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ABSTRACT: 

The detection of gravitational waves is considered to be one of the most magnificent 

discoveries of the century. Due to the high computational cost of matched filtering pipeline, 

there is a hunt for an alternative powerful system. I present, for the first time, the use of 1D 

residual neural network for detection of gravitational waves. Residual networks have 

transformed many fields like image classification, face recognition and object detection with 

their robust structure. With increase in sensitivity of LIGO detectors we expect many more 

sources of gravitational waves in the universe to be detected. However, deep learning 

networks are trained only once. When used for classification task, deep neural networks are 

trained to predict only a fixed number of classes. Therefore, when a new type of gravitational 

wave is to be detected, this turns out to be a drawback of deep learning. Shallow neural 

networks can be used to learn data with simple patterns but fail to give good results with 

increase in complexity of data. Remodelling the neural network with detection of each new 

type of GW is highly infeasible. In this letter, I also discuss ways to reduce the time required 

to adapt to such changes in detection of gravitational waves for deep learning methods. 

Primarily, I aim to create a custom residual neural network for 1-dimensional time series 

inputs, which can learn a ton of features from dataset without giving up on increasing the 

number of classes or increasing the complexity of data. I use the two class of binary 

coalescence signals (Binary Black Hole Merger and Binary Neutron Star Merger signals) 

detected by LIGO to check the performance of residual structure on gravitational waves 

detection. 
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INTRODUCTION: 

The term “gravitational wave” was coined by Einstein in the year 1916, in his general theory 

of relativity. After almost 100 years, Laser Interferometer Gravitational-Wave Observatory 

(LIGO) detected gravitational waves at their Livingston and Hanford detectors. They bagged 

Nobel Prize for this amazing discovery which opened new doors to our quest of unlocking 

the yet unknown secrets of the universe. For confirming the detections, LIGO uses matched 

filtering techniques which are computationally very expensive and also time consuming. 

Therefore, many researchers have turned towards deep learning for making a better system 

for this purpose that can make rapid predictions which are necessary especially when GW 

signals are followed by their electromagnetic counterparts. In 2015, GW150914 [1] was the 

first confirmed gravitational wave event that originated from merger of two black holes more 

than a billion light years away. Two years later, in 2017, BNS mergers were discovered as a 

new source of gravitational waves in the universe through the GW170817 [2] event. Another 

suspected source of gravitational waves are Core-Collapse Supernova (CCSN) events. With 

increase in sensitivity of LIGO detectors we can expect many different types of sources of 

gravitational waves to be discovered leading to various GW signal patterns and more classes 

of GW required to be classified by systems confirming detections. A neural network is 

trained only once and after it is trained, it can predict results for any input time series in just 

seconds. But what happens when we have an entirely new type of GW data coming up like 

CCSN when our model is trained to predict only BBH and BNS merger signals? In this work, 

I explore advanced deep learning techniques to tackle this issue. At first, we need a deep 

neural network which is able to learn various types of gravitational wave signals accurately 

without facing the need to change structure of the neural network with increase in number of 

classes or complexity of gravitational waves pattern. This is required because designing and 

training a deep neural network from scratch is a very time-consuming process and hence it is 

not convenient to be done at the time of confirming detection. To create such robust network, 

we need to go deeper by stacking many convolutional layers to increase the complexity of 

network so that it can sustain large amount of data and a ton of new features. To prevent 

depth from degrading neural network’s performance, I use residual connections.              

Deep Residual Learning Framework, popularly known as ResNet, was introduced in 2016 by  

He et al. [3]. What makes it different from traditional deep learning models are skip 

connections. Skip connections or shortcut connections are those skipping one or more layers 

and are basic building blocks of ResNet. However, it is made for 2-dimensional data like 

images. Our data is 1-dimensional time series vectors. I create a 1D Custom Residual CNN 

for classification of gravitational waves which takes as input raw time series data and 

provides probabilities that the time series belongs to a specific class as the output. To see how 

well residual connections can detect gravitational waves, I train my neural network on signals 

belonging to the two compact binary coalescence classes detected by LIGO till date, with 

high probability – BBH merger and BNS merger. The second step would be Transfer 

Learning. There has been a lot of hype around it in the machine learning community due to 

it’s amazing results. Transfer Learning is a technique in which knowledge gained after 

learning a task is used for learning a relevant task. It can also be applied to gravitational 

waves. In this paper, I present the details and results of my custom deep residual network and 

only hypothesize how application of transfer learning can be beneficial as the next step. 

