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Abstract—The spread of the COVID-19 pandemic, quickly
became a public health crisis which acted on many levels. The
most challenging one of these was the sudden unavailability of
protective gear and a complete lack of testing capacity.

Although availability of masks and protective equipment has
improved in the last few months, the testing capacity still remains
a limited resource for most countries. One mitigation strategy for
addressing the scarcity of tests is to pool biological samples in a
single test, as demonstrated by the Frankfurt Goethe University.

In this paper we add to the body of knowledge on the problem
of optimizing the pooled testing strategy by optimizing a multi-
stage adaptive testing scenario using an evolutionary algorithm.
We also propose a generic framework by which optimisations can
be advanced even further and will help to massively increase the
testing capacity for stopping the current pandemic.

Index Terms—optimisation, pandemic, genetic algorithm, ma-
chine learning

I. INTRODUCTION

The current COVID-19 pandemic has been extensively
written about and does not need any formal introduction.
The initial stages of the outbreak was marked by a sudden
unavailability of tests for detecting the infected patients. At the
same time, the WHO Director-General famously exclaimed:

”We have a simple message for all countries: test, test, test.”
[1]

The scope of this statement is to highlight that a crucial part
of the public health response to this new threat is to rapidly
diagnose and isolate infected individuals to prevent further
spreading. Recent reports suggest that between 10% and 30%
of SARS-CoV-2 infected patients are asymptomatic while both
asymptomatic and presymptomatic subjects can spread the
disease [2]. Therefore, increasing the testing capacity, is a key
strategy for facing this public health emergency.

The main diagnostic test that has been implemented world-
wide to confirm the infection by this novel coronavirus is
the real-time reverse transcriptase-polymerase chain reaction
(RT-PCR) from respiratory samples with satisfactory levels of
sensibility and specificity [3].

A major bottleneck of managing the pandemic through
diagnostic testing is the limited laboratory capabilities as
well as limited access to genome-extraction and Polymerase
Chain Reaction (PCR) reagents. Furthermore, these tests are
primarily performed on symptomatic patients, hence, there is
an urgent need to increase diagnostic testing capabilities in

order to allow screening of asymptomatic populations which
contribute to disease spread.

Recent experiments [4], [5] suggest that the group testing
paradigm holds for SARSCoV-2, the virus that causes the
disease COVID-19; that is, pools of samples with just one
positive sample and many negative samples do indeed produce
positive results.

In light of these, it becomes thus prudent to explore how
to optimize the implementation of it in the healthcare setting.
Therefore, the aim of this study is to provide an optimisation
framework based on evolutionary algorithms for tuning how
to best perform a pooled test.

II. POOLED TESTING

Research conducted at [4] and [5] resulted in the devel-
opment of a procedure that makes it possible to increase
worldwide testing capacities for detecting SARS-CoV-2 by
combining multiple test samples in the same test.

It works by combining swab samples from mucous mem-
branes of the throat or nose in a common buffer solution,
and subsequently testing it using what is known as the PCR
procedure (polymerase chain reaction procedure) [6].

When a test result is negative, all pooled samples have a
reliable negative result. The pool testing has no influence on
the detection limit, which means that (even) a single positive
sample will always make the whole pool test positive as the
result is independent on a detection threshold which might get
diluted by using multiple samples.

Currently the maximum known number of samples in a
single test seems to be 32 [7]–[9].

III. TYPES OF STRATEGIES TESTING POOLED TESTING

Before going into more details, we need to differentiate
between two generic approaches regarding the way the prob-
lem is formulated. The first approach assumes all tests are
designed in advance and can be carried out in parallel, named
nonadaptive testing [10].

On the other hand, adaptive testing consists of approaches
where each test result is examined before the next test pool is
chosen (i.e. how you do the second stage of a test, depends
on knowing the results on the first stage).

Note that for nonadaptive testing, a result of [11] suggests
that the optimal strategy where we want zero-error probability
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is the individual testing one (where you test all patients one
at a time). This implies that the path for making fewer tests
than the overall number of patients lies in the adaptive testing
domain.

At the same time, adaptive testing has the disadvantage that
one must wait for the full chain of tests to finish in order to
have a definite conclusion. This means that for a K-staged
test, where the result of a stage is known in time t, the test
results would be known after K ∗ t (i.e. the tests must be
performed one at a time, and the results will be known after a
long time). If the number K (which determines the total time
for results to be known) is unbounded, the best known scheme
is a generalized binary splitting scheme studied by [12].

Based on the above discussions, we have focused in this
paper on optimising a adaptive testing strategy, with a small
number of stages (K).

IV. RELATED WORK

Several approaches for optimizing the testing capacity
through test pooling have been published recently.

