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Abstract—The imperfections in the RF frontend of different
transmitters can be used to distinguish them. This process
is called transmitter identification using RF fingerprints. The
nonlinearity in the power amplifier of the RF frontend is a
significant cause of the discrepancy in RF fingerprints, which
enables transmitter identification. In this work, we use deep
learning to identify different transmitters using their nonlinear
characteristics. By developing a nonlinear model generator based
on extensive measurements, we were able to extend the evaluation
of transmitter identification to include a larger number of trans-
mitters beyond what exists in the literature. We were also able to
study the impact of transmitter variability on identification accu-
racy. Additionally, many other factors were considered including
modulation type, length of data used for identification, and type
of data being transmitted whether identical or random under a
realistic channel model. Simulation results were compared with
experiments which confirmed similar trends.

Index Terms—Transmitter Identification, RF fingerprinting,
Nonlinear Model Generator, Deep Learning

I. INTRODUCTION

With the increase in the number of connected wireless
devices, transmitter identification has become an important
tool to stop malicious transmitters from impersonation. RF
fingerprinting is a method that recognizes different transmitters
using the device level differences in their RF frontends. The
circuit components of these frontends suffer from inherent
variability due to the manufacturing process. Practically, two
devices having the same specifications and even from the same
manufacturer are slightly different in their RF characteristics.
Unlike MAC address or other network layer identification
protocols, these circuits nonidealities are device dependent
and can not easily be forged. The imperfections that enable
this differentiation between transmitters arise from clock jitter,
digital to analog converters, sampling errors, mixers or local
frequency synthesizers, power amplifiers’ non-linearity, device
antennas, etc. The power amplifier’s non-linearity is consid-
ered as the most significant source of differences [1].

The idea of identifying RF transmitters based on their
transmitted signals is not new. It started in the nineties with
most of the work focused on using the transient behavior [2].
The main drawback of these approaches is the need to locate
the short transient segment of the transmitted signals. Later
on, steady-state methods for RF identification were developed.
These approaches eliminate the need for locating the transient
part of the signal and include several features like modulation
errors. More recently deep learning techniques have been
proposed for RF identification. In these techniques, minimal

processing is performed on the captured data and the machine
learning technique would learn the features and classify the
signal. In [3], the frequency characteristics of signals are used
as features, which are fed to a K-Nearest Neighbour classifier.
The authors evaluated the effect of changing the SNR and the
number of frequency bins. Fixed preambles collected from RF
captures were used for recognition. A more comprehensive
evaluation of the performance of RF identification was per-
formed in [4] and [5]. In both these papers, the classification
was performed on the frequency domain representation of
the signal using neural networks. In the first, the ability of
low and high-end receivers in distinguishing between different
transmitter fingerprints was compared. In [5], the effect of
training and testing under different channels was studied.
Both papers used signal preambles collected from hardware
captures for their work. In [6], an emphasis was placed on the
machine learning technique that gives the highest identification
accuracy. Classification methods like support vector machines,
deep neural networks, convolutional networks, and a technique
called multistage training were evaluated. Unlike previous
work, the authors of [6] relied on time domain features for
recognition, although they showed that time-frequency features
gave higher performance. For comparison, they used random
data obtained from RF captures. All the machine learning
based approaches discussed in these papers, due to reliance
on hardware captures, were not able to use more than 12
transmitters in their study.

In this paper, we compare several architectures of deep neu-
ral networks using frequency domain features. Unlike previous
work, we developed a power amplifier nonlinearity model
generator, which can generate as many realistic transmitter
models as we want. This generator enabled us to explore RF
identification using up to 500 transmitters and to evaluate
factors like the similarity between transmitters, which are
not possible using hardware. We also extended our analysis
to study the impact of several parameters that were not
considered in the previous work. A comparison between using
similar data and random data for transmitter identification is
performed. Additionally, we consider the effect of the length
of the captured data on the recognition accuracy among other
parameters.

The rest of the paper is organized as follows. Section II for-
mally describes the RF identification problem. The proposed
nonlinear model generator is discussed in Section III, while in
Section IV, we proposed a set of features for recognition and
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several classifiers. In Section V, simulations are performed to
evaluate the aforementioned parameters. Experimental evalu-
ation is used to corroborate our simulations in Section VI.
Section VII concludes the paper.

