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Because image sensor chips have a finite bandwidth with which to read out pixels, recording video typically requires a trade-off
between frame rate and pixel count. Compressed sensing techniques can circumvent this trade-off by assuming that the image is
compressible. Here, we propose using multiplexing optics to spatially compress the scene, enabling information about the whole
scene to be sampled from a row of sensor pixels, which can be read off quickly via a rolling shutter CMOS sensor. Conveniently,
such multiplexing can be achieved with a simple lensless, diffuser-based imaging system. Using sparse recovery methods, we are
able to recover 140 video frames at over 4,500 frames per second, all from a single captured image with a rolling shutter sensor.
Our proof-of-concept system uses easily-fabricated diffusers paired with an off-the-shelf sensor. The resulting prototype enables
compressive encoding of high frame rate video into a single rolling shutter exposure, and exceeds the sampling-limited performance
of an equivalent global shutter system for sufficiently sparse objects.

Index Terms—optical imaging, video recording, compressed sensing, lensless imaging, video signal processing, CMOS image sensors

I. INTRODUCTION

All digital imaging sensors have a finite bit rate for ex-
porting the digital measurement. This limited bit rate restricts
the space-time bandwidth of the system, forcing a trade-off
between temporal and spatial resolution. Traditionally, increas-
ing the frame rate while maintaining pixel count requires
increasing the chip bandwidth, which is expensive. Compres-
sive video approaches seek to break this trade-off by spatio-
temporally compressing the video data prior to exporting the
bits, effectively encoding more information into the limited
bandwidth. While most work in compressive video has focused
on redesigning the readout architecture of CMOS chips, we
instead propose a compressive video scheme based on optical
multiplexing using a diffuser. We demonstrate the concept
using a simple lensless camera with an off-the-shelf rolling
shutter sensor. Our system effectively encodes 140 frames into
a single still image.

(b) Diffuser-based camera

Diffuser

(a) Lens-based camera

SensorLens

Fig. 1. Diffuser-encoded pseudorandom multiplexing ensures that every row
in the sensor measurement contains information from nearly every scene point.
(a) A lens-based camera maps each scene point to a point on the sensor. If the
sensor samples a subset of rows at a time (outlined in white), as with rolling
shutter, only one row of the scene is visible. For example, the cyan point is
completely missed in this case. (b) Multiplexing optics, such as a diffuser,
spread information across the sensor, allowing the entire scene to be sampled
by the subset of rows illustrated here. This effect enables our lensless system
to recover a video at a frame rate set by the sensor line scan rate.

Increasing the frame rate of a sensor with fixed bandwidth
can be achieved by reading a subset of pixels at each frame.
However, when using one-to-one imaging optics (i.e. lenses)
that map each scene point to a point on the sensor, information
is lost from parts of the sensor that are not sampled. Figure 1(a)
illustrates a sensor with a narrow band of pixels actively
recording, placed at the image plane of a lens, with a simple
scene consisting of two point sources. The cyan source falls
outside of the active exposure band and is therefore not
measured. To solve this problem, we propose using spatial-
multiplexing optics such that even a small subset of sensor
pixels (e.g. one row of a 2D array) contain information from
most scene points. Our approach consists of replacing the lens
with a pseudorandom phase diffuser placed near the sensor,
which maps each point to a distributed, high-contrast pattern of
caustics on the sensor. As shown in Fig. 1(b), the information
from every scene point falls on nearly all sensor pixels, and is
therefore present in the band of rows being read. Recovering
a video from a sequence of row measurements then requires
solving an underdetermined inverse problem. Because the
diffuser produces pseudorandom noise-like measurements, we
interpret this as a compressive sensing system, reconstructing
the video using sparsity-constrained nonlinear optimization.

