Rationale and Architecture Principles for Medical Application Platforms

John Hatcliff
Kansas State University

Andrew King, Insup Lee
University of Pennsylvania

Michael Robkin
Anakena Solutions

Eugene Vasserman
Kansas State University

Abstract—The concept of “system of systems” architecture is
increasingly prevalent in many critical domains. Such systems
allow information to be pulled from a variety of sources, ana-
lyzed to discover correlations and trends, stored to enable real-
time and post-hoc assessment, mined to better inform decision-
making, and leveraged to automate control of system units.
In contrast, medical devices typically have been developed as
monolithic stand-alone units. However, a vision is emerging
of a notion of a medical application platform (MAP) that
would provide device and health information systems (HIS)
interoperability, safety critical network middleware, and an
execution environment for clinical applications (‘“apps”) that
offer numerous advantages for safety and effectiveness in health
care delivery.

In this paper, we present the clinical safety/effectiveness and
economic motivations for MAPs, and describe key character-
istics of MAPs that are guiding the search for appropriate
technology, regulatory, and ecosystem solutions. We give an
overview of the Integrated Clinical Environment (ICE) — one
particular achitecture for MAPs, and the Medical Device
Coordination Framework — a prototype implementation of the
ICE architecture.

Keywords-computing platform, medical device, interoperabil-
ity, safety-critical systems, certification

I. INTRODUCTION

Historically, medical devices have been developed as
stand-alone units. Though many devices on the market
already include some form of connectivity (serial ports,
Ethernet, 802.11 or Bluetooth wireless, etc.), connectivity is
usually only a unidirectional flow to log data/events from
these devices in a predetermined manner. There are no
widely adopted interoperability standards that can support
innovations based on leveraging connectivity. Each device
usually functions as a stand-alone system with its own set
of sensors to assess patient physiological properties and
possibly actuators to deliver treatment. Typically, devices
support general care cases and cannot be customized to take
advantage of context-specific information about a particular
care-giving context. Because devices are not context aware,
they often generate nuisance alarms that a clinician can
immediately recognize as irrelevant or not indicative of
a patient’s true health status. There are no engineering

This work is supported in part by the National Science Foundation under
Grants #0734204, 0932289,1065887, and by the NIH/NIBIB Quantum
program.

Alasdair MacDonald
eHealth Technology

Sandy Weininger
US Food and Drug Administration

Anura Fernando
UL (Underwriters Laboratories)

Julian M. Goldman
Massachusetts General Hospital
CIMIT MD PnP Program

and development approaches that support easy and rapid
implementation of “smart alarms” that integrate physiologi-
cal data from multiple devices and use context awareness
to suppress false alarms. In situations where devices are
currently integrated, they are vertically integrated by a
single manufacturer, and the configuration of the devices
in the system is known a priori. Due to the manner in
which devices are constructed, it is difficult to update the
algorithms or other capabilities, leading to a situation where
“technology refresh” is more difficult and costly than it
should be and technology evolution in health care is slower
than it could be.

A. Information Integration in Other Domains

In contrast to the state of affairs in the medical context,
the impact of information integration in other domains has
been driven by three important trends:

Device Interoperability: Standards such the Universal
Serial Bus (USB) Plug-n-Play, IEEE 1394 (FireWire), and
IEEE 802.11 (Wi-Fi) have revolutionized the consumer
electronics domain by enabling heterogeneous collections of
devices from different manufacturers to interconnect. These
standards provide communication protocols as well as device
discovery mechanisms. Moreover, in the case of USB and
FireWire, they provide a mechanism for a device to dynam-
ically transmit a description of its capabilities at connection
time, enabling interoperability (but at a level lower than
application logic). Compliance testing to standards, often
carried out by third parties, plays a crucial role and provides
justification for a consumer to trust that a device will
interoperate correctly. Third-party testing is supplemented
with development environments and conformance test suites
that device developers can use during development prior
to official third-party testing to determine if they correctly
implement the standard.

Platform Approach: Systems are integrated using a
computing platform that provides an execution environment,
resources, standard libraries, and services to enable devel-
opers to more easily assemble applications for a particular
domain. Computing platforms are often based on virtual
machines or standardized APIs, which make applications
less dependent on underlying hardware (allowing hardware
to be changed more easily) and enable applications to run

consistently on different hardware. Additionally, platforms
provide greater safety and security by limiting access to
hardware and software resources to well-defined APIs and
enforcing limits at runtime.

