G ∪ (w, b)) ≤ 1 (14)

and let (ŵ, b̂) be the corresponding optimal tuple.
5: if Optimal tuple is non-empty then
6: Augment G → G ∪ (ŵ, b̂) and V → V + h′G(ŵ, b̂)

7: Update ζ1 = ζ1θ
c′G(ŵ,b̂) and ζ2 = ζ2θ

d′G(ŵ,b̂)

8: else
9: Break

10: end if
11: end while
12: Determine (ŵ, b̂) = arg max(w,b)∈Ω{h′(w, b)}
13: if h′(ŵ, b̂) > V then
14: Set G = (ŵ, b̂).
15: end if
16: Return G.

are as yet unable to establish a strictly superior performance
guarantee, nevertheless, as shown in the simulations our
enhanced Algorithm I yields a much superior average-case
performance. In the following section we provide simulation
results comparing our enhanced algorithm with the state of
the art ones. We gratefully acknowledge the software codes
provided by the authors of [7] for their algorithm which
allowed us to conduct a proper comparison.

IV. SIMULATION RESULTS

In all the following simulations we consider a full-buffer
(infinite queue sizes) scenario and assume that each user has
one (omni) transmit antenna. Further, we consider the flat-
fading case with L = 1 and assume ideal channel estimation
at the BS. We compare the performance of our enhanced
algorithm (Algorithm I) over practical system configurations
against conventional receive antenna selection scheme (re-
ferred to here as FAS) that ignores effect of quantization,
as well as the state-of-the-art quantization aware receive
antenna selection scheme [7] (referred to as QAFAS). The
latter scheme explicitly models quantization noise but only
considers antenna subset selection. In particular, it connects
each selected receive antenna to a distinct RF chain and
uses a common pre-defined reference bit resolution across
all ADCs.

We begin by considering a Rayleigh fading uplink com-
prising of 10 users and a single BS with 128 receive antenna
elements. From the available antennas a subset of size at-
most 40 can be selected and connected to the available
40 RF chains. The carrier frequency is set to 2.4 GHz,
the transmission bandwidth is chosen to be 10 MHz and

each user’s transmit power is set to 5 dBm. The remaining
simulation parameters such as minimum and maximum user
distances in each drop, path loss exponents etc. are all as-per
[7]. The modeling of energy consumed by each active RF
chain is as-per [5]. In Fig. 2 we consider several different
reference bit resolutions and plot the sum rates (or more
precisely sum spectral efficiencies) of the conventional and
quantization aware receive antenna selection schemes, FAS
and QAFAS, respectively, along with that of a random
subset selection scheme, with each scheme’s performance
being averaged over several drops. We note that both FAS
and QAFAS will choose 40 antennas (since there are no
energy budget constraints on these two schemes) and employ
the reference bit resolution across all ADCs. We then plot
the averaged sum rate achieved by our enhanced algorithm
which jointly optimizes the ADC bit resolution and receive
antenna subset. The latter joint optimization is however
subject to a sum energy constraint, where the energy budget
is determined as the energy consumed by FAS and QAFAS
schemes (i.e., energy expended by them to operate 40 RF
chains with the reference bit resolution). In addition, we
impose that the joint optimization scheme cannot employ
more RF chains than the other schemes. Finally, for each
considered reference bit resolution b, we also impose that
the dynamic range considered for adaptive resolution spans
max{1, b−3} through min{12, b+3}. From the plot we see
that significant sum-rate improvement can be achieved by our
joint optimization at low to modest reference bit resolutions
(for instance over 60% gains at reference bit resolution 3
bits.). Interestingly, at larger resolutions (say 9 and above)
while there is little improvement in terms of sum capacity,
we have seen that our joint optimization scheme provides
good reduction in terms of energy consumed (even up-to
40% reduction). To highlight this observation, in Table I we
tabulate the ratio of energy consumed by the joint scheme and
QAFAS, for different reference bit resolutions. Also tabulated
in Table I is the complexity ratio of joint optimization over
the QAFAS scheme, where we have used the number of
sum rate evaluations as a proxy for complexity. We note
here that QAFAS uses clever tricks to reduce the burden
of computing (incremental) sum rates and the impact of
these are complementary to our proxy metric. We emphasize
that our complexity reduction is a consequence of deducing
and then exploiting submodularity in the sum rate, and the
computation reduction tricks developed in [7] can be used to
a large extent with our scheme as well.

