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Abstract

A new approach is proposed to correct geometric dis-

tortion and reduce space and time-variant blur in videos

that suffer from atmospheric turbulence. We first register

the frames to suppress geometric deformation using a B-

spline based non-rigid registration method. Next, a fusion

process is carried out to produce an image from the regis-

tered frames, which can be viewed as being convolved with

a space invariant near-diffraction-limited blur. Finally, a

blind deconvolution algorithm is implemented to deblur the

fused image. Experiments using real data illustrate that this

approach is capable of alleviating blur and geometric de-

formation caused by turbulence, recovering details of the

scene and significantly improving visual quality.

1. Introduction

Atmospheric turbulence caused by variation of refrac-

tive index along the optical transmission path can strongly

affect the performance of a long-distance imaging system

[14, 16, 13, 18, 19]. It produces geometric distortion, space

and time-variant defocus blur, and motion blur (if the expo-

sure time is not sufficiently short). Several approaches have

been proposed to solve this problem [21, 22, 18, 19, 23]. All

these works are based on videos or image sequences, under

the assumption that the scene is static. The imaging process

can be modeled as [18]:

gk = HkFkf + nk

where f denotes the ideal image, Fk and Hk represent the

geometric deformation matrix and the blurring matrix re-

spectively, nk denotes additive noise, and gk is the k-th ob-

served frame.

Existing restoration algorithms for this problem can gen-

erally be divided into two main categories. One category is

based on a multi-frame reconstruction framework [18, 23].

These approaches first require a non-rigid image registra-

tion technique to register each observed frame with respect
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to a turbulence-free grid, and use the registration parame-

ters to estimate the corresponding deformation matrix Fk.

Then, a sharp image is reconstructed through a Bayesian

reconstruction method (see diagram in Fig. 1 (a)). In [18]

Shimizu et al. chose a B-spline based registration technique

to estimate Fk. They introduced a stabilization term into

the registration cost function, and showed that it is capa-

ble of improving estimation accuracy in the regions con-

taining less texture. This stabilization term changes the

value of deformation parameters according to local image

gradients. Meanwhile, atmospheric turbulence is in fact in-

dependent from image content; hence their approach may

result in unnecessary bias being added to the estimate. In

[23] another registration method incorporating a symme-

try constraint was introduced. Experiments illustrate that

this method outperforms both classic B-spline based regis-

tration technique and the one proposed in [18]. However,

the main problem for such multi-frame reconstruction algo-

rithms is that in general they can hardly estimate the actual

point spread function (PSF), which is spatially and tempo-

rally changing. Both [18] and [23] employ a fixed Gaussian

model to approximate the PSF, which strongly limits their

performance.

Another class of approaches called ”lucky exposure”

employ image selection and fusion methods to reduce the

blurring effects caused by turbulence [15, 6, 22, 19]. The

image selection technique attempts to find frames of the best

quality (lucky frames) from a short-exposure video stream.

The output image is produced by fusing these lucky frames

together [15, 6]. This method is based on the observation

that for short-exposure images, turbulence creates ”muta-

tions” in image quality, and randomly makes some suffi-

ciently sharp images (see examples in Fig. 2) [6, 1, 8, 2].

This strategy is favored in many astronomical imaging ap-

plications where the image of the object of interest (e.g. a

star) is usually taken inside an isoplanatic angle – a small

angle that can be viewed as containing space-invariant blur

[19]. In [2] Vorontsov et al. proposed a ”lucky region”

restoration approach for anisoplanatic scenarios. Small

lucky (isoplanatic) regions are detected by a local sharp-

ness metric, and are fused to produce a large high quality
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(a)

(b)

(c)

Figure 1. Block diagrams: (a) Multi-frame reconstruction ap-

proach [18, 23]; (b) Lucky-region fusion approach [2]; (c) Pro-

posed approach.

(a) (b) (c)

Figure 2. Isoplanatic patches from multiple short exposure images

of the moon’s surface, taken through a ground based telescope,

where a variation of blur can be observed. (c) illustrates a lucky

frame example, which is sharper than the others.

image (see the diagram in Fig. 1 (b)). In another similar

method developed by Joshi et al. [9] a local block-based

image alignment is first carried out to reduce geometric dis-

tortion caused by turbulence, then a lucky imaging-based

weighting scheme is employed to balance between noise re-

duction and sharpness preservation. A dehazing process is

also used to enhance the visual quality. One shortcoming

of this method is that even though turbulence caused blur

is strongly alleviated through the fusion process, the output

still suffers from the blur caused by the diffraction-limited

PSF [19, 11].