Recently, the mobile device space has brought us some
of the most successful platforms (e.g. iOS and Android).
Rather than rely exclusively on pre-loaded applications and
services, these platforms have drastically reduced the cost of
entry for software manufacturers by providing comprehen-
sive software development kits (SDKs) including compilers,
debuggers, analyses, etc., tailored to the specific workflows
involved in building and validating applications for these
platforms. Combined with well-defined interfaces to phone
features such as (a) hardware devices like GPS, accelerome-
ters, and proximity sensors, (b) local and Internet-accessible
services like voice recognition, and (c) accessory devices
accessible via Bluetooth and Wi-Fi, this has led to the
development of an enormous commodity market for third-
party applications (“apps’), which provide rich functionality
that adds significant value to the user experience. Platform
uptake by both developers and users is further facilitated
by an app certification process that rejects or revokes apps
which use platform resources incorrectly or inappropriately
or diminish the user experience.

Embracing a ‘“Systems Perspective”: The notion of
an integrated “system of systems” is becoming increasingly
prevalent. Small to mid-scale examples include automotive
and avionics systems, where many microcontrollers, sensors,
and actuators interconnect via a communications infrastruc-
ture that allows information from each set of sensors to cal-
culate actions of actuators across the entire system. In larger
examples, military command and industrial control systems
are increasingly moving from stand-alone, monolithic de-
signs to integrated platforms. Just as platforms provide
standard APIs to hardware services, information systems can
provide a consistent view of local and remote services to
applications, allowing for rapid application development and
increased innovation as the process of moving from ideas to
implementations is streamlined with standardized APIs and
widely available easy-to-use tools.

B. The Need for Solutions

Why have these advances not propagated to the medical
device domain? It is certainly not due to lack of demand.
There are several significant pressures that are driving the de-
mand for innovative solutions and new paradigms of medical
systems. An aging population is expected to produce a huge
increase in healthcare demand. A highly mobile population
is increasing the need to more easily exchange healthcare
information across large geographical areas. Government
emphases on outcome-based medicine that focus on both
quality enhancements and cost reductions are requiring a
much more encompassing collection of clinical data and
tracking of clinical workflows. Numerous opportunities for

addressing these pressures would accrue if key aspects of the
technology trends above could be harnessed for use in the
healthcare arena. From a systems engineering perspective,
it is well understood that the current state of practice
uses non-integrated devices and health information systems
cooperatively according to informal manual protocols to
deliver clinical solutions. Providing the IT infrastructure to
integrate devices and information systems and automatically
coordinate their actions as a “system of systems” using
computer coded protocols would provide opportunities to
implement multi-device smart alarms and safety interlocks,
enable clinical decision support systems, automate clinical
workflows, and implement multi-device closed loop control.
Engineering a safety-critical medical computing platform
would encourage the development of a commodity market
of safe and innovative clinical apps that implement these
envisioned multi-device system functionalities.

C. The Obstacles to Progress

Fundamentally, what is needed to enable a “systems of
systems approach” to clinical care is a means by which
systems can be composed easily from heterogeneous “build-
ing blocks” (devices and IT systems of different types and
from different manufacturers) in a safe way. While there
are numerous challenges in achieving this vision, there are
specific obstacles that impeding progress.

Lack of Appropriate Interoperability Standards: While
there has been significant activity on standards and organiza-
tions for health information exchange (e.g., HL7, DICOM,
IHE), these do not address the technical requirements for
device connectivity, safety, and security needed for systems
engineering. The most mature existing device interoperabil-
ity standard, IEEE 11073 (Point of Care, or POC), and
its less ambitious and more modern relative IEEE 11073
(Personal Health Devices, or PHD) does not support needed
real-time, safety, security, and device control capabilities.

Lack of Appropriate Architectures: Within other critical
domains, progress is being made on architectures support-
ing a platform perspective and compositional construction
of systems. In avionics, Integrated Modular Avionics sup-
ports building systems with hard real-time constraints using
(a) networked computing modules with different levels of
criticality, (b) common interfaces for both hardware and
software, and (c) principles of portability across an assembly
of common hardware modules. In the security community,
the Multiple Independent Levels of Security (MILS) archi-
tecture aims to define common infrastructure components
including a base computing platform (called a separation
kernel) that facilitate rapid component-based development
of information assurance applications that satisfy stringent
certification criteria by appealing to foundational data and
time partitioning properties provided by the underlying in-
frastructure components. One of the explicitly stated goals
of both of these architectures is to facilitate the growth of

commodity markets of verified/certified system components,
which will in turn enable faster, cheaper, and more reliable
construction of systems. There is nothing resembling this
type of approach for safety critical systems in the medical
device community.