To implement this idea, we leverage the ubiquity of rolling
shutter CMOS sensors. During capture of a single image,
rolling shutter sensors expose each row of pixels over a unique
time window. This encodes temporal information into the 2D
measurement. By randomly multiplexing the scene onto such
a sensor, we can recover a video of a dynamic scene wherein
each frame corresponds to a row of the rolling shutter capture.

Our experimental prototype recovers 140 frames of video at
4, 545 frames-per-second (fps) from a single 2D rolling shutter
capture. The system is built using a dual-shutter sCMOS
sensor (Fig. 2). We analyze the spatial and temporal resolution
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of the system and show that, for sparse scenes, the spatial
resolution significantly surpasses that of much more expensive
global shutter approaches at comparable frame rates.
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Fig. 2. High-speed video from a single-shot rolling shutter image captured
by a lensless computational camera. Each row of the recorded image, b, is
captured at a unique time and contains information about nearly all scene
points due to the inherent multiplexing of our lensless imager. The optics and
exposure process can be described by a linear forward model, A, which is
used to solve for the time sequence of 2D images (video), v, via non-negative
least squares with a 3D gradient sparsity penalty, ‖∇xytv‖1, weighted by τ .
Each frame of the raw 33 fps recording is expanded to 140 frames giving an
effective frame rate of 4,545 fps.

II. RELATED WORK

To capture high-speed dynamics with conventional sensors,
one must overcome the bandwidth limit of digital imaging
chips. Compressive video works by spatio-temporally coding
the video data prior to capture. Rather than capture a video,
then compress it to exploit redundancies, compressive video
does the compression step in hardware and captures only rele-
vant data. For example, Hitomi et al. proposed a compressive
video acquisition scheme that reconstructs a high-speed video

from a single image (9 − 18× temporal upsampling at 1000
fps) [1]. The approach relied on pixel-wise programmable
exposure timing to modulate the recorded image temporally
during the acquisition. Reconstruction was performed through
a dictionary of space-time signal patches that is learned offline.
Experimentally, the approach used a spatial light modulator
(SLM) and global shutter sensor, but could theoretically be
implemented on-chip in a CMOS architecture. Using strobed
exposure with unique sequences, Veeraraghavan et al. re-
constructed a high-speed video of periodic events at 2000
fps from a video captured by a camera operating at 25
fps [2]. Another technique, proposed by Llull and Yuan et al.,
achieved high-speed video reconstruction (22 frames at 660
fps) from a single-shot coded-aperture image that is obtained
by translating binary amplitude masks within the focal plane of
a global shutter sensor [3], [4]. Koller et al. later improved the
mask design [5] and Liu et al. proposed a reconstruction that
exploits the low-rank structure of the underlying scene [6].
The commonality between these setups is that each pixel is
temporally modulated during the exposure, and all require
bulky and expensive hardware. Our technique, in contrast, uses
simple optics and spatial multiplexing rather than temporal.

Rolling shutter can induce undesirable artifacts when imag-
ing dynamic scenes. Removal of such artifacts is an active field
of study. Liang et al. characterized and corrected the geometric
distortions [7]. Saurer et al. considered extensions for stereo
imaging and registration with rolling shutter cameras [8].
When camera motion exists, Su and Heidrich [9] proposed
an approach to reconstruct a sharp image by simultaneously
removing the motion blur and rolling shutter distortions.