In this paper, a new framework is proposed for restoring

a single image from an image sequence acquired in aniso-

planatic scenarios. The 3-D physical scene is assumed to

be static, while the air between the scene and sensor is af-

fected by atmospheric turbulence. Our approach is designed

to reduce the space and time-variant deblurring problem to

a shift invariant one. It focuses on the observed regions

convolved by near-diffraction-limited PSFs, which can be

viewed as space and time-invariant, and thus can be esti-

mated along with the latent sharp image through a blind de-

convolution algorithm. Experiments show that this frame-

(a) (b)

Figure 3. PSF examples from [19]: (a) an example of PSF caused

by air turbulence; (b) an example of near-diffraction-limited PSF

with the highest 0.1% of Strehl ratios selected from several thou-

sand samples.

work is capable of alleviating both geometric deformation

and blur, and significantly improving the visual quality.

2. Restoration Framework

Consider the imaging model described in Section 1:

gk = HkFkf + nk, (1)

where additive noise nk is defined as zero-mean: E(nk) =
0 and i.i.d. with its covariance matrix cov(nk) = σ2

n
I.

Here I denotes the identity matrix. In some articles specific

models (e.g. Gaussian) are used to describe the shape of lo-

cal PSFs caused by air turbulence, which do not fit practical

cases very well [18, 23]. In the real world, while turbulence-

caused PSFs can look quite arbitrary, they still have some

common characteristics. For example, usually they are re-

stricted within a small region, and contain a ”core”, which

is the peak intensity of a PSF (see Fig. 3). In the above

model, since geometric distortion is separated from the blur-

ring matrix, the core of each local PSF (also the entry with

highest value in each row) is typically located on the diago-

nal of Hk.

To estimate the latent image f a new restoration frame-

work is proposed, which contains three main steps (see the

diagram in Fig. 1 (c)):

1. Non-rigid image registration;

2. Fusion-based near-diffraction-limited image restora-

tion;

3. Single image blind deconvolution.

The first step registers each frame onto a fixed reference

grid, removing geometric distortion from the observed data.

The second step fuses the registered sequence to produce

a single image convolved by near-diffraction-limited PSFs,

which have short support and can be approximately viewed



as spatially invariant. The fused image is finally decon-

volved through a blind deblurring algorithm based on a nat-

ural image prior. Details about each step are given in the

following subsections.

2.1. Non­rigid Image Registration

In [18] an experiment is provided to illustrate that the lo-

cal turbulent motion has a zero-mean distribution, and thus

the geometric distortion can be removed by simply aver-

aging the observed frames. Such averaged image, though

even more blurred than the observed data, can serve as a

reference frame to register each observed frame. The B-

spline based non-rigid registration method in [23] is directly

implemented in our approach. This method incorporates a

symmetry constraint that can effectively improve the esti-

mation accuracy. We refer interested readers to [23] for de-

tails.

In this paper, we are interested in how the registration

operator physically changes local PSFs. Assume that the

warping matrix Fk is non-singular. The registration opera-

tor can then be denoted as F−1

k . Multiplying both sides by

F−1

k we have

qk = H̃kf + ñk (2)

where

H̃k = F−1

k HkFk, ñk = F−1

k nk. (3)

We denote the registered image as qk = F−1

k gk.

The blurring matrices H̃k and Hk are related by a simi-

larity transformation. Since a similarity transformation pre-

serves the spectrum (eigenvalues) of Hk, the transformation

should not significantly change the physical shape of PSFs.