Lack of a Regulatory Pathway: Currently, the U.S. Food
and Drug Administration (FDA) and analogous agencies
world-wide phrase their regulatory activities in terms of
complete systems — there is no pathway now for obtaining
regulatory approval for individual system constituents and
subsequently allowing a complete system to be assem-
bled and deployed from approved constituents with sig-
nificantly reduced regulatory approval of the system itself
(i.e., “component-wise” regulation). Under existing rules,
this implies that when a system includes interchangeable
constituents, the system manufacturer must gain regulatory
approval for every possible pair (or more generally, permu-
tation) of constituent devices forming the composite medical
system (which has been termed “pair-wise” regulation).

Lack of an Ecosystem: Even if the above obstacles
were overcome, there would still be a need for community
and market-place organizations to form an ecosystem in
which development and commercialization of component-
based systems of systems could thrive. A key element of
the unmitigated success of Apple’s mobile app business has
been the associated ecosystem which provides well-designed
interfaces, common infrastructure components, development
tools, stringent certification of apps (which allows users to
gain an degree trust in the apps). In the medical device
space, a corresponding ecosystem would need to include
organizations for constructing well-designed interfaces for
common medical devices and health IT systems, third-party
certification organization that work to ensure trust between
system components by rigorously establishing component
safety and compliance to interoperability standards, vendors
for platform and interfacing components, and education
and training materials for those entering the market. In
contrast to Apple’s proprietary ecosystem whose design and
governance lies solely with Apple, the MAP ecosystem
should be designed and governed by a variety of stakeholders
including device manufacturers, device integrators, standards
organizations, certification organizations, health care deliv-
ery organizations, and regulatory authorities.

II. MEDICAL APPLICATION PLATFORMS

We believe that many of the above shortcomings of exist-
ing medical devices can be overcome with a new paradigm
of medical systems called medical application platforms
(MAPs). A MAP is a safety- and security- critical real-
time computing platform for (a) integrating heterogeneous
devices, medical IT systems, and information displays via
a communication infrastructure and (b) hosting application
programs (i.e., apps) that provide medical utility via the
ability to both acquire information from and update/control

integrated devices, IT systems, and displays. While our
discussions will generally discuss the concept of a MAP
in a clinical context, a MAP could also be implemented in
a number of ways such as a portable, home-based, mobile
or distributed system.

The “medical utility” provided by MAP apps may take
many forms, but a common theme is that they introduce
a previously missing “system perspective” into the device
context associated with patient care.

Medical Display and Storage: An app may transfer data
from one or more devices to a patient’s electronic medical
record or a MAP-supported display such as composite
display in a patient’s hospital room, a remote clinical display
at a nurses station, or a physician’s smart phone. Thus,
the MAP concept subsumes Medical Data Display Systems
(MDDS) and real-time alarm management systems such as
Philips Emergin.

Derived/Smart Alarms: Using more advanced logic, an
app may implement “derived alarms” to supplement the
native alarm capabilities of a device or implement alarms
for consumer oriented devices that do not provide them
natively (e.g. an app might implement upper and lower limit
SpOy alarms for Continua compliant pulse oximeters such
as the Nonin Onyx II). Alternatively, the app may implement
a so-called “smart alarm” that provides more sophisticated
analysis and decision logic based on physiological parame-
ters from multiple devices [1], [2], monitoring trends/history,
comparison and correlation with data patterns from broader
population indicating problematic physiological conditions.

Clinical decision support: An app may pull information
from devices, patient electronic medical records, drug in-
teraction databases, and previous clinical studies to support
clinician decision making, diagnoses, or guidance/sugges-
tions for treatment.

Safety interlocks: An app may control one or more devices
so as to implement system safety invariants that lock out
potentially unsafe individual device behaviors or interactions
between devices.

Workflow automation: As many clinical procedures fol-
low certain protocols or recommended steps that involve
interacting with a collection of devices in patterns known
a priori, an app may partially automate workflow steps
by automatically activating/deactivating devices or setting
device parameters based on a patient’s medical record or
procedure- and context-dependent guidelines.