Rather than undoing the effects of rolling shutter sensors, we
seek to leverage them for performance. Gu et al. have proposed
controlling the readout timing and exposure length for each
row [10] such that the exposure time discrepancy in subsequent
rows enables one to flexibly sample the 3D space-time vol-
ume of the dynamic scene. In simulations, their architecture-
level proposal was beneficial for computational photography
applications such as high dynamic range (HDR) imaging and
auto-exposure, but did not successfully resolve video using
sparse recovery methods. Oieke and Gamal proposed another
architecture that used spatial multiplexing at the chip-level,
which allowed them to reach 1920 fps data rate for 256×256
pixel count. Another method uses digital micro-mirror devices
(DMDs) for aperture coding and streak cameras with fem-
tosecond speeds to reconstruct ultrafast videos (10 trillion fps)
from a single image [11], [12]. Liu et al. considered similar
ideas and used a galvanometer to perform streaking (i.e. tem-
poral shearing of the scene) [13]. While this concept is similar
to ours in spirit, they do not consider spatial multiplexing and
they rely on complex, costly hardware. Finally, Sheinin et al.
recently used rolling shutter and spatial multiplexing to detect
and de-mix the contributions from flickering light bulbs in
a scene, providing useful information about the power grid.
The authors observed that spatial-multiplexing via a diffuser
enabled observation of spatio-temporal information, but they
do not considering high-speed imaging directly [14].

Spatially-multiplexed image capture has been a key ingre-
dient for compressive imaging [15]. Using amplitude masks,



Salman et al. realized such ideas on a lensless and compact
system [16]. Diffuser (i.e. phase mask)-based lensless cameras
have been shown to be capable of 2D imaging [17], and single-
shot 3D imaging [18]. Here, we show that diffusers are useful
optical elements for compressive video systems, allowing each
frame of video to be sampled from a small subset of sensor
pixels. Our system can be calibrated from a single image,
fabricated using simple lab equipment, and reconstructed using
computationally-efficient convolution-based algorithms.

III. FORWARD MODEL AND INVERSE PROBLEM

In this section, we outline a forward model for the optics
and the rolling shutter exposure, as well as the inverse problem
approach. We will use this model to analyze the temporal
resolution of the system in Section V.

A. Rolling shutter model

In general, the exposure at each point on the sensor, L(x, y),
can be modeled as a temporal integral,

L(x, y) =

∫ ∞
0

S(t|x, y) · ṽ(x, y, t)dt, (1)

where ṽ(x, y, t) represents the time-varying optical intensity
on the sensor, and S(t|x, y) ∈ {0, 1} is a 3D indicator, the
shutter function, that encodes the temporal exposure window at
each (x, y) position. While our approach could be generalized
to different exposure patterns, we focus on rolling shutter due
to its ubiquity. Rolling shutter is a column-parallel approach in
which each row of pixels exposes for Te seconds, beginning
at a delay, Tl, after the previous row began (typically tens-
of-microseconds). Because rolling shutter records row-by-row,
we drop the x-dependence of the shutter function, denoting it
as S(t|y) for the remainder of the paper. At any given instant, a
small band of Nl = Te/Tl rows is actively recording photons.
For a sensor with pixel size ∆, this is depicted in Fig. 3,
with red indicating where S(t|y) = 1. Our goal is to spatially
multiplex scene information into the exposure band at each
time point, which enables each band to produce a frame of
the final video, achieving frame rates equal to 1/Tl fps.
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Fig. 3. (Left) Spatio-temporal illustration of the rolling shutter function
S(t|y) for a sensor with pixel size ∆ and exposure time Te. Red depicts
active exposure, and gold is the readout time. (Right) A slice through S at
time tk . Each row begins exposing Tl seconds after the previous row begins,
with red representing actively exposing rows, and blue representing completed
rows. The number of rows simultaneously exposed is Nl = Te/Tl, which in
this example is 3. For simplicity, we choose Te such that Nl is an integer.

B. Lensless imaging model
In order to achieve the desired multiplexing, we use a simple

lensless architecture (see Fig. 4) that employs a diffuser –
a pseudorandom phase optic – as a computational imaging
element [18], [19]. The system comprises a diffuser placed
a distance d0 from the rolling shutter sensor, with the scene
at distance di from the diffuser. An aperture placed on the
diffuser ensures that the resulting Point Spread Function (PSF)
is shift-invariant, and enables simple calibration [18], [19].
For magnification m = di/d0, the sensor plane intensity
can be modeled by convolving the magnified scene intensity,
v(x/m, y/m, t), with h(x, y), the on-axis PSF [20]:

ṽ(x, y, t) = v
( x
m
,
y

m
, t
)

(x,y)∗ h(x, y), (2)

where
(x,y)∗ denotes linear convolution over (x, y). The dif-

fuser’s PSF fills nearly the entire sensor with a pseudorandom
caustic intensity pattern that is unique for each shift. This
high degree of spatial multiplexing is key to how our system
works, enabling any horizontal slice of ṽ(x, y, t) to contain
information about nearly all (x, y) positions in the scene.
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Fig. 4. Image formation for a time-varying scene with two point sources
(one yellow, one blue) flashing at unique y locations and times t0 and t1.
(Left) Data measurement at times t0 and t1, with the time varying optical
intensity, ṽ(x, y, ti) rendered on the sensor, and dual shutter function S(ti|y)
outlined in white. (Middle) The instantaneous exposure S(ti|y) · ṽ(x, y, ti),
is shown for each point source. (Right) The captured rolling shutter image
is their sum. Due to the spatially-multiplexed optics, nearly all scene points
project information into S(y, t). This provides enough information to recover
a video from a single image by solving an inverse problem.

C. Combining lensless and rolling shutter models
To solve for the video, we need a discrete forward model.

We treat the measurement as a vector of samples taken from
the continuous exposure L(x, y): b[i, j] = L(j∆, i∆), where
i and j index the sensor rows and columns, respectively. This
leads to a discretized (magnified) scene, denoted v, on a 3D
spatio-temporal grid with lateral spacing ∆. The temporal
spacing is Tl, as discussed in section V. This leads to the
linear discrete forward model:

b =

K−1∑
k=0

Sk[i] ·
(
h[i, j]

[i,j]∗ v[i, j, k]

)
(3)

= Av (4)
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Fig. 5. Left: 16-bit RGB image of the diffuser’s caustic point spread function
(PSF) for a white LED point source a distance 830 mm from the diffuser.
A contrast stretched crop (γ = 0.5) is shown inset to show the structure of
the caustics. Right: A slice from the normalized autocorrelation of the green
channel showing a sharp main peak and relatively low side lobes, making this
pattern suitable for compressed sensing.

where
[i,j]∗ represents discrete linear 2D convolution over the

spatial dimensions, Sk[i] = S(kTl|i∆) is the discrete shutter
function, and K is the number of recovered frames. Note
that for global shutter, this would be a cropped convolution
identical to [17], [18], but here we absorb the crop into the
definition of Sk[i]. This linear forward model, denoted A in
matrix form, is depicted in Fig. 4.

D. Video Recovery

To recover a video from a single rolling shutter measure-
ment, we must solve an underdetermined linear inverse prob-
lem. For a dual-shutter camera such as ours, each symmetric
pair of rows in the measurement corresponds to a frame in
the reconstruction, so we recover approximately K = M/2
frames from a single M × N capture. The diffuser produces
pseudorandom noise-like measurements, so our system fits
within the framework of compressed sensing (as demonstrated
in [18]). Hence we can solve the underdetermined problem for
sparsely-represented scenes using `1 minimization. We impose
a weighted 3D total variation (3DTV) prior on the scene, so
the reconstructed video, v∗, can be written as the solution to:

v∗ = arg min
v≥0

1

2
‖Av − b‖22 + τ ‖∇xytv‖1 , (5)

where ∇xyt =
[
∇x ∇y α∇t

]ᵀ
is the matrix of forward

finite differences in the x, y, and t directions. We include
an additional tuning parameter, α, that weights the temporal
gradient sparsity penalty relative to the spatial dimensions
(typically set between 5 and 30). We use FISTA [21] with
the weighted anisotropic 3DTV proximal operator, imple-
mented using parallel proximal methods according to [22].
For computational efficiency, we never instantiate the matrix
A explicitly, but instead compute the matrix-vector products
A(·) and AH(·) using a combination of zero-padding, FFT-
based convolutions, and cropping. Each color channel of the
video is processed separately, using the corresponding color
from the calibrated PSF. This inherently compensates for much
of the chromatic aberration in the system.