II. PROBLEM DESCRIPTION

We assume there are N transmitters, one of them is trans-
mitting the complex digitally modulated signal x(t). When
transmitter Ti, where i ∈ {1, · · · , N}, transmits this complex
baseband signal, the RF output signal after its power amplifier
is fi(x(t)), where fi(x) models the nonlinear behavior of RF
frontend of transmitter i. Here we assume that the nonlinear
function is transmitter specific, which is true in practice even if
the transmitters have the same specifications and are from the
same manufacturer. This signal is then sent through a channel
and the received signal is

y(t) = h(fi(x(t))) + n(t) (1)

where n(t) is a Gaussian random signal representing the added
noise and h(x) models the wireless channel. In this work,
we consider an AWGN channel as well as a more realistic
channel with timing errors, frequency errors, and fading. At
the receiver side, y(t) is sampled to obtain y[n]. The problem
can be described as correctly identifying the transmitter given
the received samples y[n], which can be formulated as finding
î defined as follows

î = argmax
j

P (Tj = Ti|y[n]) (2)

under the assumption that the signal was sent by transmitter i.
Here, we assume that the receiver does not have any prior
information about the channel, the structure of the signal (if
there is any structure), and the type of modulation.

For the purpose of getting the samples for transmitter
identification that correspond to realistic radio frontends, there
are two approaches: i) by capturing signal transmitted from
hardware, or ii) by generating samples using simulation. Each
of the two approaches has its advantages and its disadvantages.
While real-world transmissions are similar to situations where
transmitter identification systems are to be deployed, they
impose some limitations on the analysis. First, practically the
number of transmitters available for testing is limited by the
hardware availability and its cost. Second, the transmitters
have a predefined set of nonlinearities that cannot be modified
for experimentation purposes. Additionally, generating large
datasets using real-world transmissions covering different pa-
rameters requires more effort than simulation. Simulations, on
the other hand, give a larger flexibility and ease in testing,
but the applicability of the results obtained is dependent on
the accuracy of the model. In this paper, we use both simula-
tions and hardware measurements to evaluate our transmitter
identification algorithm.

To have the flexibility to explore the effect of the number
of transmitters N and the effect of modifying the variability
between the nonlinear functions, we developed a nonlinear
power amplifier model generator that realistically models the

nonlinearity of real hardware. In particular, the statistical
characteristics of the entire set of obtained functions should
correspond to that of real hardware.

III. NONLINEARITY MODEL GENERATION

In this section, we describe our approach to building the
nonlinear function generator used for the simulation. We start
by selecting the nonlinear power amplifier model. In this
work, we used the Saleh model [7] which is defined by
two parameters α and β as described later. To create such
a generator, we measured the values of α and β of many
transmitters. Then we fit the samples of these parameters to a
statistical distribution, which will be later used to generate a
family of new models with a tunable variability parameter.

A. Measurements and Fitting

The nonlinearity measurements were performed using 8
USRPs. These USRPs are USRP2, USRP N200, and USRP
N210 having different RF frontends namely: 2 SBX, 4 XCVR,
1 UBX, and 1 CBX . Throughout all the measurements, the
USRP having the CBX front-end was used as a receiver, while
the remaining USRPs were used as transmitters. To avoid
external sources of interference, the USRPs were connected
using an SMA cable and a 40 dB attenuator. This value
of attenuation along with the receiver gain were chosen to
guarantee that we operate within the linear region of the
receiving USRP. Due to the limited number of USRPs and
to increase the number of nonlinearity curves obtained, we
ran the test using the same USRP at different frequency
bands. This approach was inspired by the measurements in [8]
showing that the nonlinearity varies with the center frequency.
Using this fact, 101 nonlinearity curves were obtained from
the 7 transmitters.

To obtain the AM-AM characteristic a two-tone test was
used. The transmitter and the receiver were both tuned to
a center frequency in the range of both RF frontends while
having a 1 MHz bandwidth. The transmitter started generating
two equal amplitude sine waves at 24 and 36 kHz while
the receiver measured the received power. The amplitude was
varied from 0 to 1 using a step of 0.05. The obtained points
after normalization are shown as crosses in Figure 1a.