Closed-loop control: An app may use information collected
from sensing devices and possibly a patient’s medical record
to control actuators on devices providing treatment or col-
lecting diagnostic information from patients.

A. The Clinician’s View

Figure 1 illustrates the clinician’s view of a clinical-based
MAP. For simplicity, we assume in this discussion that a

Device Coordination in Critical Clinical Contexts

Medical App
Library

=E

Library of pre-approved
apps defining
coordination actions

N E

Acquired Devices

App Execution
Environment

“Take X-ray when

lungs are at 100% i Clinician Communication
capacity” : Console H Infrastructure §
@ ~ ” Context ;
\ Device | &
j\ M Devices with approved interfaces
can connect via network connection

Choose app from library
Choose from connected devices following device types required by app
Begin app execution

Figure 1. Clinician’s View of a Medical Application Platform

MAP supports a single patient. A communication infras-
tructure connects medical devices that are communications-
enabled (e.g. via Bluetooth, USB, or Ethernet) as well
as other information systems such as a patient electronic
medical record (EMR) and drug dosing databases. A device
database records the unique identifiers and drivers/interfaces
for devices that have been pre-approved for connection
to the framework. The app execution environment would
typically include a library of apps written by experts and
(possibly, if it implements medical device functionality)
approved by appropriate regulatory authorities (e.g., the
US Food and Drug Administration). A clinician desiring a
particular medical system behavior chooses an appropriate
app from the library. Each app contains a list of device types
and associated device capabilities that are required to carry
out a medical system activity. During the app initialization
phase, the app execution environment attempts to acquire
devices that satisfy the device requirements of the app and
are currently connected to the communication infrastructure.
There may be more than one connected device that satisfies
the device requirements of an app such as a stand-alone pulse
oximeter (e.g., the Nellcor OxiMax N-600x) and a pulse-
oximeter incorporated into a multi-parameter patient monitor
(e.g., the Philips IntelliVue MP90). Thus, the clinician may
assist with device acquisition (e.g., by selecting from a list of
available devices of the appropriate type). After a complete
set of required devices has been selected and confirmed
as available (a device may be restricted from participating
in more than one app at a time if it is being subjected
to automated control, while “read only” devices may be
shared), app execution begins. App execution may proceed
without intervention, or may stop to receive input from the
clinician.

The MAP architecture and infrastructure should include a
number of capabilities for guaranteeing safety and security.
For example, in event of a broken or degraded communica-
tion connection between the MAP and a device there must

exist a mechanism to transition both the device and apps
that depend on the device to a safe state.

In the subsections below, we sketch several clinical sce-
narios drawn from Appendix B of [3], and describe how
they could be supported by an app.

B. Application: Cardio-pulmonary Bypass

Patients undergoing a cardio-pulmonary bypass operation
typically have their breathing supported by an anesthesia
machine ventilator during the initial part of surgery, then dur-
ing the actual operation are switched to a cardio-pulmonary
bypass machine which oxygenates their blood directly, and
then are switched back to a ventilator (after bypass). Inci-
dents have occurred [4] in which the anesthesiologist forgot
to resume ventilation after separation from cardio-pulmonary
bypass. In at least one case, documented in [4], “...the
delayed detection of apnea was attributed to the fact that the
audible alarms from the pulse oximeter and capnograph had
been disabled during bypass and had not been reactivated.
[The patient] sustained permanent brain damage.” Note that
in this situation, an error occurred because the following
system invariant was violated: either the anesthesia machine
or the cardiopulmonary bypass machine must be connected
to the patient. It is straightforward to use a medical device
coordination framework with a connected anesthesia ma-
chine and bypass machine to detect this invariant violation
and to raise an appropriate alarm.

C. Application: Laser Surgery Safety Interlock

Modern trachea or larynx surgery often utilizes a laser
to remove cancers or non-malignant lesions and a tracheal
tube to supply oxygen to the patient’s lungs during the
operation. A potential hazard is the accidental heating of the
tracheal tube by the laser, which can produce an intense fire.
Typically, the oxygen saturation level in the tracheal tube is
reduced (e.g. to 25%) when the laser is in use to help reduce
the chance of a fire in case of an accidental ignition of the
tube. There have been a number of injuries and even deaths
reported due to fires caused by a laser igniting the tube.
Again, the potential system error in this scenario can be
mitigated by coordination of the laser and ventilator system.
Specifically, the device coordination logic can implement a
simple safety interlock that disables the laser if the oxygen
saturation is greater than a configured level (e.g. 25%). An
alarm can be programmed using information from multiple
devices (both the ventilator and laser) so that an alert is
raised if there is an attempt to engage the laser when the
oxygen level exceeds the configured maximum level.