IV. EXPERIMENTS

A. System Design

We built our prototype around a PCO Edge 5.5 sCMOS
sensor, set to slow-scan rolling shutter mode. The dual shutter
reads simultaneously from the top and bottom of the sensor.

Our homemade diffuser consists of randomly spaced
lenslets. Because the lenslets concentrate light into sharp
points, random lenslets have been shown to perform well
in low-light situations [23], as is typical with high-speed
imaging. Additionally, the uniformly random lateral placement
of the lenslets ensures that each scene point produces a unique
pattern on the sensor, and contributes a similar amount of light
to each exposure band. This is not true near the edge of the
sensor, as discussed in Section V-D.

We fabricate our random lenslet diffusers using the molding
process outlined in Section V-C. Each lenslet comprising
the diffuser has a focal length of 12.7 mm, yielding an
approximately 30◦ by 40◦ (width-by-height) half field-of-view
(FoV), which is reasonable for photographic scenes [17]. The
system is calibrated using a single image of a white point
source placed in the scene. Figure 5 shows a 16-bit color image
of the PSF along with its 2D autocorrelation.

B. Experimental results

To test our system, we captured a variety of dynamic scenes.
The raw data is downsampled by either 4× or 8× to match
the expected temporal bandwidth (see Section V-A). Videos
are reconstructed at 640 × 540 × 140 voxel grid for 4×
downsampling, or 320× 270× 140 for 8×. In both cases the
video spans 30.8 milliseconds. Two example reconstructions
are shown in Fig. 6. The first is a tennis ball dropping into a
hand. The second is a green foam dart ricocheting off of an
apple placed on a text book. In both cases, motion is clearly
visible with good temporal detail present (see Supplementary
Videos [24]). Due to system geometry, the outer sensor rows
are relatively insensitive to the center of the object, degrading
the quality of the first 30-40 frames. This is not a fundamental
limit of our approach, but is rather a consequence of our
implementation (see Sec. V-D for more discussion).

V. ANALYSIS AND DISCUSSION

In this section, we analyze the temporal behavior of the
system, showing that the temporal frequencies are band-
limited by the exposure time. This motivates the design choices
of our prototype, including the diffuser, exposure time, and use
of binning (downsampling).

A. Temporal resolution

Next, we analyze the temporal frequency content of the
measurements to validate temporal resolution. Intuitively, short
exposure times are required to achieve high temporal resolu-
tion. We will show that, because our system is only compres-
sive in space, its temporal resolution is Nyquist limited, with
an inherent band-limit set by the exposure time Te, and the
sampling rate determined by the line time, Tl. To show this,
we begin by writing an expression for S(t|y). As depicted in
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Fig. 6. Experimental videos reconstructed from single-shot images (with 660 µs exposure). The top example shows a tennis ball falling into a hand,
reconstructed with with 8x downsampling, and cropped to the center 135 × 160 pixels (see Supplementary Video 1 [24]). The bottom example shows a green
foam dart ricocheting off an apple with 4× downsampling, cropped to 270 × 320 (see Supplementary Video 2 [24]). In both, the raw captured data is shown
on the left, with a few frames from the reconstructed video shown at right. The final result contains 140 frames.