The authors of [13] propose a mathematical model based
on the binomial expression of pooling samples that have
independent probabilities of the results. Thus, they calculate
that on a nonadaptive setting, and using only a pooled step
followed by individual test, the global optimum pool size,
regardless of the number of subjects tested is 4, but only up to
an infection rate of 0.3 after which their model breaks down.

In [14] the authors propose a two stage pooling strategy
where the first stage consists of splitting the full population
into r disjoint groups to be tested all at once, and then testing
individually all the members of positive groups. This strategy
is also known as Dorfman’s algorithm.

Bernoulli selection is studied in [15], [16] where an indi-
vidual is selected for inclusion in any given test of a K-staged
strategy with a random uniform probability 1

p∗n . Note that
when K = 2 they demonstrated that using this strategy the
total number of tests required is

T ∼ np(eln
p

1− p
+ 1)

.
The constant tests-per-item strategy is studied in [17] where

individuals are split in as many groups required so as each
appears in exactly r number of groups. Each group is pool
tested. They show that this strategy is optimal for nonadaptive
settings where the number of infected individuals is fixed (but
this, unfortunately, is not the case for COVID-19).

Other works such as [17]–[19] discuss the usage of double
constant designs in the context of COVID-19 pooled testing,
where each individual is tested r times in groups that are
exactly s in size (i.e. designs having two constant parameters:
the number of duplicated tests, the size of a group).

V. METHODOLOGY

As most of the relevant work in this area, we use a
similar model for posing the pooling problem: the number
of individuals n is large; the prevalence p is constant and

represents the probability of an individual to be infected; we
assume all infections are independent; we wish to reduce the
average-case number of tests T; and we want to be certain
that each individual is correctly classified (the ‘zero-error’
paradigm).

We will define a sequence of parametric Commands (dis-
cussed bellow) and define the term Algo to denote a fixed
sequence of such Commands and their parameters.

Our aim is, given p and n, finding the best Algo that
minimises T our target metric. We use a genetic algorithm
[20] implementation for this purpose that is evaluated against
1000 Monte Carlo simulation [21] results.

A. Commands

Equal Split (ES) is a command that takes one parameter s
and partitions all the individuals into disjoint groups of size
s. Using only the Equal Split once, followed by the Stop
command retrieves Dorfman’s algorithm.

The Shuffle (SH) command takes one parameter, s, and
denotes the operation of permutation of individuals still sus-
pected to be positive at a certain time. Specifically it partitions
the individuals into groups of size s and then permutes the
groups themselves (when s = 1, this operation represents a
plain permutation). If this command is positioned between two
testing stages it provides a behavior similar to constant tests-
per item strategy (although in a multi-step fashion) and allows
one individual’s results to be uncorrelated from its neighbours.

Stop (ST) is a command which marks the end of the Algo
it is always interpreted as to execute a ”test-all-remaining-
individuals” that have not been excluded as negatives.

B. Genetic Algorithm

We optimize (minimize) the problem by means of a genetic
algorithm (GA) [20] where the DNA is a binary encoding of
the commands for a single Algo.

We have used a population size of 100 individuals in each
generation. The fitness function of each individual is the
estimated expected number of tests that such an individual
will require, on average, to find all the positive individuals.

The evolution of the algorithm, from one generation to the
next one uses the following strategies (we remind our readers
that a GA has three main phases: selection, crossover and
mutation):

For the selection phase we use:
• elitism selection [22] - where we select the top 10% of

the individuals sorted by fitness score
• proportional selection [23] - where we select 20% of total

required individuals by random sampling, and where each
individual has a probability of being sampled proportional
to its distance from the best fitness score from that
generation

• tournament selection [24] - where we select the remaining
70% of individuals by building random pairs and taking
the best individual from each

For the crossover step we we use a single-point crossover
strategy [25].
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For the mutation we use uniform mutation [26] with a
mutation chance of 0.5% per bit.

C. Fitness function

A single individual is evaluated against 1000 Monte Carlo
simulation [21] results.

The procedure is as follows:
• generate a unit case - a random n sized binary vector is

generated with 1 elements (positive samples) randomly
chosen with a p probability (and subsequently, 0 elements
with 1− p probability).

• decode the Algo from the DNA of the current individual
and execute it against the unit case

• compute the partial fitness as the number of tests needed
to be done under the given context (unit case, individual)

• repeat this procedure 1000 times and aggregate all the
fitness values by averaging them

D. On using brute-force

Since the total size of the DNA does not exceed 50 bits
it might be conceivable that the best Algo can be found by
mere brute-force. This is though unfeasible for the following
reasons:

• The expected value (fitness value) of a single unique Algo
(represented by a unique binary DNA encoding) requires
1000 (rather slow) simulations.

