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Abstract

We present a novel data-driven technique for radiometric
self-calibration of video from an unknown camera. Our ap-
proach self-calibrates radiometric variations in video, and
is applied as a post-process; there is no need to access the
camera, and in particular it is applicable to internet videos.
This technique builds on empirical evidence that in video
the camera response function (CRF) should be regarded
time variant, as it changes with scene content and exposure,
instead of relying on a single camera response function. We
show that a time-varying mixture of responses produces bet-
ter accuracy and consistently reduces the error in mapping
intensity to irradiance when compared to a single response
model. Furthermore, our mixture model counteracts the
effects of possible nonlinear exposure-dependent intensity
perturbations and white-balance changes caused by pro-
prietary camera firmware. We further show how radiomet-
rically calibrated video improves the performance of other
video analysis algorithms, enabling a video segmentation
algorithm to be invariant to exposure and gain variations
over the sequence. We validate our data-driven technique
on videos from a variety of cameras and demonstrate the
generality of our approach by applying it to internet video.

1. Introduction

Fundamental operations for computational video, like de-
blurring, stereo matching and tracking have been shown to
require radiometric calibration [10, 14, 15] to achieve con-
sistent visual appearance over time. However, most cam-
eras capture videos that first are auto-exposed to optimize
the dynamic range at every frame and second are dynam-
ically tone-mapped before encoding. Such auto-exposure
and other corrections within the camera result in unreliable
output for basic vision algorithms as they mostly rely on
consistent appearance over time. To remove the impact of
auto-exposure to a frame sequence, the camera would need
to undergo radiometric calibration. In practical settings, we
usually just have access to the video, e.g., video obtained
from the internet, with no further knowledge or access to the
capturing camera. In such cases radiometric self-calibration
is required by simply analyzing the video at hand. In the

case of image/photo capture, cameras store metadata in-
formation for exposure per frame. At present, we are not
aware of any video camera that stores such metadata for
each frame or allows access to the uncompressed RAW sen-
sor data for video (current generation high-end RED Cam-
eras store compressed raw video).

Radiometric calibration recovers the camera response
function (CRF), which links scene irradiance to observed
RGB values given the exposure. While the mapping from
irradiance to raw sensor values, known as opto-electric con-
version function (OECF), is roughly linear, the subsequent
demosaicing, sharpening, white balance, gamut mapping
and gamma correction result in the CRF being very camera
and scene specific [1, 11, 16, 24]. For competitive reasons,
camera manufacturers keep the functionalities of their cam-
era firmware secret and proprietary. At times, the CRF also
incorporates some form of in-camera exposure compensa-
tion that is dependent on the specified exposure itself. For
example, Nikon has a local exposure feature (called active
D-lighting [23]) that actually manipulates the shadow and
highlight regions; this modifies the radiometric response at
the given exposure. Sony has a similar feature called Dy-
namic Range Optimization [25]. Furthermore, smartphone
cameras employ an undisclosed amount of post-processing
in software. As a result, it seems very likely that the CRF of
video cameras should be regarded time-varying, changing
with scene content and exposure.

In this paper, we propose a new, data-driven technique
for radiometric self-calibration given only the input video
without meta-data. This allows us to generate a video with
consistent color appearance over time, barring loss of infor-
mation due to low signal or saturation (texture/color transfer
is outside the scope of our paper). Based on our empirical
observations and validated by a series of experiments, we
believe that the CRF should be regarded time-varying. Our
technique extracts a mixture of time-varying radiometric re-
sponse curves to more accurately characterize the mapping
between scene irradiance and image brightness. This is in
contrast to previous self-calibration techniques that rely on
one global CRF.

Our contributions in this paper are as follows:

e We present a radiometric self-calibration post-process ap-
proach that works solely from video data, without access



Figure 1: Video recorded with a Canon camcorder in auto-mode (top) and our auto-calibrated result after tone-mapping (bottom). Our
algorithm recovers the non-linear mapping of intensity to irradiance, effectively canceling adjustments employed by the camera over time
to cover the dynamic range. For example, compare the drastic changes in the lantern’s post appearance in the original video to its uniform

appearance in our calibrated result. Please see the accompanying video.

to the camera. We show applicability to internet video.

e We use a window of exposures to locally compute the
response curves at keyframe exposures and apply a mix-
ture model to interpolate the curves for pixel-to-irradiance
mapping. This extends our technique to streaming videos.

e We address the exponential ambiguity (i.e., scene irradi-
ance is up to scale due to lacking ground truth) by using
regularization for model parameters and exposure, greatly
improving stability in the estimation process.

e We evaluate the effectiveness of our approach over sev-
eral sequences captured with different camera models. We
quantitatively confirm constant irradiance of Lambertian
surfaces after calibration.

e We demonstrate improving video segmentation using our
technique.

