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Abstract—In this paper, we investigate joint power allocation
and splitting control in a SWIPT-enabled NOMA Systems applied
with power splitting technique, with an aim to optimize the
transmission rate and the total harvested energy simultaneously
whilst satisfying the minimum transmission rate and minimum
harvested energy of each user. These two conflicting objectives
make the formulated optimization problem a constrained multi-
objective optimization (MOO) problem, which is difficult to
solve. To deal with this, we define a new objective function by
summing the weighted values of the transmission rate achieved
by information decoding (ID) and the transformed throughput
from energy harvesting (EH) and transform the original MOO
problem into a single-objective optimization problem. To tackle
the formulated nonconvex problem, we decouple the optimization
problem into two convex subproblems and solve them iteratively.
Numerical results demonstrate that significant performance gain
can be achieved by adopting the proposed algorithm.

Index Terms—Non-orthogonal multiple access (NOMA), power
splitting, resource allocation, simultaneous wireless information
and power transfer (SWIPT).

I. INTRODUCTION

The rapid rise in traffic demands has driven the incentive

for the research and development of 5G [1], which will need

to deliver high spectral efficiency (SE) to pave the way for

future ultra high-rate applications and the Internet-of-Things

(IoT) era. Since the conventional orthogonal multiple access

(OMA) techniques are not able to meet the demand of higher

spectral efficiency, non-orthogonal multiple access (NOMA)

has emerged as a candidate for 5G networks for its superior SE

performance [2], [3]. In particular, Yuya Saito and Benjebbour

in [2] showed that overall cell throughput, cell-edge user

throughput, and the degree of proportional fairness of NOMA

are all superior to that for OMA. In [3], Chen et al. showed

that NOMA offered a better sum rate performance when

considering user fairness.

Meanwhile, 5G application scenarios such as automation

factory and smart city require long life battery to support

the demand of high data rate services. Simultaneous wireless

information and power transfer (SWIPT), a technique that

achieves the parallel transmission of information and energy

has emerged recently to prolong battery-comstrained com-

munication devices’ operation time. An information-theoretic

study on SWIPT was first investigated in [4]. Since the nodes

cannot harvest energy and receive/transmit information simul-

taneously in practice, two new receiver structures namely time

switching (TS) scheme and power splitting (PS) scheme were

developed [5]. Zhou et al. in [6] studied the weighted sum-rate

maximization problem in a multiuser orthogonal frequency

division multiplexing (OFDM) system that considered both TS

and PS scheme. The capacity maximization problem and the

harvested energy optimization problem have also been studied

in [7] and [8], respectively.

Due to the immense potential SWIPT and NOMA, the

combination of these two techniques has aroused great interest.

In [9], the proportional fairness was maximized for SWIPT

NOMA systems, where the harvest-then-transmit scheme was

adopted in the receiver side. Furthermore, the work in [10]

considered both proportional fairness improvement and data

rate per-user optimization for SWIPT NOMA systems. It was

demonstrated that the system performance could be signifi-

cantly improved through the integration of SWIPT and NO-

MA. In [11], a novel cooperative SWIPT NOMA protocol was

proposed in which near NOMA users that were close to the

source act as energy harvesting relays to help far NOMA users.

These previous literature on SWIPT-enabled NOMA systems

aim to maximize either harvested energy [8] or transmission

rate [9]–[11]. Because these two optimization objectives are

contradictory to each other, not only is the trade-off between

these two objectives a problem worth investigating, jointly

optimizing them can best exploit the available resource for

SWIPT NOMA systems.

The main difference of our work with the previous works

mentioned above is that we aim to maximize the transmission

rate and the total harvested energy simultaneously. In this

paper, we investigate joint power allocation and splitting

control under the constraints on the minimum transmission

rate and harvested energy of each user. To solve the proposed

multi-objective optimization (MOO) problem, we transform

the harvested power to throughput and reformulate the original

problem in to a single-objective optimization (SOO) problem

with weighted sum method. Then decouple the nonconvex

SOO problem into two convex subproblems that are easily

solved.