Transfer learning can be done by initializing the neural network with weights of the 

pretrained network and then training it (in our case pretrained network is the one trained on 



BBH and BNS class). This initialization gives higher accuracy and reduces training time in 

most of the cases. Hence, it is much better than training the network from scratch. In this 

way, we can considerably reduce the time required for making existing deep learning systems 

compatible for detecting the new types of gravitational waves. 

 

DATASET: 

The pool of LIGO confident detections [1,2,4–10] contain gravitational wave signals 

originating from merger of two black holes and merger of two neutron stars. With this reason, 

I confine my dataset labels to three categories:  

1. Noise 

2. BBH Merger Signals 

3. BNS Merger Signals 

The dataset is generated using LALSuite library by LIGO. To simulate BBH merger signals, I 

use IMRPhenomD-type waveform which models inspiral, merger and ringdown components 

of the binary coalescence. The range of component masses for BBH signals is chosen as 5M⊙ 

to 50M⊙ incremented in steps of 1M⊙ for training and validation dataset and in steps of     

0.5 M⊙ for the test dataset. The training and validation set contains signals with only even 

SNR in range 2 to 20 whereas test set contains all SNRs (even and odd both) in range 2 to 24. 

The reason for this is, in real world scenario, there can be detections with masses and SNR 

different from the training and validation set. To test my network’s generalization, the test set 

parameters are chosen to be completely different from the data used for training the model. 

The spin of each black hole is considered to be zero. The templates are also replicated over a 

few different realizations of noise. While simulating BNS merger signals, one more 

parameter is to be considered – Tidal Deformability. The tidal deformability is the measure of 

deformation of a body caused by tidal fields which are generated when two massive objects 

orbit each other. For computing tidal deformability, I use APR equation of state [11]. The 

tidal deformability of black holes is zero. The BNS merger templates are generated using 

PhenomPNRT waveform model with component masses between 1M⊙ to 2M⊙ sampled in 

steps of 0.02 M⊙ for training and validation set and in steps of 0.01M⊙ for the test set. The 

SNR range for BNS signals is chosen to be 6 to 36 for training and validation set. The signals 

are sampled at 4096 Hz and signal duration is chosen to be 10s. The waveforms are scaled 

according to optimal SNR and injected to noise. The signals are then whitened with 

Advanced LIGO’s power spectral density (PSD) and highpassed at 20 Hz. The training and 

validation set contain 59671 and 5189 time series respectively. Both of them have 

approximately equal fractions of each class of data. The figures Figure 1 and Figure 2 show 

input time series examples. 



 
Figure 1: BBH merger signal injected in noise with optimal SNR = 8 is shown in pale 

turquoise. The component masses of the black holes are 35M⊙ and 25M⊙ for violet noise-

free BBH waveform. The signal in pale turquoise is an example of input to my neural 

network. 

 
Figure 2: BNS gravitational waves noise-free timeseries with component masses 1.8M⊙ 

and 1.2M⊙ is shown in purple. The signal in pale turquoise represents the timeseries 

obtained after injecting the signal in violet to noise with optimal SNR = 10 and whitening. 

 

ARCHITECTURE: 

The basic layers in the neural network are convolution, batch normalization, max pooling, 

average pooling, dropout and dense fully connected layers. I represent the 1-dimensional 

convolution layer as CONV1D(filters, kernel_size), max pooling layer as 

MAXPOOL(pool_size) and average pooling layer as AVERAGEPOOL(pool_size). The 

residual network is made up of identity blocks and convolution blocks. An identity block  

(see Figure 3) contains 2 convolution and 2 batch normalization layers. I denote identity block 

as IDENTITYBLK(f1, f2) where f1 and f2 are the number of filters for first and second 

convolution layer respectively. The kernel size is 1 for first convolution layer and 3 for 

second convolution layer of the identity block. The stride is kept 1 for both the convolution 

layers. In identity block, the shape of output = input shape and the input is simply added to 

the output of batch normalization after second convolution layer. In convolution block (see 

Figure 4), the input is passed through a shortcut component comprising of convolution and 

batch normalization layer before performing addition at the end of the block. For the 



convolution layer at start and in shortcut component, the kernel size is 1 and stride is 2. The 

second convolution layer has stride of 1 and kernel size of 3. I represent convolution block as 

CONVOLUTIONBLK(f1, f2) where f1 and f2 are filter sizes. Convolution block performs 

downsampling and hence the output dimensions are not the same as input dimensions. 