2. Related Work

Radiometric calibration is usually performed using multiple
aligned images of the same scene taken at different expo-
sure settings. Assuming the change in exposure is known a
priori, Debevec and Malik [2] proposed a method for recov-
ering the radiance map and the inverse CRF represented as
a non-parametric smooth mapping of irradiance to intensity.
Mitsunga and Nayar [21] extended this model by approxi-
mating the CRF with a higher-order polynomial. An empir-
ical model of response (EMoR) was introduced by Gross-
berg and Nayar [7]. After collecting 201 response functions
for various film materials and cameras they subsequently
projected them into a low-dimensional space using PCA.
[7] empirically showed that the unknown CRF can be accu-
rately represented as linear combination of the EMoR basis
function. Recently, Lee et al.[17] introduced a new solu-
tion in this calibrated setting based on rank minimization,
while Xiong et al.[26] proposed a probabilistic color render-
ing model leveraging Gaussian process regression applied
to matching RAW / intensity images.

The scene dependency of the CRF for images was ob-
served and accounted for by Chakrabarti ef al.[1]. They
also confirmed via experimentation that the OECF mapping
of scene irradiance to RAW values is indeed linear. Given
matching RAW / intensity images, they fit several color
models (independent exponentiation after 3x3 color twist
and various polynomials), empirically determining that a
5 degree per-channel polynomial performed best. Diaz
and Sturm [3] proposed a model for photo collections that
accounts for surface normals by leveraging recovered 3D
structure from wide-baseline matches. This model is not
generally applicable to unstructured video for which 3D
structure can not always be reliably extracted (e.g., dynamic
scene or small baseline in case of a rotating camera).

Calibration without correspondence from video via
histogram equalization was proposed by Grossberg and
Nayer [8], at the expense of restricted camera motion.
Lin et al. [19] propose a method for recovering the response
function from a single image by linearizing edge color dis-
tributions via a Bayesian approach. A model free approach
to recover the inverse response was presented by Jia and
Tang [12] using 2D tensor voting. Litvinoc and Schechner
[20] generalize the inverse model by separating it into re-
sponse function, gain, and optical uniformity. Farbman and
Lischinkski [5] proposed a correspondence free method to
undo non-linear color changes, however their method does
not recover irradiance values nor the calibrated CRF.

Kim and Pollefeys [13] used the inverse EMoR to radio-
metrically calibrate video sequences from unknown expo-
sure values, by determining the unknown coefficients of the
log-inverse response basis functions. We built upon [13]’s
use of the EMoR to model the inverse CRF, generalizing
it to a time-varying window of CRFs. To handle color,
most efforts [2, 8] either estimate the response curve for
each channel independently or assume one response curve
but different illuminations for each channel to account for
white balance changes [13]. We use independent estimation



of each channel and show that this is sufficient to account
for white balance adjustment.

Recently, Kim et al.[16] proposed a novel in-camera
imaging model and performed comprehensive analysis
across a wide range of cameras and scenes. In particular,
the imaging model describing the mapping of scene irra-
diance to intensity values is composed of four functions.
First, the the white-point of the captured RAW image is ad-
justed by a diagonal 3x3 matrix, then linearly mapped to
sRGB and narrowed to the SRGB gamut via a non-linear
function, and finally mapped to pixel intensities by a per-
channel CRF. Being a calibrated approach, various training
image pairs (RAW/intensity) are taken with a known cam-
era. The CREF is recovered for a subset of matches via [7],
while gamut mapping is modeled via radial basis functions.
Lin et al.[18] recently proposed to replace the last step using
lattice regression. If RAW data is not available, aligned raw
images of the same scene from a different camera are used
as reference. In a video setting this requires aligned frames
captured with a raw-capable camera, e.g., RED, making this
model not practically applicable to video. Further, [16] as-
sume photographic reproduction mode, i.e., fixed (spatially
and intensity invariant) color rendering, as can be achieved
with high-end cameras in manual mode. In contrast, in
our calibration-free video setting, we must treat the camera
pipeline as black box, mapping irradiance to intensity, with-
out making any assumptions about the camera, making our
model applicable to even low end mobile phone cameras.