D. Application: X-ray / ventilator Coordination

A simple example of automating clinician workflows via
cooperating devices addresses problems in acquiring accu-
rate chest X-ray images for patients on ventilators during
surgery [5]. To keep the lungs’ movements from blurring

the image, doctors must manually turn off the ventilator for
a few seconds while they acquire the X-ray image, but there
are risks in inadvertently leaving the ventilator off for too
long. For example, Lofsky documents a case where a patient
death resulted when an anesthesiologist forgot to turn the
ventilator back on due to a distraction in the operating room
associated with dropped X-ray film and a jammed operating
table [6]. These risks can be minimized by automatically
coordinating the actions of the X-ray imaging device and
the ventilator. Specifically, a centralized automated coordi-
nator running a pre-programmed coordination script can use
device data from the ventilator over the period of a few
respiratory cycles to identify a target image acquisition point
where the lungs will be at full inhalation or exhalation (and
thus experiencing minimal motion). At the image acquisition
point, the controller can pause the ventilator, activate the
X-ray machine to acquire the image, and then signal the
ventilator to “unpause” and continue the respiration [7].
Note that each of these cases above involves very simple
forms of coordination logic that can significantly improve
the safety or the effectiveness of treatment for the patient.
All of these applications could be implemented today but
none are. In our experience, once the concept of device
coordination is explained to a surgical clinician, they can
almost always come up with an scenario that they have
encountered where device coordination would be beneficial.

III. MEDICAL APPLICATION PLATFORM SYSTEM
CHARACTERISTICS

The medical systems constructed using MAPs have char-
acteristics that are substantially different from traditional
medical devices and from other cyber-physical systems. In
this section, we summarize the characteristics that are es-
pecially important to consider when trying to design appro-
priate architectures, engineering approaches, safety/security
solutions, verification technologies, regulatory/certification
regimes, and business ecosystems for MAPs.

Cyber-physical Systems of Systems: MAP systems
are complex systems composed of smaller systems that are
designed, in most cases, to function stand-alone. Drawing
from Maier’s characterization of SoS [8], the constituents are
autonomous with independent operations and management.
In many cases, there is an independent evolution of each
constituent to respond to new technology and mission needs
at its own pace and direction.

Interoperability with Heterogeneous Components: Re-
lated to the above, MAP constituents are produced by differ-
ent manufacturers, each with different approaches to inter-
facing, specification/documentation of capabilities, quality
management, etc. The success of the MAP approach depends
to some extent on individual manufactures being willing
to pursue interoperability as a business strategy and to
follow device design and interface specification strategies
that facilitate interoperability.

System Instances are Variable: In contrast to the typical
system deployments, the constituents of a system (the system
corresponding to a particular MAP constituted device for a
specific app) will vary from one instance to the next. More
concretely, an app A running at hospital H; may utilize one
model (a pulse oximeter from manufacturer M;) for one of
its required devices whereas the same app running at hospital
H, may utilize a different model (a pulse oximeter from
manufacturer M>). This implies that the MAP-constituted
device instances determined by app A must satisfy the
same safety and effectiveness requirements even though the
constituents of those instances may be different and possess
different capabilities.

Integration at Runtime After Deployment: In other
domains such as avionics where complex systems are as-
sembled from subsystems originating from different manu-
facturers, there is typically a prime contractor that serves
as the system integrator and is tasked with assembling the
system. The system integrator has expert-level technical
knowledge of the system components, and is responsible for
the overall system verification/validation, safety arguments,
and certification. Integration/assembly is performed before
deployment with full knowledge of the characteristics and
behavior of the components being integrated.

In contrast, for MAP systems, there is no prime contractor
who assembles a system, and no single manufacturer delivers
the system to the customer. Instead, systems are “composed”
at runtime at the point of care by clinical engineers (or
even clinicians) by attaching devices to the communication
infrastructure and launching apps that dynamically bind to
devices with which they may have never been tested. The
composition is performed by clinical engineers or clinicians
who may not have detailed technical expertise of device
components, real-time application programming, nor dis-
tributed safety-critical systems engineering.