II. SYSTEM MODEL

We consider a downlink NOMA system with one base

station (BS) and N users. We assume that the instantaneous

channel state information (CSI) of each user is perfectly

known at the BS and the channel power gain is denoted by

|hn|2. Without loss of generality, the channel gains can be

sorted as |h1|2 ≤ |h2|2 ≤ · · · ≤ |hN |2.According to the

principle of NOMA [2], the transmit signal x can be expressed

as

x =
N
∑

n=1

√
p
n
xn, (1)

where xn, pn are respectively the message and assigned power

of user n. The transmitting power is limited by

N
∑

n=1

pn ≤ P. (2)

We assume that all the users are capable of harvesting en-

ergy from RF signals and perform SWIPT by applying PS

technique. Let ρn (0 ≤ ρn ≤ 1) denotes the fraction of

transmission power allocated to user n for ID. With successive

interference cancellation (SIC) operation, each user Ui will

detect and remove the message of Uj from its observed signal,

for all i > j [12]. With the power split to the information

receiver, the achievable transmission rate for user n can be

expressed as

RID
n = log2

(

1 +
ρn|hn|2pn

ρn|hn|2
∑N

i=n+1 pi + σ2

)

. (3)

And the harvested energy at the receiver of user n is given by

en = η(1− ρn)|hn|2
N
∑

n=1

pn, (4)

where η represents the energy conversion efficiency. Thus, the

total transmission rate and total harvested energy of the system

can be written as RID =
∑N

n=1 R
ID
n and E =

∑N

n=1 en.

III. PROBLEM FORMULATION

In this section, we formulate the equivalent-sum-rate (ESR)

maximization problem to maximize the total transmission rate

and the total harvested energy simultaneously in terms of

power allocation and splitting control. Besides, we consider

the minimum transmission rate and the minimum harvested

energy constraints of each user.

These two conflicting objectives, RID and E, make our

optimization problem a constrained MOO problem, which is

often solved by combining its multiple objectives into a single-

objective scalar function. This approach is in general known

as the weighted sum or scalarization method [13]. It can be

proved that the maximizer of this SOO is an efficient solution

for the original MOO [14], i.e., its image belongs to the Pareto

curve. However, the unit for RID is bit/s/Hz while the unit

for E is Watts, and hence it is inappropriate to directly sum

them up together. In practice, the harvested power is usually

stored in the battery and used to support the transmission in the

following time slots, i.e., uplink transmission. On the basis of

this, we transform the harvested energy into throughput using

Shannon formula and define a novel paradigm by summing

the weighted values of the transmission rate achieved by ID

and the transformed throughput from EH.

First, we define REH
n to represent the achievable rate that

transformed from the harvested energy of user n as

REH
n = log2(1 +

ζen

σ2
), (5)

where ζ denotes the efficiency converting from battery power

to RF, and the total data rates is REH =
∑N

n=1 R
EH
n . Then we

formulate the objective function of our optimization problem

as

R = RID + βREH , (6)

where β is the weight of REH and R is defined as the

equivalent-sum-rate of the system. It should be noted that both

RID and REH are non-decreasing with respect to the transmit

power, and given that we aim to maximize the ESR, the BS

is set to use the maximum power. Considering the minimum

transmission rate targets and the minimum transferred energy

demands, the ESR maximization problem can be mathemati-

cally formulated as follows

P1: max
p,ρ

R(p,ρ) (7a)

s.t. RID
n ≥ Rmin, ∀n = 1, 2, · · · , N, (7b)

en ≥ Emin, ∀n = 1, 2, · · · , N, (7c)

N
∑

n=1

pn = P, (7d)

p > 0, (7e)

0 < ρ < 1, (7f)

where p = (p1, p2, · · · , pN )T , ρ = (ρ1, ρ2, · · · , ρN )T , Rmin

and Emin are the minimum transmission rate requirements and

the minimum harvested energy requirements, respectively.