In the literature, there exist many functions used to capture
the power amplifier nonlinearity among which are Ghor-
bany [9], Rapp [10], and Saleh [7] models, from which we
found that the Saleh model is the most suitable for our
purposes. The Saleh model relates the input amplitude r with
the output amplitude A(r) using the following equation

A(r) = αr/(1 + βr2), (3)

where α and β are the model parameters1. The fit was per-
formed using the least squares equations from [7]. The fitted
curves are shown in solid lines in Figure 1a. Our selection for
the Saleh model was based on a tradeoff between how well the
model fits the data and the number of parameters. We looked

1We only considered the amplitude component of the nonlinearity.



(a) (b) (c)

Fig. 1. Figure (a) shows the measured points as ticks, the solid lines represent the Saleh Model fits. Figure (b) shows in ticks the values of the α and β
parameters of the fitted models, while the solid line is the linear regression line. In Figure (c), the histogram of α and the fitted gamma distribution are shown.

for the model with the fewest number of parameters so that
it would be easy to analyze their statistical distribution. Using
this distribution, we generate new models to emulate different
RF fingerprints.

B. Model Generation

After obtaining 101 pairs of α and β values, we analyzed
their statistics. The scatter plot of the pairs of values shown
in Figure 1b indicates a linear correlation between the two
values. Using linear regression, we are able to relate the values
of β and α. Next, we fit the values of α to a probability
distribution. The histogram of the values of α is shown in
Figure 1c. A gamma distribution, with mean µ and standard
deviation σ, was fitted to the histogram which is also shown
in Figure 1c. The tails of the gamma distribution less than 1
and more than 3 were removed to avoid unrealistic values.
To simulate changes in the variability in the RF frontend,
when generating new values of alpha and beta, we used σs as
standard deviation, which is defined as σs = sσ, where we call
s as the coefficient of transmitter variability. For example, for
a low-cost device with high variability, the transmitters would
have a larger coefficient of transmitter variability.

So the process of generating a model is as follow (1)
Sample the gamma distribution with the calculated mean and
the scaled standard deviation to obtain α, (2) Use the fitted
line relating β and α to calculate β. Figures 2a, 2b, and 2c
show examples of generated nonlinearity curves for different
coefficients of transmitter variability taking values of 0.01, 0.1,
and 1.

IV. CLASSIFIER FEATURES, STRUCTURE, AND
PARAMETERS

In this work, we use the frequency representation of the
received symbols as features for transmitter identification. The
set of received samples is divided into windows of size 256.
The discrete Fourier transform of each window is calculated
and the obtained Fourier coefficients are averaged. The result
of this operation is 256 complex coefficients. Several methods
to feed this data to our classifier were tested: the magnitude
only representation, the cartesian representation, and the polar

(a) (b) (c)

Fig. 2. Figures (a)-(c) show 100 examples of nonlinearity curves obtained
from the generator for coefficients of variability: 0.01, 0.1, and 1 respectively.

representation. For the first, the input dimensions are 256× 1
and for second and third the input dimensions are 256× 2.

As for the classifier, we used deep neural networks. Deep
neural networks are widely used in computer vision and
recently has been used to address several problems in com-
munications [11]. Since our feature size is small (256 or
512), we are able to use fully connected networks. Hence,
the two architectures we evaluated are a fully connected
network and a convolutional neural network. The architectures
of both networks used for the 256 input are shown in Figures
3a and 3b. For the first architecture, several layers of fully
connected neural networks were used with the number of
neurons decreasing as we move from one layer to the next.
For the second architecture, two 3×3 convolutional networks
followed by 2×1 maxpooling were used. A dense layer was
then used for classification. These architectures were modified
for the 512 featues size as follows: for the fully connected
network, one more layer of size 300 was added and for the
convolutional network, the convolution was performed on two
dimensions instead of one.

All the training and testing was done using the Keras API
for Tensorflow [12]. A batch size of 32 was used. The loss
function chosen is categorical cross entropy. For training,
the Adam [13] optimizer was used with the default values
provided in Keras. An epoch consisted of 1000 samples
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Fig. 3. Architectures of neural networks that were evaluated when using the
magnitude. The colors indicate the type of layer: red for input, green for
dense, blue for convolutional, yellow for maxpool, and Cyan for flatten. The
dimension of the output of each layer is written underneath. The number of
filters is written above the convolutional layers.

per class. A maximum of 25 epochs was used with early
termination occurring if the loss did not decrease for 5 epochs.
Several neural networks were trained and the one giving the
best performance was kept.