In particular, if the motion is pure translational and applies

only integer movement (pixel to pixel), then Fk is a block-

circulant matrix with each row and column containing pre-

cisely a single 1 and with 0s everywhere else. That is, we

can approximate Fk by a permutation matrix, which means

that FT
k = F−1

k . For such matrices, the corresponding sim-

ilarity transformation circulates the rows and columns of

Hk. In other words, the registration operator only moves

the locations of local PSFs without changing their physical

shape. Of course the overall motion caused by turbulence is

not translational. However, the local motion inside an iso-

planatic region can be well-approximated as translational

[20, 19, 9]. If the support of any local PSF is also small

enough, then inside an isoplanatic region the transforma-

tion F−1

k HkFk preserves the physical shape of local PSF

[20] (see examples in Fig. 4).1 Meanwhile, it can be shown

1If the PSF is spatially invariant, then Hk and Fk commute since both

of them are block-circulant [4], and we have H̃k = Hk . For example,

ignoring the PSF variation caused by air turbulence, if we assume that there

only exist the diffraction-limited blur denoted as H, then F
−1

k
HFk = H.

 

 

0.9

1

1.1

1.2

1.3

1.4

(a)

(b) (c)

(d) (e)

Figure 4. (a) Magnitude of a simulated motion field which can be

viewed as locally translational. (b)-(c) illustrate a small size PSF

before and after the transformation F
−1

k
HkFk, where the shape

is preserved. (d)-(e) illustrate a big size PSF before and after the

transformation, where we can see the change of its shape.

that the diagonal entries of Hk still remain on the diagonal

of H̃k with their locations permutated.

Furthermore, since Fk can be approximated as a permu-

tation matrix (pixel to pixel movement) we can also write:

cov(ñk) = F−1

k cov(nk)Fk ≈ σ2

n
I. (4)

2.2. Near­diffraction Limited Image Restoration

By decomposing the overall blur H̃k = H+∆H̃k equa-

tion (2) can be rewritten as:

qk =
(
H + ∆H̃k

)
f + ñk

= z + ek + ñk (5)

where H is diffraction-limited blur and z = Hf denotes

the diffraction-limited image. ∆H̃k represents turbulence-

caused blur, and ek = ∆H̃kf is the corresponding blurring

artifact.

The diffraction-limited blur is unknown but space and

time invariant, and there are numerous blind deconvolution

algorithms available for removing it [5, 17, 10]. Unfortu-

nately, estimating ∆H̃k is not trivial. However, if we treat

ek as an additive noise, then it is still possible to estimate

the diffraction-limited image z. This requires an analysis of

the statistical properties of ek, which we present next.

Both H̃k and H can be viewed as row-stochastic2, which

means h̃T
i 1 = hT

i 1 = 1, and thus

∆h̃T
i 1 = (h̃i − hi)

T 1 = 0. (6)

Here ∆h̃T
i , h̃T

i and hT
i represent the i-th rows of matrices

∆H̃k, H̃k and H respectively. Because the support of the

PSFs h̃i and hi are restricted to a small isoplanatic region

2Row-stochastic means that each row of a matrix consists of nonnega-

tive real numbers, which sum up to 1.



around the i-th pixel denoted as wi, all the non-zeros values

of ∆h̃i should also be located inside wi:

∆h̃ij = 0 ∀j /∈ wi (7)

where ∆h̃ij represents the j-th element of vector ∆h̃i. By

defining a diagonal matrix Mi denoting a mask having 1s

in the locations inside wi and 0s everywhere else, we have

Mi∆h̃i = ∆h̃i.

We model the latent sharp image f as a random field,

whose mean vector is mf = [mf1, mf2, . . .]
T , and its

covariance matrix is assumed to be diagonal Cf =
diag[σ2

f1
, σ2

f2
, . . .]. The statistics of f are considered piece-

wise stationary:

mfj ≈ mfi, σfj ≈ σfi ∀j ∈ wi, (8)

and thus

Mimf ≈ mfiMi1 (9)

So considering (6)-(9) we have:

∆h̃T
i mf = (Mi∆h̃i)

T mf

= mfi∆h̃T
i Mi1

= 0, (10)

which indicates that the mean of ek is zero. Now we have

zero-mean additive noise ek, whose covariance matrix is

Cek
= ∆H̃kCf∆H̃T

k with diagonal entries

σ2

eki =
∑

j

σ2

fj∆h̃2

ij (11)

Again, by applying (7) and (8) the above entries can be writ-

ten as:

σ2

eki =
∑

j∈wi

σ2

fj∆h̃2

ij = σ2

fi

∑

j∈wi

∆h̃2

ij = σ2

fi‖∆h̃i‖
2.