Fig. 3, S(t|y) is a 1D temporal rectangular window of width
Te seconds, offset by Tl seconds per row:

S(t|y) = rect

[
t− Te

2 − by/∆cTl
Te

]
, (6)

where by/∆c represents the row index. Substituting this into
the continuous model for rolling shutter acquisition, Eq. 1:

L(x, y) =

∞∫
−∞

rect
[
t− tc(y)

Te

]
ṽ(x, y, t)dt, (7)

where we define tc(y) := Te

2 + by/∆cTl for compactness.
Upon inspection, we see that this is a 1D convolution in
the time dimension between the time-varying intensity at the
sensor, ṽ(x, y, t), and a rectangular window of width Te. The

result of the convolution is evaluated along the slice of 3D
space-time defined by (x, y, t) = (x, y, tc(y)):

L(x, y) =

[
ṽ

t∗ rect
(
t

Te

)] ∣∣∣∣
(x,y,tc(y))

. (8)

This captures both the temporal band-limiting inherent in the
exposure process as well as the mapping from time to row.
Next we substitute Eq. 2, the expression for the spatially-
multiplexed video, into Eq. 8:

L(x, y) =

{[
h

(x,y)∗ vg

]
t∗ rect

(
t

Te

)} ∣∣∣∣
(x,y,tc(y))

=

{
h

(x,y)∗
[
vg

t∗ rect
(
t

Te

)]} ∣∣∣∣
(x,y,tc(y))

, (9)

where vg = v(x/m, y/m, t) and the convolutions have been
reordered, associating the temporal low-pass filter with the
input signal. This shows that, while we are multiplexing in
space, the temporal information in the system is band-limited
by the pixel exposure time.
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Fig. 7. Resolution analysis using a sample consisting of a linear array of 4 LEDs, pulsed synchronously. We vary the pulse frequency of all four simultaneously.
(Left) The raw data (660 µs exposure time) contains 4 copies of the caustic PSF pattern, each shifted in the horizontal direction according to each LED’s
spatial position, and the temporal patterns modulate the caustics in the y-direction. (Middle) x − t projections of the reconstructed video. As expected, the
performance degrades for the LEDs with shorter pulse periods, up to the theoretical limit of 660 µs predicted by Eq. 8. (Right) Temporal power spectra of
the projections, clearly showing peaks in the time-direction moving as the LED frequency varies.

Finally, we introduce sampling. As shown in Section III-C,
the measured image is generated by sampling L(x, y) on a
grid of spacing ∆. Applying this sampling to the arguments
of Eq. 9, we get tc(y = i∆) = Tlbi∆/∆c+Te/2 = Tli+Te/2.
In other words, due to the implicit mapping of time to space,
the rolling shutter effectively samples at a rate of 1/Tl Hz.
Hence we expect to avoid temporal aliasing when Te > 2Tl,
even if the scene contains faster dynamics. This is also why,
as discussed in Section III-C, we discretize the video on a
temporal grid of spacing Tl.

For our sensor, the minimum exposure time is 500 µs,
with a maximum line time of 27.5µs. This would result in
significant temporal oversampling, which is computationally
wasteful. Thus, in practice, we use a combination of lateral
downsampling of the raw data and temporal binning of the
reconstruction to maintain inter-frame times of 220µs (4,545
fps), which better matches the minimum exposure time. Hence
we expect to observe dynamics up to 2 kHz at best. Note
that our reconstruction is highly nonlinear, relying heavily on
nonnegativity and 3DTV denoising. As a result, this analysis
represents only an upper bound to the frequencies we can hope
to recover. In practice, measurement noise, calibration error,
and regularization reduce performance (see Fig. 7).

B. Resolution validation

As experimental validation of spatial and temporal reso-
lution, we use a linear array of 4 LEDs flashing in unison
with variable frequency square waves. We space the LEDs at
the minimum separation resolvable by our system, which we
establish empirically by varying the spacing until the LEDs are
barely resolved in the reconstructions (6 mm separation at a
distance 830 mm from the diffuser, or 0.4◦ angular resolution).
We use an exposure time of Te = 660µs, so Nl = 3 rows
are exposing in each band. This should result in maximum
frequency of 1, 515 Hz.