V. SIMULATIONS BASED STUDY

Through simulations, we studied the performance of differ-
ent neural network architectures and methods to represent the
signals. After choosing the best performing architecture, the
effect of two sets of parameters on classification accuracy was
studied. The first set includes transmitter specific parameters,
which include the number of transmitters and the variability
between transmitters. The second set consists of different
signals and channel parameters, which include SNR, channel
model, modulation type, and packet length.

A. Data Generation

The main benefit of simulation is the infinite amount of
data that can be generated. This benefit will be drastically
hindered if we generated a limited amount of data and used
it for training or testing. Hence, we resorted to online sample
generation which works as follows. At first, we generate the
required number of RF frontend nonlinearities, which is the
number of required transmitters. Once a training sample is
needed, data is generated with the specified packet length,
modulated using the specified modulation type, then passed
through one of the transmitter nonlinearities that constitute
the label for the neural network. Afterwards, the channel
impairments are modeled and at last the chosen feature is
calculated. The labeled samples are then fed to the neural
network. All these steps are done online, i.e, the labeled
samples are generated as needed and are not stored nor fed
to the network more than once. This approach avoids the
problem of overfitting. Overfitting occurs when the network
learns features specific only to the training set. Since we are
using each sample only once, this problem is entirely avoided.

Unless stated otherwise, the following parameters were used
for simulations. The generated data consisted of packets of
8192 symbols. Each symbol was modulated using QPSK
having two samples per symbols and root raised cosine pulse
shaping with 0.2 excess bandwidth. The default value of SNR
was 20 dB and the default number of transmitters was 20.
Two types of input data were investigated; the first is random
data where each time a packet consists of completely random
symbols. As for the second type, referred to as same data, the
same random packet is used each time for training and testing.

Two channel models were investigated. The first one is the
AWGN channel. The second one is a dynamic channel, which
includes a set of more realistic impairments including timing
errors, frequency errors, fading, and noise. The timing error
is simulated by interpolating the signal by a factor of 32,
choosing a random offset, and then downsampling. As for the
frequency error, it is obtained by multiplying the signal with
a complex exponential. The frequency of the exponential is
selected from a Gaussian distribution with zero mean and a
standard deviation of 1 kHz. For fading, a three tap channel
was used along with a Rayleigh coefficient of scale 0.5.
Finally, the noise is added to the signal.

Note that, as stated earlier, data is generated online. So, each
epoch consisted of different samples. Hence, the size of the
training sets would vary between 5,000 to 25,000 times the
number of classes depending on the loss value of each epoch
(since we are using early termination as stated earlier). As for
the testing, 1000 samples per each class were generated and
used to evaluate the performance.

B. Feature and Neural Network Architecture

We start by comparing methods to represent the data and
neural network architectures to classify the transmitters. Once,
we determine the feature and architecture giving the best
performance, we will use them for the rest of the paper.

As stated earlier, the captured IQ samples were processed
as chunks of length 8192 symbols unless otherwise stated.
Several methods to feed these packets to the neural network
are considered. All of them are based on the frequency
representation of the data. An FFT transform of length 256
was chosen. The first representation is the magnitude of the
FFT only, the second is the cartesian representation, and the
third is the polar representation.

Each of these representations was used as an input to the two
proposed neural network architectures. The first architecture is
the fully connected neural network shown in Figure 3a, while
the second architecture is the convolutional network shown in
Figure 3b.

The evaluation of these representations and these networks
was done on data originating from two sets of transmitters,
one has a coefficient of variability of 0.005 and the other
of 1. Both results are shown in Figure 4. Results show that
for transmitters that have similar nonlinearities using only the
magnitude as a feature and the convolutional neural network
gives the best recognition accuracy. As for transmitters that are



Fig. 4. A comparison between the different inputs and architectures. At
low variability only the magnitude input and convolutional architecture
network is better than random guess. At larger variability, it still gives the
best performance, slightly outperforming the fully connected network with
magnitude input. s is the coefficient of variability.

more disparate, using the magnitude only gives the best per-
formance, while the convolutional neural network is slightly
better than the fully connected one. Based on these results,
we decided to use the convolutional neural network shown in
Figure 3b with the magnitude of the Fourier transform as the
input feature for the rest of the paper.