(12)

Combining the additive noise ñk and ek together we de-

fine the total additive noise

εk = ñk + ek. (13)

Since ñk and ek are independent, the covariance matrix of

εk becomes Ck = Cek
+ σ2

nI.

Then the diffraction-limited image z can be estimated

through:

ẑ = argmin
z

∑

k

(qk − z)
T

C−1

k (qk − z) ; (14)

For simplicity, we only take the diagonal part of Ck de-

noted as Uk = diag[uk1, uk2, . . .], whose i-th diagonal en-

try can be written as:

uki = σ2

n
+ σ2

fi‖∆h̃i‖
2 (15)

Now the estimation problem in (14) can be simplified as:

ẑ=arg min
z

∑

k

(qk − z)
T

U−1

k (qk − z)

=

(
∑

k

U−1

k

)−1∑

k

U−1

k qk (16)

Or in pixel-wise form:

ẑi =

∑
k u−1

ki qki∑
k u−1

ki

(17)

which is nothing but an image fusion process, where the

weight value u−1

ki is determined by σ2

n and σ2

fi‖∆h̃i‖
2. If

σ2

n
is temporally constant, the higher σ2

fi‖∆h̃i‖
2 is (more

blurry), the lower u−1

ki becomes (lower weight). In practice,

noise variance σ2

n is viewed as spatially invariant and can

be estimated using, for example, median absolute deviation

(MAD) method [7].

Once sufficient observations are collected, diffraction-

limited image patches (also the sharpest isoplanatic

patches) that occasionally appear due to the turbulence

variation can be detected through sharpness metrics such

as Strehl ratio, image gradient, or local intensity variance

[15, 3, 12]. These diffraction-limited patches suffer from

noise and cannot be used directly as outputs since noise will

be magnified in the following deconvolution step. How-

ever, they can be utilized as references for calculating the

local variances of ek and the weights (15) for the fusion.

Let us consider a given isoplanatic region wi centered at

the i-th pixel across all the registered frames. Assume that

the sharpest patch of wi, which can be approximated as a

diffraction-limited patch, is detected in the k′-th frame:

Miqk′ = MiHf + Mink′ . (18)

Then, given the k-th frame we can write the patch difference

(see Fig. 5):

Mi(qk − qk′ ) = Mi∆H̃kf − Mink′ + Mink (19)

Because of the isoplanaticism of local PSF, and of the piece-

wise constancy of image variance, it can be deduced that:

var [Mi(qk − qk′ )] =
1

|wi|
tr
(
Mi∆H̃kCf∆H̃T

k Mi

+2σ2

n
M2

i

)

=
1

|wi|
tr
(
Cf∆H̃T

k Mi∆H̃k

)
+ 2σ2

n

≈ σ2

fi‖∆h̃i‖
2 + 2σ2

n, (20)

where |wi| is the cardinality of the set. Thus the weight-

related value uki in (15) can be approximated by

uki = var [Mi(qk − qk′)] − σ2

n
. (21)



Figure 5. Illustration of calculating the patch difference between the k
′-th and k-th frames. Diffraction-limited isoplanatic patch around

the i-th pixel is detected in the k
′-th frame. This patch difference can be used to produce the weight for the i-th pixel in the k-th frame.

It is worth noting that due to the covariance matrix sim-

plification in (16) and the limited registration accuracy,

the PSF of the fused image is, in practice, not the pure

diffraction-limited PSF. Namely, it includes diffraction-

limited blur, residual turbulence blur, and blur caused by

registration error. So we call such PSF near-diffraction lim-

ited. Because the fusion process strongly reduces the PSF

variation, such PSF can be approximately viewed as spa-

tially invariant.

A concise description of the algorithm for the near-

diffraction-limited image restoration step is provided be-

low:

Algorithm 1 Algorithmic Procedure for Restoring A

Diffraction-Limited Image from Registered Frames

1. Given a registered frame sequence {qk}, divide each

frame into N × N overlapping patches centered at each

pixel, and calculate the variance of each patch as a local

sharpness measure.

2. For patches centered at the i-th position across all the

frames, find the sharpest patch, say in frame k′, as the

diffraction-limited reference.