This dynamic scene can be expressed as v(x, y, t) =
u(x, y) · f(t), where u(x, y) represents the 2D distribution
of LEDs, and f(t) is the modulating waveform. For such an

object, the intensity inside the camera body will be ṽ(x, y, t) =
f(t) · (h(x, y) ∗ u(x/m, y/m)). Plugging this into Eq. 8, we
see that the continuous exposure at the sensor will be

L(x, y) =

(
h

(x,y)∗ ug

)
·
[
f(t)

t∗ rect
(
t

Te

)] ∣∣∣∣
t=tc(y)

, (10)

where ug = u(x/m, y/m). Therefore we expect the mea-
surement to look like the 2D scene convolved with the PSF
and modulated in the y-direction by the low-pass filtered
waveform. Figure 7 shows raw data from our experimental
system. Because the 2D scene is 4 point sources in a line, this
appears as 4 laterally shifted copies of the PSF, periodically
modulated in the y-direction, as expected.

While our analysis provides a bound, experimental errors
and nonlinear reconstruction can further deteriorate perfor-
mance. To test how close we get to the limit, we recorded
measurements with LED pulse rates varied from 2, 640µs
(378.78 Hz) to 660µs (1,515.15 Hz), the highest frequency
predicted by the theory. The results are shown in Fig. 7. On
the left is a raw measurement with temporal period T = 1, 980
µs (505 Hz). A strong envelope is clearly visible, modulating
the measurement with a period of T/Tl = 9 pixels in the y-
direction. In the reconstructions, we can clearly resolve all 4
LEDs spatially in all cases. At lower frequencies, the pulses
are well resolved in time, with the harmonic structure of
the square waves visible in the power spectra. As the period
decreases, the temporal contrast reduces, with 660 µs period
being totally unresolved.

For comparison, to record the same dynamic scene with
LEDs pulsing at T = 1980µs using global shutter would
require 30 frames at greater than 1, 010 fps. Within our
system’s sample budget of 270×320 = 86, 400 samples, each
frame from the corresponding global shutter system would
only contain 49 × 58 pixels. This is a 6× degradation in
lateral resolution compared to what our compressive scheme
achieves experimentally. Hence, at least for sparse scenes, the
compressive approach surpasses a direct sampling scheme.



C. Diffuser fabrication

Based on simulations, we found that a diffuser consisting of
randomly-spaced lenslets performed better than off-the-shelf
diffusers [23]. To fabricate, we repeatedly indent a copper
block with a ball bearing of radius 7 mm. The indentations are
made at random spacing (by hand) over an area larger than the
14.04 × 16.64 mm size of the PCO Edge 5.5 sensor. The result
is a mold that is piecewise spherical with curvature matching
the ball bearing. We use this block as a mold for UV-cured
epoxy (Norland 61), with microscope slide on the top surface
to ensure flatness. We then cure the epoxy and separate it
from the mold. The epoxy has refractive index 1.56, yielding
a diffuser with random lenslets of approximate focal length
f = 12.5mm. We mask the diffuser with a 13 ×15.5 mm
rectangular aperture, then mount the diffuser approximately
12.4 mm from the sensor. This results in magnification of
−.015× for objects placed 830 mm away.

D. Artifacts due to time-varying FoV

Given the structured sampling pattern of a rolling shutter
sensor, we can reason about the system FoV geometrically.
The set of scene points visible to each sensor pixel is deter-
mined by projecting rays from the pixel through the aperture.
From this simple picture, we see that each pixel has a unique
FoV. Because the rolling shutter pattern reads a band of rows
simultaneously, this effectively means the FoV is varying with
time: early in the exposure, the outer sensor rows are active,
and cannot see the center of the FoV, while the inner rows
(later frames) can. Because the sensor is blind to the on-axis
points early in the exposure, these frames are determined via
the regularizer. This explains the wiping artifact present in our
videos in the early frames. If we were to use a single-shutter
sensor, the effect would be more pronounced, as the FoV
would sweep across the scene. This issue could be alleviated
by distributing the active pixels more evenly across the sensor
plane or by removing the aperture. In the current system,
we simply discard the early frames of the video. In future
builds, we could remove or enlarge the aperture, though this
will preclude single-image calibration, and will lead to our
shift-invariant lensless model breaking down at high angles.
Such artifacts are correctable [23], but lead to much slower
processing times, and so we leave this for future work.