C. Transmitter Parameters

After determining the best performing architecture and fea-
ture, we study the effect of variability between transmitters and
the number of the transmitters on the classification accuracy.

1) Coefficient of Transmitter Variability: As discussed in
Section III, our nonlinearity model generator enables us to
control the simulated variability between models. An example
of the effects of the coefficient of variability on the AM-AM
curves was shown in Figure 2. From Figure 5, we see that
as the variability between transmitters decreases, the ability
of the neural networks to distinguish between transmitters
decreases. We found that the same packet inputs give a
better identification accuracy. This improvement is because the
neural network does not have to account for the difference in
the data as when using random packets. From Figure 5, we can
also see that the general trend is that performance improves
as we increase the variability between transmitters. As for
the effect of channel impairments, we can see that for lower
values of variability and random data the impairments degrade
the performance by up to 20%. But, for the same packet and
larger value of transmitter variability the difference becomes
insignificant. This result shows that when the underlying data
is random and the difference between transmitters is small,
the neural network is highly affected by the additional channel
impairments. In Figure 5 and all the subsequent figures, we
refer to curves representing results for same packets by “sm”
and different packets by “df”. “dy” refers to the dynamic
channel else the AWGN channel was used.

2) Number of Transmitters: Next, we analyze the perfor-
mance of both types of data against the number of transmitters.
From Figure 6, we can see that as we increase the number
of transmitters the classification accuracy drops. In Figure 6,

Fig. 5. The effect of changing the spread between different transmitters
obtained by changing the coefficient of variability of the generator. We can
see that as the variability increases the ability of the network to identify RF
fingerprints improves.

Fig. 6. The effect of changing the number of transmitters. As the number
of transmitters increases the accuracy decreases. Yet, it is still better than the
random guess (yellow curve). Up to 500 hundred transmitters were evaluated,
which would be hard to realize using real hardware.

we plotted a line showing the results obtained if we had
used random guessing, which is equal to the inverse of the
number of transmitters. So, although the recognition accuracy
decreases with the number of transmitters, it is still higher
than using random guessing.

D. Signal and Channel Parameters

After investigating the effect of the number of transmitters
and variability, we investigate the effects of SNR, channel
model, the length of packets, and modulation type.

1) SNR: The effect of the SNR on the recognition is first
evaluated. In any practical scenario, the receiver has no control
over the value of the SNR of the received signal. Hence, the
most practical strategy is to train over signals having different
values of SNRs. The training data were chosen to have SNR
randomly selected from values from 0 dB to 30 dB with
step 1. This training set should provide us with a robust neural
network capable of operating over a wide range of SNRs.
For the testing stage, we tested the network over SNRs from
0 dB to 30 dB having a step of 5dB. AWGN and dynamic
channels were investigated, also using random data and same
data packets. The breakdown of the results for different SNRs
is shown in Figure 7. From these figures, we can see that the
performance when using the same packet is better than when



Fig. 7. The effect of changing the SNR. As the SNR increases, the
performance of our system improves.

Fig. 8. The effect of changing the packet length used to obtain the frequency
representation. As the packet becomes longer, the performance improves.

using random data. As for the comparison between AWGN and
dynamic channels, we can see that the results are close. Thus,
training the network using samples with multiple impairments
does not have a major impact on its ability to differentiate
between transmitters.

2) Packet Length: Then, we evaluate the effect of the packet
length. As we have control of the length of the capture used
in transmitter identification, the training and testing were done
on packets of the same size. The results obtained are plotted
in Figure 8. Each point represents the evaluation of a neural
network trained with packets of that length. We can see that as
we increase the length of the packet the recognition accuracy
improves. The network performance in the noise only channel
was slightly better than with the impairments.

3) Modulation Type: The last signal parameter we investi-
gated is the type of modulation. Our approach was to train the
neural network over many types of modulation. In particular,
one network was trained over a mixture of all several types of
modulations, while testing was done for one modulation at a
time. The breakdown of the results with respect to modulation
type for different and same packets are shown in Figure 9.
We can see that the neural network is able to perform well for
different modulation types.

VI. EXPERIMENTAL EVALUATION

So far the results were solely based on simulations. In this
section, we evaluate the classifier using hardware captures.