We now consider an mmWave uplink with carrier fre-
quency 28 GHz, 384 receive antennas and 64 RF chains.
We consider a DFT analog beamforming codebook at the
BS. We remark that we have extended the quantization-aware
receive antenna subset selection of [7] to quantization-aware
codebook subset selection, whenever needed to generate the
following curves. We compare the performance of QAFAS
and FAS with our joint optimization scheme for different
choices of number of users, their respective transmit powers
and reference bit resolutions. For each considered reference
bit resolution b, we impose that the dynamic range considered



for adaptive resolution in our scheme spans max{1, b − 4}
through min{12, b + 4}. This is easily done by accordingly
defining the ground set Ω in (P2b).

In Figs. 3 and 4 we plot the sum rate versus different user
transmit powers, where for each each considered transmit
power value all users transmit with that power value. In these
figures the reference bit resolution is chosen to be 2 bits.
Our joint scheme jointly optimizes the bit resolutions and
codebook subset while not exceeding the energy consumed
by the other two schemes and using only the available RF
chains. In Tables II and III, we provide the average number
of active RF chains as well as the average bit resolution per
active chain under our scheme. Notice here that the other
two schemes will activate all 64 RF chains and use the
reference bit resolution for all 64 ADCs. Moreover, in Table
IV we tabulate the complexity ratio of joint optimization
over the QAFAS scheme, where we have again used the
number of sum rate evaluations as a proxy for complexity.
From the plots as well as the tabulated data it is seen that
joint optimization scheme has significant advantages over the
state-of-art schemes and the throughput gains can be even
over 40%. Moreover, these gains can be achieved with a
substantially reduced complexity, while consuming no greater
energy than the reference schemes.

In Figs. 5 and 6 we repeat the above exercise but now
the reference bit resolution is chosen to be 4 bits. We see
that the gains of joint optimization while somewhat reduced
compared to the 2 bit reference resolution case, are still
good. Figs. 7 and 8 on the other hand assume reference bit
resolution to be 8 bits. Here there is practically no sum rate
gain compared to the baseline schemes, which is because
all schemes are quite close in sum rate performance to the
optimal (infinite resolution) one. Interestingly our algorithm
results in significant energy savings in this regime. In Tables
V and VI, we provide the average number of active RF
chains as well as the average bit resolution per active chain
under our scheme for these cases. In Table VII we list the
energy consumption ratio of the joint optimization scheme
over the QAFAS scheme. As seen from the table there is a
significant reduction in energy consumption (even exceeding
50% reduction) under the joint optimization scheme, while
maintaining near-optimal sum-rate performance and with
comparable complexity.

V. CONCLUSIONS AND FUTURE WORK

We proposed a novel framework for designing algorithms
to optimize bit resolutions of analog-to-digital converters
(ADCs) as well as the choice of analog beamformers. We
demonstrated the superior performance of one algorithm we
designed using the proposed framework. Several interesting
avenues for future work are open. These include incorporat-
ing user scheduling wherein transmit powers (power profiles)
for scheduled users are also optimized subject to additional
constraints.

APPENDIX

Definition 1. Let Ω be a ground set and h : 2Ω → IR+ be
a non-negative set function defined on the subsets of Ω, that
is also normalized (h(∅) = 0) and non-decreasing (h(A) ≤
h(B), ∀ A ⊆ B ⊆ Ω). Then, the set function h(.) is a
submodular set function if it satisfies,

h(B ∪ a)− h(B) ≤ h(A ∪ a)− h(A),

∀A ⊆ B ⊆ Ω & a ∈ Ω \ B.

Definition 2. (Ω, I), where I is collection of some subsets
of Ω, is said to be a matroid if
• I is downward closed, i.e., A ∈ I & B ⊆ A ⇒ B ∈ I
• For any two members F1 ∈ I and F2 ∈ I such that
|F1| < |F2|, there exists e ∈ F2 \ F1 such that F1 ∪
{e} ∈ I . This property is referred to as the exchange
property.