E. Limitations and future work

For our prototype, there are two main limiting factors: the
quality of the optics, and the CMOS sensor dynamics. Because
the sensor’s minimum exposure time limits the maximum
usable frame rate, sensors with shorter exposure will perform
better. Additionally, to match the line time to the exposure
time, we would like to freely adjust the sensor’s line timing;
however, our sensor does not allow this. This leads us to use
spatial downsampling as a workaround to effectively increase
the line time to better match the band-limit.

The second limiting factor is the quality of the diffuser.
While our homemade diffusers are sufficient for proof-of-
concept work, the resulting optics is fairly low quality, and

the process is not well controlled. We can achieve the target
focal length, but the focal spots (see Fig. 5) are extremely
aberrated. This works well with the downsampling approach,
as the caustics are not sharp enough to warrant using the
full resolution sensor. However, to push our approach to the
limit, we would need optics that can produce multiplexed PSFs
with very sharp features. Coupled with a sensor capable of
short exposures (on the order of the line time), our proposed
architecture could achieve extremely high spatio-temporal res-
olution. For example, our current sensor can operate with line
times as fast as 9.17 µs, or over 100,000 fps.

Another limiting factor is the reduced measurement signal-
to-noise caused by the multiplexing. Pushing this system to
100,000 fps would require exposure times shorter than 10 µs.
Because the light from each point is distributed across the
sensor with only a few pixels being recorded in each frame,
this would require extremely bright scenes. Additionally, the
combination of multiplexing and regularized reconstruction
generally reduces the dynamic range of the recovered image,
further limiting the method to high contrast scenes.

As with most compressed sensing systems, it is difficult
to validate the performance in general, since it is object
dependent. We know from prior work [18] that the perfor-
mance degrades with scene complexity, and we observe this
effect. While it does work for dense scenes, we require higher
regularization, effectively limiting the usefulness for scenes
that do not fit a gradient sparsity prior well. Introducing more
sophisticated priors could mitigate this issue.

Our reconstructions are computationally expensive relative
to a direct sampling approach. Achieving extremely short
exposures and the fastest line time possible would require not
downsampling the measurement, leading to a computationally
expensive 3D inverse problem at gigavoxel scale.

While we chose a dual-shutter camera for the experimental
validation in this work, exploring the use of different pro-
grammable exposures could be extremely fruitful. Demon-
strating the system with the more commonplace single shutter
CMOS architecture would make it widely accessible, as the
only other required equipment is a diffuser. Our current
sensor also has a delay far longer than the line time between
each sequential frame, preventing us from stringing together
sequential frames into longer videos without a gap (see Sup-
plementary Video 4 [24]). A sensor that streamed continuously
could alleviate this. It could also be useful to couple multi-
plexing optics with randomized sensor read patterns [25], as
this will certainly lead to better video recovery.

CONCLUSION

In conclusion, we have demonstrated that a spatially-
multiplexing lensless camera can turn rolling shutter from
a detriment into an advantage. We built a proof-of-concept
system that resolves 1, 500 Hz dynamics at a frame rate of
4, 545 frames per second. We derived a theoretical temporal
resolution bound based on our forward model, and confirmed
our theoretical predictions with experiment. Our system relies
on compressed sensing to solve an extremely underdetermined
problem. We successfully observed samples with space-time



bandwidth product far exceeding what could be observed with
a direct sampling approach. Finally, we demonstrated our ap-
proach on a variety of fast-moving scenes, reliably recovering
high speed videos from single rolling shutter images.
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