Fig. 9. The effect of changing the modulation type. Our trained network was
able to successfully classify different modulation types.

Oscillator 
Leakage

Fig. 10. The data capture setup. In the first, the oscillator leakage was
included, while in the second (shown in blue) it was avoided.

A. Measurement Procedure

The USRPs previously mentioned were used using the same
setup discussed in Section III. All USRPs were set to use
only one frequency. Hence, we only used 7 transmitters. Each
transmitter was set to send signals having different amplitudes.
The results were captured by the receiver and stored. Two
types of packets were used; the first is completely random
and the second consists of the same random vector of length
1024 repeated over and over. A total of 40920 packets was
used, 80% for training and 20% for testing.

Two signal captures were used. In the first, both the signal
and the capture have the same center frequency fc (2.4 GHz)
and bandwidth ”BW 1” (1 MHz). In this setup, the oscillator
leakage from both the transmitter and receiver is included in
the capture. We will refer to this setup as center. In the second
setup, the capture used a bandwidth ”BW 2” (5 MHz) and the
center frequency fc, while the signal had a bandwidth of 1
MHz and a center fc + f0 (f0 used is 1.25 MHz). At the
receiver end, a frequency translating filter is used followed by
decimation to bring the signal back to baseband. This setup is
referred to as xlat. The two setups are illustrated in Figure 10.

B. Results

For the experimental evaluation, we measured the effect of
changing the SNR of the signal by changing the amplitude
of the transmitted signal. The network was trained over all
SNRs and the performance was tested for each SNR alone.
The results are shown in Figures 11 and 12 for the center
and xlat setups. The first point tested was zero amplitude (It



Fig. 11. The effect of changing the SNR when using the center setup. Due
to oscillator leakage, recognition is not affected by signal amplitude. The -10
dB point represents no signal (−∞ SNR) altered to fit on the plot.

Fig. 12. The effect of changing the amplitude of the input when using the
xlat setup. The -10 dB point represents no signal (−∞ SNR) altered to fit
on the plot. “exp” stands for experimental results and “sim” for simulation.

was plotted as -10 dB for illustrative purposes), i.e. no signal
is transmitted. Yet, we see in Figure 11 that the recognition
accuracy is close to 100%. While, from Figure 12, we see that
we get an accuracy close to 1/7 for the same zero amplitude
once we don’t include oscillator leakage. This shows that our
network is using the oscillator leakage to identify transmitters
in the center setup. In Figure 11, we see that the center setup
has an almost constant accuracy. While in Figure 12, the
accuracy increases quickly and saturates. For comparison, a
simulation using a dynamic channel with the same setup as in
Section V was performed. For a fair comparison, the number
of transmitters was set to seven and SNR values were based
on those used in our experiment. The results are plotted in
Figure 11. From this Figure, we can see that the experimental
evaluation and simulations results are quite similar for the
random packets. However, the experimental results are better
for the same packet. Note that there are slight differences
between the input data in the simulations and the experiment.
First, the packet structure for experimental repeats every 1024
and for the simulation there is no such repetition within the
packet. Also, the simulation includes Rayleigh fading, while
during the experiment the USRPs were connected using a
wire. Overall, these results – to some extent – verify that
the nonlinearity models obtained from our generator and the
corresponding simulation results are comparable to the real
world measurements.

VII. CONCLUSION

This paper provides a comprehensive study of transmitter
identification based on RF nonlinearity fingerprints using deep
learning. A nonlinear model generator was developed by
statistically fitting multiple measured nonlinearity curves from
USRPs. Nonlinearity models obtained from this generator
were used to perform a comprehensive evaluation of the
performance of RF fingerprinting. Results showed that a con-
volutional neural network with the magnitude of the frequency
representation of the data gives the best performance. As
the number of transmitters increases or the variability of
nonlinearity decreases, the ability of our system to correctly
identify different transmitters decreases. As for data format,
same data packets outperform random data, while increasing
the length of the used capture steadily improves performance.
RF fingerprinting was shown to perform well under different
modulation techniques. Simulations under AWGN channels
gave better performance than dynamic channels. Experimental
results confirm the trends observed via simulation, which
shows the effectiveness of our model as well as the good per-
formance of our classifier under realistic channel impairments.
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