A. Proof of Proposition 1
We first note that any subset G ⊆ Ω that is feasible for

(P1) is also feasible for (P2) and will satisfy h(G) = h′(G).
On the other hand considering any subset G ⊆ Ω that is
feasible for (P2) we can prune it to obtain G̃ ⊆ G, by retaining
only tuples with distinct beams and maximal bit resolutions
for those beams. It is readily seen due to construction of
h′(.) that h′(G̃) = h′(G). Moreover G̃ is feasible for (P1)
with h′(G̃) = h(G̃). This proves the equivalence of (P1) and
(P2). To prove the submodularity of h′(.), we first offer a
proof for the case in which all queue constraints are vacuous,
i.e., Qk = ∞ ∀ k ∈ U . We then consider the general case
with finite queues. In the case of infinite queues, defining
U` = {1, · · · , `} ∀ ` = 1, · · · ,K, we have that

f
(U`)
G =

N∑
n=1

log
∣∣∣I + L

(U`)
G,n (L

(U`)
G,n )†

∣∣∣ , (15)

where L
(U`)
G,n is formed by retaining the first ` columns of

LG,n = T
1/2
G WGGnD

1/2
n . Note that the number of rows in

LG,n (and hence L
(U`)
G,n ) is at-most |G| since we now retain

only the distinct beams across all tuples in G. Further,

g
(`)
G = f

(U`)
G , ∀ G ⊆ Ω, (16)

and for all ` = 1, · · · ,K so that

h′(G) =

K∑
`=1

(w` − w`+1)f
(U`)
G , ∀ G ⊆ Ω. (17)

It is easy to see that h′(.) is a normalized and monotone
non-decreasing over Ω. To show that this function is also
submodular, we recall the definition of submodularity and
consider any G ⊆ G′ ⊂ Ω and e

4
= (w, b) ∈ Ω \ G′. Notice

that for any ` and n we have

log
∣∣∣I + L

(U`)
G,n (L

(U`)
G,n )†

∣∣∣ = log
∣∣∣I + (L

(U`)
G,n )†L

(U`)
G,n

∣∣∣ (18)

An analogous relation holds for G′ as well. Next, we observe
that∣∣∣I + (L

(U`)
G′,n)†L

(U`)
G′,n

∣∣∣ =
∣∣∣I + (L

(U`)
G,n )†L

(U`)
G,n + Vn

∣∣∣ , (19)



where Vn � 0 is a positive semi-definite matrix that also
depends on G,G′ but for notational convenience we don’t
explicitly indicate the latter dependence. This observation
stems from the fact that each beam (row) in WG is also
present in WG′ and the corresponding diagonal element in
TG is no greater than the one in TG′ . The latter fact is
because increasing the bit resolution while keeping the beam
fixed increases the diagonal element. 6 Now suppose that the
beam present in the tuple e is some w ∈W . Then, we can
express the incremental gain as

f
(U`)
G∪e − f

(U`)
G =

N∑
n=1

log
∣∣∣I + (L

(U`)
G,n )†L

(U`)
G,n + δw̃†nw̃n

∣∣∣−
N∑
n=1

log
∣∣∣I + (L

(U`)
G,n )†L

(U`)
G,n

∣∣∣ (20)

where δ ≥ 0 is a non-negative scalar that depends on G, e and
w̃n is a row vector containing first ` elements of wGnD

1/2
n .

Note that δ is the difference between the diagonal element
of TG∪e corresponding to beam w and the diagonal element
of TG corresponding to beam w. Indeed, δ = 0 if beam w
is already present in some tuple of G with a corresponding
bit resolution at-least as large as the one in e. Using this
expansion with the rank-1 determinant update lemma we get

f
(U`)
G∪e − f

(U`)
G =

N∑
n=1

log
(

1 + δw̃n(I + (L
(U`)
G,n )†L

(U`)
G,n )−1w̃†n

)
. (21)

Similarly using (19) and the arguments made above, we can
deduce that

f
(U`)
G′∪e − f

(U`)
G′ =

N∑
n=1

log
(

1 + δ′w̃n(I + (L
(U`)
G,n )†L

(U`)
G,n + Vn)−1w̃†n

)
, (22)

where 0 ≤ δ′ ≤ δ. Then comparing (21) and (22) and
noting that 0 � (I + (L

(U`)
G,n )†L

(U`)
G,n + Vn)−1 � (I +

(L
(U`)
G,n )†L

(U`)
G,n )−1, we get the relation

f
(U`)
G′∪e − f

(U`)
G′ ≤ f (U`)

G∪e − f
(U`)
G . (23)

The relation in (23) proves that for each ` = 1, · · · ,K, the
function f

(U`)
(.) is a submodular set function over Ω. Then,

from (17) we can deduce that h′(.) is a linear combination
of K submodular set functions with non-negative combining
coefficients, which proves that h′(.) is also a submodular set
function over Ω.

As promised above, we now consider the general case with
finite queues. We will require the following two lemmas
which are stated next with brief intuitive reasoning. Their
proof sketches follow later in the sequel.