The considered ESR maximization problem, with joint

power allocation and splitting control in the presence of inter-

user interference, is non-convex. The solution is therefore

non-trivial and cannot be obtained directly. It is obvious that

this exhaustive search method incurs intensive computational

complexity in the number of users. As a result, an efficient

resource allocation strategy are developed by decomposing

the optimization problem into two subproblems and solve

iteratively.

IV. ITERATIVE RESOURCE ALLOCATION SCHEME

In this section, we first decompose the optimization problem

into two subproblems, one of which is optimizing p with fixed

ρ and the other is optimizing ρ with fixed p, and then we

propose a suboptimal resource allocation algorithm by solving

them iteratively .

A. Optimal PS Ratio

To find the optimal PS ratio with fixed power allocation, the

corresponding subproblem can be mathematically formulated



as follows

P2: max
ρ

R(ρ) (8a)

s.t. (7b)(7c)(7f). (8b)

The Hessian matrix of R(ρ) can be given as

d2R(ρ)

dρ2
=















d2R(ρ)
dρ2

1

0 · · · 0

0 d2R(ρ)
dρ2

2

· · · 0

...
...

. . .
...

0 0 · · · d2R(ρ)
dρ2

N















, (9)

It is easy to calculate that
d2R(ρ)
dρ2

n
< 0, ∀n = 1, 2, · · · , N ,

which reveals
d2R(ρ)
dρ2 is a negative semi-definite matrix and

thus R(ρ) is a concave function with respect to ρ. Here we

rewrite the objective function as

R =
N
∑

n=1

RID
n + β

N
∑

n=1

REH
n

=

N
∑

n=1

(RID
n + βREH

n ) =

N
∑

n=1

Rn,

(10)

where Rn = RID
n +βREH

n denotes the equivalent-data-rate of

user n. Since
d2R(ρ)
dρidρj

= 0, ∀ i 6= j, the PS ratios of users are

independent of each other, the maximization of ESR for all

the users is equivalent to the maximization of the individual

equivalent-data-rate of each user. Consequently, problem P2

can be divided into N parallel subproblems which can be

solved using the same solution. Based on this observation,

we propose an efficient algorithm to solve this problem. We

individually maximize Rn(ρn) subject to the constraints of

each user, and then unify a solution set from all subproblems.

Generally, the subproblems of P2 are given as follows

P3: max
ρn,n=1,2,··· ,N

Rn(ρn) (11a)

s.t. (7b)(7c)(7f). (11b)

Since
d2R(ρ)
dρ2

n
< 0, Rn is strictly concave with respect to ρn. It

means that there is an unique root of the equation
dR(ρn)
dρn

= 0
to maximize Rn, which is detailed expressed as

dR(ρn)

dρn
=

|hn|2pnσ2

ln2(ρn|hn|2
N
∑

i=n

pi + σ2)(ρn|hn|2
N
∑

i=n+1

pi + σ2)

+
−βη|hn|2P

ln2(η(1− ρn)|hn|2P + σ2)
= 0.

(12)

We denote the root as ρ̂. According to the constraints (11b),

the value of ρn should be limited as

ρmin
n ≤ ρn ≤ ρmax

n , (13)

where ρmin
n = (2Rmin−1)σ2

|hn|2pn−(2Rmin−1)|hn|2
∑

N
i=n+1

pi
> 0 ensures

that the power split to ID can meet the user’s minimum rate

requirement, and ρmax
n = 1− Emin

η|hn|2P
< 1 ensures the power

fed to EH is able to satisfy the minimum harvested energy

requirement. To meet the QoS requirements, the optimal PS

ratio of user n is finally given by

ρ∗n =















ρmin
n , ρ̂n < ρmin

n

ρ̂n, ρmin
n ≤ ρ̂n ≤ ρmax

n

ρmax
n , ρ̂n > ρmax

n

. (14)

Thus the optimal solution of is P2 is ρ∗ = (ρ∗1, ρ
∗
2, · · · , ρ∗N )T .

B. Optimal Power Allocation

With fixed PS ratios, the corresponding subproblem to find

an efficient power allocation algorithm can be mathematically

formulated as

P4: max
p

R(p) (15a)

s.t. (7b)(7d)(7e). (15b)

To solve the above problem, a relationship between R(p) and

p is derived as in the following proposition.