3. Set uk′i = σ2

n
, and for the remaining patches in frame

k 6= k′ use (21) to calculate uki.

4. Restore the i-th pixel according to the regression form

(17).

5. Go to the (i + 1)-th pixel and return to step 2.

2.3. Blind Deconvolution

Finally, the unknown image f and the near-diffraction-

limited PSF h (which is the vector form of H) can be esti-

mated using a Bayesian image deconvolution algorithm de-

scribed as:

< f̂ , ĥ >= arg min
f ,h

(z−Hf)+λ1Rf (f)+λ2Rh(h). (22)

where Rf and Rh are the regularization terms based on

prior knowledge about the latent sharp image f and the PSF

h. Recent research on natural image statistics has shown

that image gradients obey heavy-tailed distributions that

have most of the mass on small values but give significantly

more probability to large values than Gaussian distributions

[5]. Based on these studies, several sparsity-based regu-

larization methods have been introduced and have achieved

great success in solving the blind deconvolution problem.

One example is Shan et al.’s method [17], which is directly

employed in the proposed framework as the final step. In

what follows, we used the default parameter settings as de-

scribed in the authors’ project page [17] except the noise

level parameter ’noiseStr’, which is chosen in the range

[0.01, 0.05] according to the actual noise level observed in

the given data. We refer interested readers to [17] for de-

tails.

3. Experiments

Some real video data are tested to illustrate the perfor-

mance of the proposed restoration framework. In imple-

menting the fusion step in Section 2.2, we set the patch

size N = 9. The lucky-region algorithm from [2] and the

multi-frame reconstruction approach from [23] are also im-

plemented as comparison. The first set of images (410 ×
380 × 80) show the Moon surface imaged from a ground-

based telescope (see Fig. 6 (a)). From (b) we can see that

though the output image of [2] looks slightly sharper than

one of the observed frames, it is still quite blurry probably

due to the diffraction-limit blur and the limited number of



frames. [23] provides a better result but with some details

(small craters) vanished (Fig. 6 (c)). The proposed method

gives a significant improvement in visual quality (Fig. 6

(d)). It successfully removed blur and meanwhile recov-

ered many small craters on the surface (Fig. 6 (h)) that can

hardly be seen from either original frame (Fig. 6 (e)), or the

outputs of other two methods (Fig. 6 (f), (g)).

The second video stream is an example of long distance

imaging and horizontal atmospheric turbulence. It contains

a water tower located above ground, and imaged using a sta-

tionary camera 2.4 km away. The video is quite noisy and

highly blurred (due to long exposure time). 80 frames were

taken from the video to produce the result image (300×220)

demonstrated in Fig.7. Again, the lucky region method did

not provide much improvement in the result and slightly

changed the object shape (Fig. 7 (b)). This is probably

because the method uses simple translational motion com-

pensation to remove turbulence deformation, which is not

quite accurate. The reconstruction method in [23] slightly

increased the sharpness (Fig. 7 (c)). The output of the pro-

posed method looks much sharper and clean (Fig. 7 (d)).

4. Conclusion

In this paper we proposed a new framework for restor-

ing a single image from an image sequence distorted by

air turbulence. The proposed algorithm first registers the

frames to suppress geometric deformation using a B-spline

based non-rigid image registration method. Next, a fu-

sion process is carried out to produce an image convolved

with near-diffraction-limited PSFs, which can be viewed as

space-invariant. Finally, a blind deconvolution algorithm

is implemented to remove diffraction-limited blur from the

fused image to generate the final output. Experiments using

real data illustrate that this framework is capable of alle-

viating geometric deformation and space-and-time-varying

blur caused by turbulence, recovering details of the scene

and significantly improving the visual quality.

5. Acknowledgements

The authors would like to thank Prof. Mikhail A.

Vorontsov from the Intelligent Optics Lab of the Univer-

sity of Maryland for allowing us to use the video data Water

Tower, and also thank Mr. Faisal A. Salem from University

of Michigan and Dr. Joseph M. Zawodny from NASA Lan-

gley Research Center for providing us with the video Moon

Surface.

References

[1] M. Aubailly, M. A. Vorontsov, G. W. Carhart, and M. T. Val-

ley. Image enhancement by local information fusion with

pre-processing and composed metric. Proceedings of SPIE,

7090, 2008. 1

[2] M. Aubailly, M. A. Vorontsov, G. W. Carhat, and M. T.