Open and Extensible: When most conventional critical
systems are deployed, the set of possible constituents is
known in advance. With MAPs, the analogy to popular mo-
bile platforms implies that one should be able to develop and
deploy implementations of the communication infrastructure
and app execution environment, and then subsequently use
those infrastructure components to support new apps, new
devices, and new device types that were not anticipated at
the time of infrastructure development, regulatory approval,
and deployment. While significant innovations in device or
app technology/capabilities may trigger the creation of a
new version of the infrastructure (which would need new
regulatory clearance), it is likely that the most effective busi-
ness models for MAPs will require adoption of appropriate
architecture and engineering approaches that will avoid the
need to seek new regulatory clearances for infrastructure
components whenever new apps and devices are introduced.

Safety Critical: Unlike other enterprise systems of
systems (e.g.., information systems), clearly MAP systems

are safety-critical since unintended behavior can cause hu-
man injury or death. Thus, architecture and individual com-
ponents need to be designed and implemented to support
various safety regimes such as fail safe, fail operational, and
fail-passive depending on the usage context.

Security Critical: While conventional medical devices
have little or no emphasis on security (as they are stand-
alone), providing for secure operation of MAP systems is
crucial. We view security as a strict subset of safety, since
safe operation is impossible if the system is vulnerable to
attack. Many MAP use cases are focused on transferring
private medical information from devices to displays and
electronic medical records, so providing security models/ar-
chitectures that can be used to ensure correct functionality
and conformance to privacy requirements like HIPAA is
necessary for MAPs to be marketed and deployed. Moreover,
the open nature of MAPs provides many opportunities for
malicious apps and devices to disrupt system performance
or information. Finally, the complex human operator envi-
ronment with clinicians with differing roles/permissions and
the need to override access controls in emergency situations
provides significant challenges.

Component-Wise Regulation: If the existing pair-wise
certification approach (see Section I) is applied to MAPs,
the regulatory process would be so burdensome as to render
moot any technical advantages offered by the envisioned
framework. For example, if a company developed a MAP,
the need to have a new regulatory review for the entire
platform each time a new clinical application or device were
integrated with the framework would likely be so costly and
time-consuming as to inhibit a successful business model
for platform providers and to stifle the development of a
commodity market of MAP devices and apps. A component-
wise regulatory paradigm, in which MAP apps and devices
are reviewed individually and independently of the system
instance in which they will operate, will enable clinical users
to attach devices and launch MAP apps at the point of care
(to obtain a MAP constituted device) such the actions of the
clinical user do not constitute a regulated activity.

Highly Active Ecosphere: Recent experiences with smart
phones as computing platforms (e.g., iPhone and Android)
illustrates how well-designed open platforms can encourage
innovation and give rise to an explosion in lightweight
apps providing highly targeted functionality. Based on this
experience, once MAP infrastructure is on the market, there
will likely be a flood of MAP apps and device interfaces sub-
mitted for regulatory clearance. Moreover, the safety issues
in open systems are much more challenging. For example,
apps will need to work with devices with which they have
previously not been tested, there is potential for interference
between apps/devices is much greater, it will be easier for
fly by night operators to roll their own apps/interfaces, etc.
Therefore, it is crucial the entire MAP ecosphere be designed
to ensure its integrity and trustworthiness.

This should include developing standard notions of inter-
facing for common device types and applications to avoid a
proliferation of slightly different and poorly-designed inter-
faces. In addition, not only do regulatory regimes need to
evolve to support compositional regulation, verification and
regulatory idioms need to better support (a) increased speed
in processing regulatory submissions, and (b) increased
scrutiny of safety and functional/security claims.

IV. SoLUTION GOALS

Solutions that support the MAP vision may come in
different forms. However, the community is faced with the
harsh reality that up to this point in time there has not been
a successful framework developed that supports the aggre-
gate demands of heterogeneous components, compositional
construction, extensibility, safety, and security. We believe
that solutions are possible, but that to satisfy the demands
above, the architecture, platform, and ecosystem for any
solution must be sufficiently constrained and fulfill some
rather strong goals/requirements.

A. Architecture and Interfacing Goals

Experience in large-scale system development and multi-
vendor integration projects indicates that producing an ap-
propriate architecture is crucial to the long-term success and
integrity of a project.