6Recall that we select the maximal resolution for each beam across all
tuples containing that beam in the set of interest. Each diagonal element can
be expressed as α2

α2+α(1−α)ψ . This term is increasing in α for any fixed
ψ. Hence, keeping the beam fixed fixes the variance ψ while increasing the
bit resolution increases α and thereby the diagonal term.

Lemma 2. Consider any ` ∈ {1, · · · ,K} and its correspond-
ing user set U` along with any two subsets G,G′ : G ⊆ G′ ⊆
Ω. Suppose that AG ⊆ U` and AG′ ⊆ U` are the sets of users
such that

g
(`)
G = f

(U`\AG)

G +QAG

g
(`)
G′ = f

(U`\AG′ )

G′ +QAG′

Then, without loss of optimality we can assume that AG ⊆
AG′ .

Note that queue constraints of users in AG ⊆ U` are active
at a queue constrained sum rate optimal rate allocation for
users in U` when users in U\U` have been expurgated and the
distinct beams in G are activated along with their respective
maximal bit resolutions in G . Lemma 2 states that we can
only have more users with active queue constraints in U` as
we add more distinct beams or improve the bit resolutions
of existing ones. This is because the latter operations expand
the achievable rate region. The other useful lemma we will
invoke later is stated below.

Lemma 3. For any two user subsets A,B : A ⊆ B ⊆ U`
and any two subsets G,G′ : G ⊆ G′ ⊆ Ω, we have that

f
(B)
G − f (A)

G ≤ f (B)
G′ − f (A)

G′

Note that f (B)
G − f

(A)
G represents the maximal sum rate

(without queue constraints) that can be achieved for users in
B \ A when treating users in A as noise (after expurgating
users in U\B) and when the distinct beams in G are activated
along with their respective maximal bit resolutions in G.
Lemma 3 states that this sum rate must increase as we add
more distinct beams or improve the bit resolutions of existing
ones.

Consider any G ⊆ G′ ⊂ Ω and e
4
= (w, b) ∈ Ω \ G′. As

before we will prove that the set function g
(`)
(.) defined over

Ω is submodular for each ` = {1, · · · ,K}. Consider any `
with user set U` and let AG denote users with active queue
constraints under G. Similarly define for G ∪ e, G′ & G′ ∪ e.
From Lemma 2 it follows that

AG ⊆ AG∪e ⊆ AG′∪e & AG ⊆ AG′ ⊆ AG′∪e

Thus, we can meaningfully define subsets as

C 4
= (AG′ ∩ AG∪e) \ AG & D 4

= AG∪e \ AG′

F 4
= AG′∪e \ (AG′ ∪ AG∪e) & T 4

= U` \ AG′∪e

It follows that AG∪e = C ∪D ∪AG and AG′ = C ∪ E ∪AG ,
where we have set E = AG′ \AG∪e. Then, we have the chain
of inequalities given in (24) which establishes the desired
result. In (24) we have used f (E|T ∪F)

G∪e = f
(E∪T ∪F)
G∪e −f (T ∪F)

G∪e
(similarly for other such terms). To derive the first inequality
in (24) we have simply used definition of g(`)

G to upper

bound it as g
(`)
G = QAG + f

(T ∪F∪E∪C∪D)
G ≤ QAG +

QC + f
(T ∪F∪E∪D)
G and to derive the second equality we

have used the chain rule of mutual information. To derive
the second inequality we have invoked Lemma 3 to deduce



g
(`)
G∪e − g

(`)
G = QC +QD + f

(T ∪F∪E)
G∪e − f (T ∪F∪E∪C∪D)

G ≥ QD + f
(T ∪F∪E)
G∪e − f (T ∪F∪E∪D)

G

= QD + (f
(T ∪F)
G∪e − f (T ∪F)

G ) + (f
(E|T ∪F)
G∪e − f (E|T ∪F)

G )− f (D|T ∪F∪E)
G

≥ QD + (f
(T ∪F)
G∪e − f (T ∪F)

G )− f (D|T ∪F∪E)
G′

≥ QD + (f
(T ∪F)
G′∪e − f (T ∪F)

G′ )− f (D|T ∪F)
G′ = (QD + f

(T ∪F)
G′∪e )− f (D∪T ∪F)

G′

≥ g(`)
G′∪e − g

(`)
G′ (24)

that (f
(E|T ∪F)
G∪e − f

(E|T ∪F)
G ) ≥ 0 and that f (D|T ∪F∪E)

G′ ≥
f

(D|T ∪F∪E)
G . To derive the third inequality we have reused

the submodularity of fA(.) for any user set A that we proved

earlier along with the fact that f (D|T ∪F∪E)
G′ ≤ f

(D|T ∪F)
G′ .