Valley. Automated video enhancement from a stream of

atmospherically-distorted images: the lucky-region fusion

approach. Proceedings of SPIE, 7463, 2009. 1, 2, 5, 7, 8

[3] J. C. Christou, K. J. Mighell, and R. B. Makidon. Strehl

ratio and image sharpness for adaptive optics. Advances in

Adaptive Optics II. Proceedings of the SPIE, 6272:62721Y,

2006. 4

[4] M. Elad and Y. Hel-Or. A fast super-resolution reconstruc-

tion algorithm for pure translational motion and common

space-invariant blur. IEEE Transactions on Image Process-

ing, 10(8):1187–1193, August 2001. 3

[5] R. Fergus, B. Singh, A. Hertsmann, S. T. Roweis, and W. T.

Freeman. Removing camera shake from a single image.

ACM Transactions on Graphics (SIGGRAPH), 2006. 3, 5

[6] D. L. Fried. Probability of getting a lucky short-exposure im-

age through turbulence. Optical Society of America, Journal,

68:1651–1658, 1978. 1

[7] F. R. Hampel. The influence curve and its role in robust

estimation. Journal of the American Statistical Association,

69:383–393, 1974. 4

[8] S. John and M. A. Vorontsov. Multiframe selective informa-

tion fusion from robust error estimation theory. IEEE Trans-

actions on Image Processing, 14(5):577–584, May 2005. 1

[9] N. Joshi and M. Cohen. Seeing Mt. Rainier: Lucky imaging

for multi-image denoising, sharpening, and haze removal.

IEEE ICCP 2010, March 2010. 2, 3

[10] N. Joshi, R. Szeliski, and D. Kriegman. PSF estimation using

sharp edge prediction. CVPR, 2008. 3

[11] N. M. Law. Lucky imaging: Diffraction-limited astronomy

from the ground in the visible. Ph. D. Thesis, Cambridge

University, May 2003. 2

[12] N. M. Law, C. D. Mackay, and J. E. Baldwin. Lucky imag-

ing: High angular resolution imaging in the visible from the

ground. Astron. Astrophys., 446:739–745, 2006. 4

[13] D. Li, R. M. Mersereau, and S. Simske. Atmospheric

turbulence-degraded image restoration using principal com-

ponents analysis. IEEE Geoscience and Remote Sensing Let-

ters, 4(3):340–344, July 2007. 1

[14] W. E. K. Middleton. Vision Through The Atmosphere. Uni-

versity of Toronto Press, Canada, 1958. 1

[15] M. C. Roggemann, C. A. Stoudt, and B. M. Welsh. Image-

spectrum signal-to-noise-ratio improvements by statistical

frame selection for adaptive-optics imaging through atmo-

spheric turbulence. Optical Engineering, 33(10):3254–3264,

October 1994. 1, 4

[16] M. C. Roggemann and B. M. Welsh. Imaging through turbu-

lence. CRC Press, Boca Raton, Fla., 1996. 1

[17] Q. Shan, J. Jia, and A. Agarwala. High-quality motion de-

blurring from a single image. ACM Transactions on Graph-

ics (SIGGRAPH), 2008. 3, 5

[18] M. Shimizu, S. Yoshimura, M. Tanaka, and M. Okutomi.

Super-resolution from image sequence under influence of

hot-air optical turbulence. CVPR 2008, June 2008. 1, 2,

3

[19] R. N. Tubbs. Lucky exposures: Diffraction limited astro-

nomical imaging through the atmosphere. Ph. D. Thesis,

Cambridge University, September 2003. 1, 2, 3



(a) One observed frame (b) Lucky region fusion [2]

(c) Multi-frame reconstruction [23] (d) Proposed approach

(e) Zoomed part of (a) (f) Zoomed part of (b) (g) Zoomed part of (c) (h) Zoomed part of (d)

(i) Zoomed part of (a) (j) Zoomed part of (b) (k) Zoomed part of (c) (l) Zoomed part of (d)
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Figure 7. Image reconstruction result using 80 frames taken from the video Water Tower distorted by real atmospheric turbulence.
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