• We have limited this research to only three commands but
we aim towards an extensible framework that can sustain
in the future additional commands. This will make the
DNA be larger than 50 bits.

VI. RESULTS

We have ran the optimisation on two settings, one conser-
vative where the maximum pool size is 16 samples per group,
and the other one ambitious where the maximum pool size is
32. As we have noted before [7]–[9] suggest that the maximum
known number of samples in a single test seems to be 32 (thus
the name ambitious).

In [17] the authors show that above

p ≥ 3−√
5

2
= 0.382

, the individual testing strategy is the best strategy possible,
and this number is 0.307 for any two-stage strategy. As such,
we have not tried to optimize above 0.3 given that all our
Algos will have at least two stages.

Figure 1 present the result of the optimisation for the
conservative case. As stated before, the main usage of pooled
testing strategies is mass testing for quickly finding and
isolating the asymptomatic carriers (which are still infections).
But since most patients exhibit symptoms in 3 to 5 days after
their infection (at which point they can be identified clinically),
we believe that the maximum feasible test-to-result interval is
24 hours. The Shuffle command is not bound to a PCR test so
it can be considered instantaneous. Currently, a PCR result can
be obtained in roughly six hours so we can afford a maximum

Fig. 1. Optimum Algo to use, given the prevalence p on a pool size of
maximum 16 samples. The Algos have been bound to a maximum of three
adaptive test stages.

Fig. 2. Optimum Algo to use, given the prevalence p on a pool size of
maximum 32 samples. The Algos have been bound to a maximum of test 3
adaptive test stages.

of four testing stages (through the commands Equal Splits and
Stop). As such, we have limited the number of adaptive testing
steps (i.e. Equal Splits) to three. Note that all Algos end in Stop
which is a ”test-all-remaining” individuals. This is required
because we need to ensure that we have a ”zero-error” result
at the end.

We can see that for an infection rate of 1% our strategy
allows a 9x decrease in tests needed. Up to 10% infection
rate all scenarios benefit from the Shuffle command which
reinforces the claims of [17] on constant test-per-item being
superior to Dorfman’s algorithm. Between 20% and 30%
infection rate all strategies are of type Dorfman although the
gains are marginal. Our experiments also confirm the 30%
infection limit above which individual testing should be the
desired strategy to pursue.

Figure 2 present the result of the optimisation for the
ambitious case. We note that the advantage of having a larger
pool size is only beneficial up to an infection rate of p ≤ 2%
after which strategies on both settings largely converge to the
same solutions.

In general, we also note that the Shuffle command should
not be done on a per-group basis but at individual level, since
strategies that only differ (between the two tables) by having
different parameters of the Shuffle command, yield roughly
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Fig. 3. Optimisation results when using only the Equal split command. The cell values show the size s of groups for each stage. Two max pools sizes are
shown: 16, 32. The Algo has a limit on a maximum 4 testing stages. Infections rate date from May 2020.

the same outcome. This shows that the shuffling operation is
important and not the size of the grouping before shuffling.

Figure 3 shows the results on real-world contexts where we
have restricted (for simplicity) the Shuffle and Stop commands.
It contains optimal strategies and expected outcomes for both
16 and 32 maximum pool sizes, as well as a 4 step strategy
and a 2 step strategy for each context. Our 2 step strategies
converge with the results presented by the authors of [13].

VII. CONCLUSIONS

In order to increase the capacity of COVID-19 testing we
have published through this work, optimized adaptive testing
strategies modeled as a sequence of parametric commands,
specific to different known infection ratios. These commands
were engineered as to allow modeling of most known strate-
gies published up to this point with the hope of possibly
finding better derivatives of these.

We have also optimized the problem on a few real-world
contexts so that practitioners could adopt them immediately.

The results shown here (to the best of our knowledge) are
the first to compute a (practically bounded) multi-stage pooled
test scenario that goes beyond two testing stages while also
providing solutions for the optimal length of the stages them-
selves. Previous research on adaptive pooled testing strategies
in the COVID-19 context, was aimed at having a fixed number
of either one or two stages. Fixing the number of stages leads
to sub-optimal results when used on different infection ratios
so optimising on this dimension as well is critical for obtaining
better results. The biggest disadvantage of having multiple
stages is a substantial increase in the time required for a testing
strategy to be completed.

Our main contribution is modeling the problem as a se-
quence of steps that need to be optimized for the pooled testing
problem and present an evolutionary framework by which this
can be achieved. This opens the door to creating additional
commands and allow for tuning the fitness function to also
take into account other factors by which to optimize (e.g. total
test time of strategy, complexity of operations, etc..). All of
these should warrant further research.
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