 

 

 

In the neural network, the input taken through the input layer is passed to a convolution layer 

with 64 filters, kernel size of 11 and stride of 2. It is followed by batch normalization and 

maxpooling layer. After this, convolution and identity blocks are stacked to form a deep 

neural network. The filter sizes across all the blocks are among 64, 128, 256 and 512. 

Following the last identity block, there is an average pooling layer with pool size of 8. The 

output of average pooling layer is flattened and passed through 3 fully connected dense layers 

separated by 2 dropout layers. The complete structure of my neural network is shown below 

in Figure 5: 

 

 
Figure 3: Identity block. The parameters f1 and f2 indicate 

number of filters and vary for each block. 

 

 

 
Figure 4: Convolution block. The parameters f1 and f2 

indicate number of filters and vary for each block. 

 



 

Figure 5: My custom residual neural network architecture for detection of gravitational waves. 

This network was created after fine tuning of multiple hyperparameters. The dataset was 

completely shuffled before training the neural network unlike many papers that implement 

curriculum learning for training the network. The learning algorithm used was ADAM. I used 

Keras to build and train this network. The initial learning rate was chosen to be 5e-4. Batch 



size was 64. The network was trained on a NVIDIA Tesla V100 with 16GB GPU memory on 

AWS (Amazon Web Services). 

 

RESULTS: 

For detailed analysis, I assess my neural network’s performance on each signal-to-noise ratio 

(SNR) of BBH and BNS class separately. To do this, my test dataset contains 405 samples of 

each SNR. Straightforward and effective metrics is used to gauge the performance of my 

trained classifier. For each SNR, I calculate detection ratio given by, number of signals 

correctly classified upon total number of signals (which is 405). The detection ratio metrics is 

very similar to the one used by Gebhard et al. [12] and it can also be termed as sensitivity. 

This will give us clear hint of how well my model is able to trigger the presence of the binary 

coalescence signals buried in noise. Here, detection ratio = 1 will indicate that all signals are 

correctly classified for that SNR of the particular signal class. A specific range of masses and 

SNR is chosen whose combinations are used to create signals with BBH and BNS injections. 

To test classifier’s generalization capability, I include only even SNR signals in the training 

data. Also, step size for incrementing masses for BBH and BNS signals are different for both 

training and test dataset. This means that parameters of approximately 50% of the signals in 

the test set are not even included in the parameter set of the data used for training the 

network. Apart from this, all the samples in test dataset are not seen by the network before. 

 

Figure 6: Detection ratio curve for BBH signal test data with optimal SNR ranging from 2 to 24. 



 

Figure 7: BNS signal test data detection ratio curve with optimal SNR ranging from 8 to 33. 

Based on the results, it can be stated that the network is more sensitive in detection of BBH 

signals than BNS signals. The detection ratio increases steeply with SNR and reaches 

approximately 100% for BBH signals at SNR = 11. For BNS signals, 100% sensitivity is 

achieved at SNR = 20. Looking at the constant increase of sensitivity in both the plots Figure 

6Figure 6 and Figure 7, we can conclude that the neural network successfully classifies the 

signals irrespective of whether it is trained on that mass pair and SNR or not. To further 

increase the sensitivity, we can increase the number of training samples. The network has 

compressed several gigabytes of data to only 95 MB. For fixed classes, training is required 

only once and the 95 MB model thus obtained would be used for predicting GW. This gives 

deep learning an edge over matched filtering, in which every time when there is a suspected 

detection, data is matched with a large number of templates. This makes matched filtering a 

very computationally expensive process. 

 

CONCLUSION: 

At the end, I have successfully demonstrated the use of residual neural network for detection 

of gravitational waves with raw time series data of BBH merger, BNS merger signals and 

noise. This very deep neural network can be applied to various other types of GW data such 

as core-collapse supernova and neutron star-black hole signals. The same architecture can 

also be used for source parameter estimation from gravitational waves signals by simply 

removing the final softmax layer. Moreover, this method ensures rapid detection of 

gravitational waves which is very crucial especially when GW signals are accompanied by 

electromagnetic radiation like in case of GW170817. 
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