In the next section, we briefly review the topic of ra-
diometric calibration before we introduce our new mixture
model of response curves.

3. Radiometric Calibration

Without the availability of raw video data, we regard the
camera imaging process as a black box that maps scene irra-
diance of a point in a scene to three intensity values in RGB.
As imaging sensors respond differently to each color [22],
we model the color channels separately, which allows for
compensation of changes in white balance. Here we briefly
review the estimation of the radiometric response function
using the empirical model of Grossberg and Nayar [7] with
some modifications.

Radiometric response function: The radiometric camera
response function R of a camera maps the incoming light
(irradiance) to the camera sensor output after color and
tone-conversion. The imaging mechanism of the camera
is highly non-linear (usually more sensitive to changes in
low than high intensity areas), as Grossberg and Nayar [7]
showed from their collection of 201 response curves. By
applying PCA to the response curves, they obtained the Em-
pirical Model of Response (EMoR), modeling the CRF as
linear combination of basis functions. Experiments showed
that 5 — 10 basis functions account for 99% of the model

variance. As this greatly increases stability of the estima-
tion by reducing degrees of freedom, we adopt their model
using 7 basis functions. We validate this choice of number
of basis function in section 4.
Calibration approach: We seek to find scene points of
constant radiance across all frames [0, 13]. For a static
camera under fixed lighting, this assumption is valid for all
points. In case of a moving camera, this assumption only
holds for scene points on Lambertian surfaces, even dy-
namic ones. We use a robust calibration method to account
for outliers originating from non-Lambertian (e.g., specu-
lar) surfaces (section 3.2). In general, we can track suffi-
cient Lambertian scene points, if this assumption is severely
violated, e.g., flickering illumination in a night setting, our
method might fail as we show in our supplemental video.
Let a video be represented by frames (11, I, ..., I,,). As-
suming a Lambertian scene point p, the irradiance L(p) of
the scene point through the lens is constant. The amount of
light reaching the sensor is mostly linear w.r.t. exposure (If
raw video values were available, the exact mapping would
be given by the OECF, which requires a lab-setting for cal-
ibration.) As others, [0, 7, 13], we express this relationship
(assuming constant aperture) as

L(p) = k; - L;i(p) = const, Vi = 1..n, (1)

with L;(p) being the irradiance captured at scene point p
in frame I; and k; being a linear weight representing the
inverse of the exposure value.

This enables us to recover the radiometric response curve
R from intensity matches. Let x and y be two pixels in im-
ages I; and I, such that x and y capture the same scene
point p of a Lambertian surface. Suppose r denotes the in-
verse of the radiometric response curve R, mapping inten-
sity to irradiance. Then r maps the pixels x intensity I;(x)
to the irradiance of the corresponding scene p that reaches
the sensor, i.e., 7(I;(x)) = L;(p). Using the exposure con-
straint in eq. (1), the intensities of x and y are related by
r(Ii(z)) - ks = r(I;(y)) - k;. We linearize this relation by
applying the natural logarithm to each side.

log(r(1i(z))) + Ki = log(r(I;(y))) + K, ()

where K; := logk;. Denoting the log-inverse of the re-
sponse function R by [ := logr and the change in log-
exposure K; ; = K; — K}, the above constraint becomes

[(Li(x)) = UI(1;(y)) + Ki; = 0. 3)

As the right hand side of the above constraint is zero,
any recovered solution is only up to scale in the log-domain.
This is known as exponential ambiguity [8]. Consequently,
without ground truth data, we cannot determine the absolute
exposure, but only the change in exposure w.r.t. to an un-
known base-exposure. More importantly, if I;(x) ~ I;(y)
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Figure 2: Left: Original PCA model [13] is not C'* continuous.
Right: Our PCA model after removing log-inverse response func-
tion with significant changes in direction.

for most pixels z,y, i.e., the video is virtually uniformly
exposed, the response function can not be recovered. Ac-
counting for this inherent instability in the solution properly
is crucial to us and we address this by apply regularization
(section 3.3).