Proposition I. With fixed transmit power and PS ratios, the

objective function of problem P4 is a concave function with

respect to p if and only if ρ1|h1|2 ≤ ρ2|h2|2 ≤ · · · ≤ ρN |hN |2.

Proof: The proof can be obtained by proving the Hessian

matrix of R(p) is negative semi-definite, which is omitted due

to space limitation.

Here we assume ρ1|h1|2 < ρ2|h2|2 < · · · < ρN |hN |2,

and then the objective function of P4 is concave according

to Proposition I. As the result, problem P4 is convex since

(7b) is convex and (7d), (7e) are linear, which means it can

be solved by standard numerical methods such as interior

point method. Although the convex programming approach is

numerically stable, its computational complexity depends on

the number of optimizing variables, which can be problematic

if the number of users is large. To reduce the complexity,

we use Lagrange dual decomposition method which is more

efficient. The Lagrangian function is given by

L(p,λ, µ) = −R(p) +

N
∑

n=1

λnfn + µh, (16)

where λ is the Lagrange multiplier vector with elements λn ≥
0 corresponds to the constraints in (7b), µ ≥ 0 is the Lagrange

multiplier corresponds to the constraint (7d). And

fn = Rmin − log2

(

1 +
ρn|hn|2pn

ρn|hn|2
∑N

i=n+1 pi + σ2

)

, (17)

h =
N
∑

n=1

pn − P. (18)

The Karush-Kuhn-Tucker (KKT) conditions of problem P4 is

given by

dL(p,λ, µ)
dpn

= 0, ∀n = 1, 2, · · · , N, (19a)

λnfn = 0, fn ≤ 0, λn ≥ 0, ∀n = 1, 2, · · · , N, (19b)

µh = 0, h = 0, µ ≥ 0 (19c)



and for a given user n̄,
dL(p,λ,µ)

dpn̄
is detailed as (20) in the next

page.

According to (19a), we obtain
dL(p,λ,µ)

dpn
− dL(p,λ,µ)

dpn−1
= 0,

which is analyzed in (21) in the next page. And then we have

λn−1ρn−1|hn−1|2

ln2(ρn−1|hn−1|2
N
∑

i=n−1

pi + σ2)

− λnρn|hn|2

ln2(ρn|hn|2
N
∑

i=n

pi + σ2)

=
ρn|hn|2

ln2(ρn|hn|2
N
∑

i=n

pi + σ2)

− ρn−1|hn−1|2

ln2(ρn−1|hn−1|2
N
∑

i=n

pi + σ2)

> 0.
(22)

With ρ1|h1|2 < ρ2|h2|2 < · · · < ρN |hN |2, it is easy to

obtain λn > 0 when n = 1, 2, · · · , N−1. This reveals that the

constraints in (7b) hold with equality for n = 1, 2, · · · , N−1.

With λN > 0, fN must be 0. In this case, all the users’

achievable transmission rates are just satisfy the minimum

QoS requirements. Thus, we can calculate the total power

consumption, denoted as Pmin, which indicates the minimum

power that satisfies all users’ QoS requirements. We suppose

P ≥ Pmin in this work for a practical configuration. With

λN = 0, fN can be negative, it indicates that the achievable

transmission rate of the user with best channel gain can further

improve under the premise of meeting the minimum rate

requirements.

For the case that P = Pmin, to obtain the optimal power

allocation, we only need to set RID
n = Rmin for all the

users, and pn can be sequentially determined in the order

n = N,N − 1, · · · , 1.

For the case that P > Pmin, the constraints in (7b) hold

with equality for n = 1, 2, · · · , N − 1 except n = N . Hence,

the BS transmits to user with best channel condition using the

remaining power P −∑N−1
i=1 pi. Therefore, we can conclude

the optimal power allocation solution for problem P4 as














pn = 2Rmin−1
2Rmin

(P −
n−1
∑

i=1

pi +
σ2

ρn|hn|2
), n = 1, 2, · · · , N − 1

pN = P −
N−1
∑

n=1
pn

.