The latter fact is simply because removing more interfer-
ing users will increase achievable sum-rate of users in D.
Finally, the last inequality follows upon using the fact that
g

(`)
G′ = f

(D∪T ∪F)
G′ + QAG∪C∪E and definition of g(`)

G′∪e to

deduce g(`)
G′∪e ≤ QAG∪C∪E∪D + f

(T ∪F)
G′∪e .

B. Proof of Lemma 3

Let us first consider the case when G and G′ have the same
set of distinct beams in their respective constituent tuples.
Then we can write

f
(B)
G′ − f (A)

G′ =

N∑
n=1

log
∣∣∣I + (L

(B\A)
G,n )†Σ(I + ΣL

(A)
G,n(L

(A)
G,n)†Σ)−1ΣL

(B\A)
G,n

∣∣∣ ,
where we have used the fact that G′ has at-least as large a
maximal resolution for each distinct beam as compared to G,
so that Σ

4
= T

1/2
G′ T

−1/2
G � I. Clearly, since Σ is diagonal,

Σ2 � I so we have the following set of relations.

f
(B)
G′ − f (A)

G′ =

=

N∑
n=1

log
∣∣∣I + (L

(B\A)
G,n )†(Σ−2 + L

(A)
G,n(L

(A)
G,n)†)−1L

(B\A)
G,n

∣∣∣
≥

N∑
n=1

log
∣∣∣I + (L

(B\A)
G,n )†(I + L

(A)
G,n(L

(A)
G,n)†)−1L

(B\A)
G,n

∣∣∣
= f

(B)
G − f (A)

G

Then, consider the general case where G′ can also include
additional distinct beams than G. From the result we obtained
above we can deduce that, starting from G′ and decreasing the
maximal resolution of any beam (equivalently decreasing the
corresponding diagonal entry of TG′ ) while keeping all other
beams and their respective maximal resolutions unchanged,
will decrease the sum rate of users in B \ A (when treating
users in A as noise). Moreover, when that entry becomes zero
the resulting sum rate is the one obtained upon removing all
tuples containing that beam from G′. This demonstrates that
as we morph G′ to G the sum rate of users in B \A is non-
increasing, which proves the lemma.

TABLE I
ENERGY AND COMPLEXITY RATIOS

b=1 b=3 b=5 b=7 b=9 b=11
Energy Ratio 0.98 0.99 0.98 0.97 0.83 0.59
Complexity Ratio 0.67 0.77 0.94 1.08 1.18 1.02

C. Proof of Lemma 2

We will prove this result via contradiction. Let S = AG \
AG′ such that S 6= φ, i.e., S is not empty and let S ′ = AG′ \
AG . Further, define T = AG∩AG′ and E = U`\(T ∪S∪S ′).
Thus, under G, we can parse U` into users with active and
inactive queue constraints, respectively, as AG ∪ (S ′ ∪ E)
while under G′, we can similarly parse U` as AG′ ∪ (S ∪ E).
By the definition of g(`)

G , we have that

g
(`)
G = f

(S′∪E)
G +QT +QS ≤ f (S′∪E)

G + f
(S|S′∪E)
G +QT

which yields that

QS ≤ f (S|S′∪E)
G

Combining this with Lemma 3 we get that

QS ≤ f (S|S′∪E)
G ≤ f (S|S′∪E)

G′ ≤ f (S|E)
G′ (25)

where for the last inequality we have used the fact that
removing interfering users will improve the sum rate of users
in S. Then, by the definition of g(`)

G′ , we have that

g
(`)
G′ = f

(S∪E)
G′ +QT +QS′ ≤ f (E)

G′ +QS +QS′ +QT

which means that

QS ≥ f (S|E)
G′ (26)

Clearly if (26) holds with strict inequality we have a con-
tradiction from (25). On the other hand, if (26) holds with
equality we can also express

g
(`)
G′ = f

(E)
G′ +QS +QS′ +QT

so that the set of users in U` with active queue constraints
under a sum-rate optimal allocation and G′ can also be S ∪
S ′ ∪ T which subsumes AG and hence proves the lemma.
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Fig. 2. Sum Rate versus reference bit resolution

TABLE II
AVG. NUMBER OF ACTIVE CHAINS FOR bref = 2

-5 dBm 0 dBm 5 dBm 10 dBm 15 dBm 20 dBm
K=8 51.61 50.52 49.00 46.86 43.57 41.48
K=16 51.95 50.36 48.59 46.57 43.50 40.39
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