Similar to Kim and Pollefeys [13], we model the log-
inverse CRF (which enables a linear relation as described
above) using the PCA-based EMoR model [7]. In contrast
to [13], we perform some crucial post-processing before ap-
plying PCA to the log-inverted response functions. We no-
ticed that some log-inverse response curves are not C'* con-
tinuous, due to the small gradient of many response curves
near zero. As PCA is prone to model outliers and noise,
we rejected all log-inverse response functions with a local
change in gradient larger than 0.01. Figure 2 shows the re-
sult of this pre-filtering.

Using the log-inverse EMoR model, we can express the
log-inverse response ! in eq. (3) as a linear combination of
known basis functions Iy, [, .., [; with weights c,, :

lo(Li(2)+ D21 N In(Li()) - en — o (L;(y))—
Zn:l..N ZTL(IJ(Z/)) s Cp + Ki,j =0, &4

with [y being the mean of the PCA model. The above equa-
tion poses an over-constrained least-squares minimization
problem, with unknowns ¢, and K; ;. The solution is again
up to scale, and if I;(x) ~ I;(y) for most z,y, the solu-
tion is numerically unstable. We address this by applying
regularization as described in section 3.3.

3.1. Mixture Model of Response Curves

Previous work on self-calibration assumes that the radio-
metric response function is constant over time for a spe-
cific camera, regardless of its settings. However, the CRF is
dominated by the scene and image dependent tone mapping
function [11, 24] and recent work on radiometric calibra-
tion from matching RAW/intensity images has shown the
CRF to be scene dependent [1] and non-linearly affected
by gamut mapping [16]. Consequently, when recording
video in auto-mode it is likely that the camera manufac-
turer’s post-process changes during recording over time, for
example, adjusting the gain, which changes the noise level

function, or adjusting the exposure, which affects the re-
sponse function and gamut mapping. Current Canon DSLR
models also employ a low-pass filter for dust removal even
before the light reaches the CMOS sensor.

To answer the question, if for practical self-calibration
of video the CRF for over- and underexposed segments of a
video should be regarded time-invariant, we conducted the
following experiment: We recorded a static scene (shown
in fig. 7) while varying the exposure setting from +9 to —9.
Note, that by using a static scene we avoid undue influence
of tracking errors and vignetting.
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Figure 3: Time-varying response shown for 3 different windows.
(a-c) Inverse CRFs (continuous curves) estimated within a sliding
window of size M over increasing frame offsets. Corresponding
exposure and inverse CRF are indicated by equal color. Intensity
domain is scaled to the number of frames for visualization pur-
poses. Notice, how the CRF varies over time w.r.t. the frame off-
set. (d) Coefficients for log-inverse response function over frame-
offset of sliding window. Change in coefficients is smooth, justi-
fying our mixture model approach.

(c) Response/Exposure, M=40

We estimated the inverse response function over a slid-
ing window of fixed size using the approach described in
section 3. The CRF is estimated within each window W
independently, however to remove undue influence due to
exponential ambiguity in eq. (2) we constrain the expo-
sure to be consistent across windows as follows: For two
neighboring windows W and W’ of fixed size M, starting
at adjacent frames I; and I;; respectively, we first com-
pute the inverse response function and log-exposure val-
ues K; for window W. Then consistent exposure for win-
dow W’ is achieved by: (a) Constraining the first % differ-
ences in log-exposure K7} ;. ; for window W’ to agree with
the already estimated values from the previous window W:
K i1 = Kjy2 — Kji1 (window W is displaced by one
frame w.r.t. W). (b) After computing the exposure values
K for W', we offset them by the first frame’s exposure



K; in W, therefore aligning them to the same origin. This
corresponds to adding a scalar to each side of eq. (2) and
represents the fact that we do not know the ground truth
irradiance.

The results of this experiment are shown in fig. 3. The re-
covered response curves and exposure values are shown for
various window sizes and frame offsets. Note, that the re-
sponse function indeed varies across windows, specifically
the variation is smooth w.r.t. to the basis function coeffi-
cients. Motivated by this empirical evidence, that the ra-
diometric curve seems time varying, likely influencing the
amount of tonal adjustment and color correction, we pro-
pose the mixture model of response for videos. Instead
of estimating a single CRF, we estimate multiple CRFs at
equidistant key-frames. We chose keyframes 15 frames
apart, however we investigate this choice in section 4 and
show that a mixture model consistently out-performs a sin-
gle CRF model.