(23)

The proposed power allocation scheme indicates that more

resources are allocated to the user with best channel condition

in order to further improve the system, and similar results are

observed in the conventional NOMA systems [15].

C. Joint Optimization of Power Allocation and PS Ratio

The joint optimization of power allocation and power s-

plitting ratios leads our problem non-convex and it is very

challenging to solve. But on the basis that the objective

function is concave on p and ρ respectively, we are able to

find the suboptimal solution by solving the two subproblems

iteratively, as described below.

Begin with finding the optimal PS ratios, we first initial the

PS ratios with same value and determine the power allocation

according to (23). With fixed p, we can get the optimal PS

ratios with (12) and (14). Before going on the next step to find

TABLE I: The proposed suboptimal resource allocation algorithm

I. Initial the PS ratio ρ(1), 0 < ρ
(1)
1 = · · · = ρ

(1)
N < 1, set

R
(1)
ρ = NRmin + βN log2(1 +

ζEmin

σ2 ), δ = 10−5 as

the maximum tolerance;

II. Solve the problem P4 using (23) with ρ(1), record the

power allocation as p(1), ESR as R
(1)
p ;

III.REPEAT

Solve the problem P3 using (12)(14) with p(t−1),

record the PS ratio as ρ(t), ESR R
(t)
ρ , reorder ρ∗n|hn|2

in the ascending order;

IF R
(t)
ρ −R

(t−1)
p > δ:

Solve the problem P4 using (23) with ρ(t), record

the power allocation as p(t), ESR as R
(t)
p ;

IF R
(t)
p −R

(t)
ρ > δ:

Convergence = FALSE;

ELSE

Convergence = TRUE;

RETURN p∗ = p(t−1), ρ(∗) = ρ(t), R∗ = R
(t)
ρ ;

END

ELSE

Convergence = TRUE;

RETURN p∗ = p(t−1), ρ(∗) = ρ(t−1), R∗ = R
(t−1)
p ;

END

UNTIL Convergence = TRUE.

the optimal power allocation scheme, we multiply the optimal

PS ratios with the corresponding channel gains and reordering

them in the ascending order, so that the optimization scheme

we propose for subproblem P4 can be feasible. The two

subproblems will be solved iteratively until the ERS converges.

The complete algorithm is summarized in Table I.

V. SIMULATION RESULTS AND DISCUSSION

In this section, simulation results are provided in order

to validate the performance of the proposed MOO model

and algorithm in the SWIPT-enabled NOMA system. It is

assumed that there are 6 users uniformly-distributed in the

coverage area of BS. All the results are obtained from various

random locations of the users with identical and independent

Rayleigh block fading channels and Log-Normal shadowing

with standard deviation of 8 dB. For the path loss, we here

apply the generic channel model where the path-loss is given

by (d0

d
)υ . Particularly, d and d0 are respectively representing

the distance between the transmitter and the receiver and

the reference distance, and the path-loss exponent υ is set

to 2.5. In addition, the EH efficiency η and conversion

efficiency ζ are set to be 10%, and the preference coefficient

(combining weights) β is set to 0.1. In order to guarantee

QoS requirements for each user, the minimum transmission

rate constraint per user is set to 2 bit/s/Hz, and the minimum

harvested energy per user is set to 0.1 W. Note that, in all

our simulations, if any user whose rate or harvested energy

does not meet the requirements, the ESR is set to zero.



dL(p,λ, µ)
dpn̄

=
n̄−1
∑

n=1

λn

ρ2n|hn|4pn

ln2(ρn|hn|2
N
∑

i=n

pi + σ2)(ρn|hn|2
N
∑

i=n+1

pi + σ2)

− λn̄

ρn̄|hn̄|2

ln2(ρn̄|hn̄|2
N
∑

i=n̄

pi + σ2)

−
n̄−1
∑

n=1

(

ρn+1|hn+1|2

ln2(ρn+1|hn+1|2
N
∑

i=n+1

pi + σ2)

− ρn|hn|2

ln2(ρn|hn|2
N
∑

i=n+1

pi + σ2)

)

− ρ1|h1|2

ln2(ρ1|h1|2
N
∑

i=1

pi + σ2)

+ µ.