The coefficients of the response function in-between
key-frames are given as weighted linear combination of the
coefficients at the key-frames. This is motivated by the evo-
lution of the coefficients for the above sliding window ex-
periment shown in fig. 3d, which empirically, vary smoothly
w.r.t. the frame-offset of the sliding window. Specifically,
for frame I; we denote the previous key-frame to the left as
I,,(;y and the next key-frame to the right as I,,(;). We further
assume that keyframe spacing s := n(¢) — p(7) is constant
for all 7. Then the mixture model of response is given as
direct generalization of eq. (4)

i—p(i)

the previous keyframe I,;) (similar § := # for frame
I;) and w(o) a weighting function, satisfying w(0) = 1
and w(1) = 0. Equation (5) can be optimized within the
same linear system approach as eq. (4), as w(«) are fixed
scalars for each frame. We chose the cubic-hermite spline
as weight, i.e., w(a) := 2a® — 3a? + 1. The recovered re-
sponse functions at different intervals for our the initial ex-
periment are shown in fig. 7. Finally, by dividing the video
into overlapping clips, and constraining the shared models
to agree across clips, we enable our approach to be con-
ducive for streaming video.

where o := is the normalized distance of frame I; to

3.2. Tracking Across Multiple Exposures

We use intensity matches from sparse feature tracks, gener-
ated using the pyramidal KLT feature tracker in OpenCV. To
find features across the whole intensity range of the frame

Figure 4: Left: Our grid-based feature extraction and outlier re-
jection, right: Standard KLT tracks.

we discritize the frame across a grid, using a local thresh-
old for each cell. To reject outliers, we constrain the sparse
flow to be locally consistent within each cell, as opposed to
enforcing a fundamental matrix constraint, which might dis-
card matches for moving foreground objects. This prepro-
cessing removes spurious matches and inconsistent moving
specular reflections, as shown in fig. 4.

If the intensity change between two neighboring frames
is small, the solution to eq. (3) becomes less stable. To im-
prove stability, we propose to use long feature tracks. For
each feature point p;, we track its corresponding positions
Pi—1,Pi—2,..-pi—n in the last N frames (we use N = 6, as
validated in section 4). As the change in log-exposure K; ;
is additive in eq. (3), for intensity matches between two ad-
jacent frame pairs (I;, I;—1) and (I;_1, I;_2), we have:

Z(Iifl) — Z(L) - Ki,ifl =0 and
I(Ii—2) = 1(Ii=1) — Ki—1,i—2 =0, (6)

using eq. (3) scaled by —1. Consequently, for inten-
sity matches between (I;, I;_5) obtained from long feature
tracks, we obtain

(Ii—2) = UI;) = Kijji—1 — Ki—1,,—2 = 0. (7

Using the EMOR model to write [ as linear combination of
basis functions, we can derive a similar extension of eq. (4)
to multi-frame tracks.

3.3. Stable estimation using regularization

There are several options for removing the exponential am-
biguity in eq. (3). One is to fix the difference in log-
exposures to a predefined value (e.g., for the first frame pair
[13]), which in our experience requires manual adjustment
for each video. Further this does not prevent the system in
eq. (4) from becoming unstable in the case where a video is
uniformly lit.

Instead, we propose the use of a model prior when solv-
ing eq. (5). Denoting the solution vector as w = (¢, K),
where ¢ = (¢!) is the vector of all coefficients ¢’ for all mix-
tures j and K = (K ;1) the vector of all changes in log-
exposure between adjacent frames, the system in eq. (5) can
be written as least squares problem || A-w — b|| for appropri-
ate matrix A and vector b. Here, b denotes the log-exposure
difference w.r.t. mean [y of each intensity match. By com-
puting the mean wq and the inverse covariance matrix C' of
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the unknowns w, we can use Generalized Tikhonov regular-
ization ||A - w — b|| + Al|w — wo||c, which can be solved
using normal equations, yielding

w = wo + (ATA+ \C) AT (b — Awyp). (8)

To compute the mean wy = (cg, Ko), we observe that
the mean of the log-inverse response curves is simply ob-
tained when all model coefficients but the DC component
are zero, i.e., ¢; = 0 V¢ > 0. The variances of each model
parameter are given by the square root of the corresponding
singular value from the PCA model. For the prior of K, we
compute the mean change and variance in log-intensity for
each frame pair, which is equivalent to a gain-change model
for adjacent frames under the geometric mean.

Besides effectively removing the exponential ambiguity,
our approach has the benefit that if the right hand side b is
close to zero (the video is uniformly exposed over time),
our regularization reverts to the mean of the EMoR model.

3.4. Irradiance and Tone-mapping

After computing exposure changes and model parameters,
we can map a video directly to irradiance values in case
of video analysis, or in case of visualization employ tone-
mapping.! For tone mapping, we follow the approach of
[4]: After calibration, we compute the normalized irra-
diance range across the video. A bilateral filter is ap-
plied to each irradiance frame, and the frame is divided
by the filtered result to obtain local contrast. Irradiance is
compressed and local contrast added back, and if desired,
boosted by some power larger than one. We apply conser-
vative boosting of the contrast to highlight our calibration,
however if more contrast is desired the power can be in-
creased. Qualitative results shown in this paper are tone
mapped, however for quantitative evaluation we only per-
form normalization to avoid undue influence of tone map-
ping with our error estimation. As our solution is up to

'Note that over/underexposed intensities may be mapped to unintended
colors in the tone-mapped result, e.g., as shown in the rightmost frame of
fig. 1, saturated pixels were mapped to a slightly purple color.

- by ot = 3
Figure 5: Qualitative outdoor example recorded with a cell phone camera. Original at the top, our calibrated result at the bottom.

— —

scale, our tone-mapped results can suffer from a noticeable,
but constant, color tint. To address this issue, we adopt [2]
and compute the irradiance value L. for mean intensity 128
for each color c across frames. Following the gray-world
assumption, we compute the mean irradiance L across col-
ors L., ¢ = 1..3 and bias the log-exposure value of the first
frame by L — L.. Consequently, the mean intensity 128 is
mapped to L across all color channels.

Figure 6:  Two examples on YouTube videos (Top:
youtu.be/ytvSxBiawmM, Bottom: youtu.be/AyX Aw5JtJ1Q)
Top row: Original frames, Bottom: Our calibrated result.

4. Results

We show several qualitative tone-mapped results after auto-
calibration in fig. 1 and fig. 5. We also tested our algorithm
on examples we obtained from YouTube, see fig. 6. Please
watch the accompanying video for more dynamic scenes
and comparison to [5]. For quantitative evaluation and com-
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Figure 7: Result for static camera shot in aperture priority mode. We vary exposure compensation during recording from +9 to -9. (a)
Two frames of the original sequence, ~ 2 seconds apart. (b) The recovered response functions over time via our mixture model. (c) Our
radiometrically calibrated result without tone-mapping. (d) The measured irradiance for the top 6 achromatic checkers after calibration
and calibration error §. Dotted red lines denotes over- and underexposure bounds, dotted grey line, the irradiance of 50% intensity. Our
mixture model is able to calibrate the sequence with high accuracy (calibrated irradiance is constant within < 1% error on average). Color
chart is not used for estimation, only for evaluation and the static sequence is free of undue influences like vignetting and tracking errors.

parison to [13], we measure how well our calibrated results
(without tone mapping) respect the constant irradiance of
Lambertian scene points (based on eq. (1)). To this end,
we used 3 different cameras (Android phone, Nikon DSLR,
and Canon camcorder) and recorded a small dataset of 10
sequences of in- and outdoor sequences, each containing a
color checker chart. Note that our auto-calibration method
is not aware of the presence of the checker, i.e., it is not used
to aid or improve the calibration. After auto-calibration,
we track the checker through the sequence from its manual
specified initial position.

We then measure the calibrated median irradiance
(within a frame) for the top 6 achromatic checkers for each
frame. We define the calibration error § as the variance in
irradiance for each checker across frames after calibration.
Over- and underexposed pixels are excluded from the com-
putation of the variance, specifically those within the im-
mediate vicinity (2%) of the the over- and underexposure
bounds (shown in dotted red in fig. 7). The over- and un-
derexposure bounds are computed by mapping an under-
and overexposure threshold (5 and 250) to the correspond-
ing irradiance value for each frame. Values outside these
envelopes correspond to irradiance values unobserved due
to the camera’s limited dynamic range. Our error plots also
show the locus associated with mean intensity 128 as an in-
dication of the actual exposure change.