(20)

dL(p,λ, µ)
dpn

− dL(p,λ, µ)
dpn−1

=
ρn−1|hn−1|2

ln2(ρn−1|hn−1|2
N
∑

i=n

pi + σ2)

− ρn|hn|2

ln2(ρn|hn|2
N
∑

i=n

pi + σ2)

+
λn−1ρn−1|hn−1|2

ln2(ρn−1|hn−1|2
N
∑

i=n−1

pi + σ2)

− λnρn|hn|2

ln2(ρn|hn|2
N
∑

i=n

pi + σ2)

.

(21)
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Fig. 1: ESR versus total transmit power.

Fig. 1 shows the ESR versus the total transmit power of

the BS. It explicit that the performance of SWIPT-enabled

NOMA system becomes better with more transmit power

is provided. In order to depict the performance gain of the

proposed MOO model, we compare it with the SOO problem

which only maximizes the total transmission rate under the

same constraints condition. It has been shown in Fig.1 that

the gains in terms of ESR that our proposed MOO model

can offer compared to the algorithm that only considers the

optimization of transmission rate are greater. Thus, it is clear

that the simultaneous maximization of total transmission

rate and harvested energy can get a more effective resource

allocation scheme.

We next analyse the impact of the number of users to the

maximum equivalent-sum-rate. In Fig. 2, the number of users

is set to 4, 5 and 6. As Fig. 2 shows, the ESR increases with

the number of users when the total transmit power is large

Total transmit power(W)

30 35 40 45 50

E
S

R
(b

it
/s

/H
z
)

0

4

8

12

16

20

K=4

K=5

K=6

Fig. 2: ESR versus total transmit power with different number of
users.

enough. This is because a higher diversity gain is offered

when more users are served simultaneously. But with small P,

ESR becomes zero as K increases. The reason is the limited

power can not meet the QoS requirements of all users when

the number of uses is too large. It makes no sense to improve

the total performance of the system with individual’s QoS

requirements can not be guaranteed.

In the next simulations, we respectively analyse the impact

of the minimum transmission rate and minimum harvested

energy requirements to ESR with different number of users.

To satisfy higher QoS requirements, here the power budget

is set to P = 60W . As it can be seen from Fig. 3 and

Fig. 4, with fixed number of users, the ESR remains nearly

unchanged up to a particular minimum transmission rate

and harvested energy constraints, but decreases thereafter. It

is because more resource need to be allocated to the users

with poor channel condition so as to meet the increasing
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Fig. 3: ESR versus minimum transmission rate requirement with
different number of users.
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Fig. 4: ESR versus minimum harvested energy requirement with
different number of users.

QoS requirements, thus degrades the overall performance of

the system. Taking the number of users into consideration,

the maximum equivalent-sum-rate is increasing with the

number of users under the same QoS requirements, and this

improvement becomes smaller with increasing users. With

the limited transmit power at the BS, although more users

can enhance the total ESR, meeting the QoS requirements

of all the users will increase the burden of the system. It is

obvious that the more users, the more quickly ESR reduces

when Rmin improves.

VI. CONCLUSION

This paper investigates the joint optimization of the con-

flicting objectives on total transmission rate and harvested

energy for SWIPT-enabled NOMA systems. By considering

the reverse link capacity as a function of harvested energy and

introduce a weighted coefficient, we transform the constrained

MOO problem to a SOO problem. This non-convex problem

is solved by decoupling into two sub-problems with iterative

solution. From the simulation results, the ESR increases with

more transmit power, and there is a minimum power to meet

all the users’ QoS requirements. More importantly, compared

to the optimization only respect of transmission rate, it has

shown that significant performance gain can be achieved by

considering both transmission rate and harvested energy simul-

taneously. Furthermore, the QoS requirements of individual

users and the number of users have substantial impact on the

system’s ESR.
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