We compare the calibration error achieved by our mix-
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Figure 8: Average calibration error (variance of irradiance after
calibration for achromatic checkers) across our dataset for colors
RGB. (a) Error for mixture model w.r.t. different keyframe spacing
vs. a single model as used by [13]. We chose a key-frame spacing
of 15 frames, resulting in an average error reduction of 33%. (b)
Including long feature tracks dramatically improves stability. Each
frame is tracked w.r.t. to its 6 previous neighbors. (c) Choice of
number of basis models. Adding more than 7 models does not
improve results. (d) Effect of A in eq. (8). We chose A = 0.05.

ture model of response with that of a single model [13] in



fig. 8a. We use our implementation (with our additions of
pre-filtering the EMoR model, multiple exposures and reg-
ularization) as quantitative results on video for [13] are not
available. Our model consistently out-performs the single
response model, reducing the calibration error by 33% on
average for keyframes placed 15 frames apart. We also in-
vestigate the choice of our parameters w.r.t. the calibration
error. Including long feature tracks dramatically decreases
the error (fig. 8b), we chose to track each frame w.r.t. previ-
ous 6 ones for our results. We model the CRF by the first 7
basis functions obtained by applying PCA to the log-inverse
EMOoR dataset. Including more basis functions does not de-
crease the error (fig. 8c). Also note, that our regularization
prevents over fitting if more models than necessary are used.
Finally, fig. 8d motivates our choice of A = 0.05.

After demonstrating empirically that the CRF should be
regard time-varying in video (see fig. 3 and fig. 7 for orig-
inal and calibrated result), one might ask how reproducible
the change is. To this end we recorded two different scenes
using the same camera (Canon Vixia HF100), panning to
the left while varying manually the exposure compensation
from +5 over -8 back to +5. As we do not measure the
overall illumination and exposure compensation is adjusted
manually, both videos are only qualitatively similar. Sample
frames and calibrated results are shown in fig. 9. Indepen-
dently of calibration, we conducted our window experiment
described in section 3.1 to observe how similar the changes
in response curves w.r.t. to exposure are across videos for
the same camera. We show the response curves for both se-
quences in fig. 9 for three different window offsets, which
demonstrates reproducibility.

Application: Calibrated Video segmentation We eval-
uate the impact of using our auto calibration method for a
subsequent video analysis algorithm. To this end, we apply
video segmentation to videos affected by gain change and
to their calibrated result. We use the video segmentation
approach of [9], and use their website to generate output
for both the uncalibrated and calibrated videos. As show in
fig. 10 (and in the accompanied video), prior calibration us-
ing our method greatly improves temporal consistency. For
quantitative evaluation, we measure the percentage of re-
gions that are present across all frames for the static exam-
ple (fig. 10, left). Before calibration only 47.2 % of regions
are present across all frames, after calibration this number
is vastly improved (100 %).

5. Concluding Remarks

We have introduced a novel approach for data-driven time-
varying radiometric calibration of video. We show using
empirical evidence that the camera response should be re-
garded time varying across frames and propose a need for a
mixture of responses, leading to better accuracy and consis-

Figure 10:
calibration. Left: 2x2 frames of the original video. Middle col-
umn: Segmented result, heavily affected by gain change. Right:
Segmented result after prior auto-calibration, virtually unaffected
by the gain change.

tently reducing error in mapping intensity to irradiance. We
test our approach on several videos from a variety of cam-
eras, dynamic scenes and web video. A major advantage
of our approach is that it can be applied to any video from
any video camera and does not require any calibration of the
cameras. In addition, we demonstrated the benefit of our ap-
proach for video segmentation. As of current, our model is
based on empirical evidence and the practical limitation that
only the rendered intensity values are observable in video.
In case uncompressed RAW video becomes ubiquitous, we
plan to revisit and expand on our experiments.

As we rely on feature tracks, our algorithm fails if track-
ing fails, e.g., if the video is severely under- or overexposed,
in areas of low texture or with significant motion blur. If
lightening changes drastically, e.g., flickering lights during
night, our algorithm fails as demonstrated in our video. We
currently do not address texture/color transfer to fill-in un-
observed information in under- and over-exposed areas. For
subsequent video analysis algorithms this is not necessary
a limitation, as invalid data should be discarded before the
analysis. Our algorithm is efficient, as we can calibrate a 5s
video @20 fps in 2 min on a consumer laptop.
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