Interoperability Architecture: The solution must de-
fine an interoperability architecture that identifies the com-
ponents of the MAP framework at the level of granularity
at which interoperability will be applied (i.e., granularity at
which components can be interchanged using component-
wise regulatory clearance).

Interoperability Points: To achieve composability and
substitutability of one component with another that imple-
ments the same interface, the solution should identify the
specific interoperability points (i.e., interfaces) within the
interoperability architecture where components interact. To
achieve safety and security, all component interaction must
be limited to these explicitly declared interoperability points.

Interface Compliance/Compatibility: The solution
should identify processes, verification and validation tech-
niques, existing standards, and other methods that will be
applied to ensure that (a) a component is compliant to its
interface and (b) when composing components, that one side
of the interface (e.g., on component A) is compatible with
the other side of the interface (e.g., on component B plug-
ging to component A.) It is anticipated that component-to-
interface compliance should be carried out statically before
a component receives regulatory approval and is deployed,
whereas the notion of interface compatibility (e.g., between
an app and a device) must in some cases be checked
dynamically by platform services in order to enable system
composition at the point of care.

Rich Device Interface Language: To facilitate safety
and the ability of apps to fully leverage device capabilities,
the solution should provide an expressive device interface
definition language that provides a formal mechanism to
specify the both the functional and non-functional capabil-
ities and behaviors of each device to be integrated into the
MAP. The description must be sufficient for the MAP to
determine if a device provides the capabilities required by a
given app. The IEEE 11073 interoperability standard allows
for medical devices to describe their capabilities in terms
of physiologic signals measured, and how those signals
are encoded on the device’s network interface, but stops
short of completely specifying the actuation capabilities of
a device (e.g. how long it takes for an actuator to activate
when it receives a command) and any local mode switching
a device may implement (e.g. many infusion pumps will
autonomously stop infusing under certain conditions such a
detecting air in the infusion line)

B. Platform Goals

Due to the characteristics described in Section III (partic-
ularly the runtime composability and safety critical char-
acteristics) a viable MAP should not just implement a
good interoperable architecture but must also provide certain
capabilities which apps and user can depend on to facilitate
safe operation of the system. The capabilities listed below
are not complete or sufficient for a safe MAP, but are
necessary if the vision of a truly interoperable dynamic
ecosystem of medical devices and apps are to flourish.

Direct Support for Static Verification of Systems:
The operational semantics and behavior of the MAP must
be precisely and formally defined, including operational
semantics of the app virtual machine, what performance
guarantees the MAP provides, and what it means for a
device and application to be “compatible” with each other.
Verification and validation techniques can then leverage
these definitions to establish important correctness properties
of the system. For example, app developers can apply these
formally grounded descriptions to make precise, checkable,
models of the system behavior that their apps specify.

Composability & Flexibility: An app may be composed
with a device at the point of care (i.e., dynamically, after
regulatory approval and deployment of system components).
Therefore, the platform must provide services to dynami-
cally check that a device’s capabilities (expressed through
its interface) are compatible with an app’s requirements.

Global Resource Management: Medical systems have
wall-clock time constraints. Since a MAP system instance is
distributed, the platform must ensure that all communication
and computation tasks meet their required deadlines. A
global resource management capability would allow the
MAP to proactively reserve resources (e.g.CPU, memory,
and network bandwidth) for apps in order to guarantee any
specified performance requirements apps may have.

Automatic Trust Establishment: The platform must fa-
cilitate the establishment of composition-time trust between
the different components used in an instance.

Automatic Security Services: The system must ensure
that data cannot be intercepted, monitored, or altered by
unauthorized parties, and that unauthorized entities cannot
induce unsafe behavior of authorized/honest components.

Direct Support for Runtime Verification of Systems:
The system must provide facilities for continuous runtime
monitoring, correcting for performance issues and minimiz-
ing the effect of malfunctioning components by identifying,
isolating, and evicting them in real time.

C. Safety, Effectiveness and Certification Goals

Interoperability Demonstration for Component-Wise
Regulation: To establish the groundwork for component-
wise regulation within the architecture, the solution proposer
should make a sequence of regulatory submissions that
demonstrate the compositional safety rationale by suffi-
ciently exercising each of the interoperability points of the
framework. A claim of “sufficiently exercised” might be
based on, providing regulatory submissions of component
instances to demonstrate that any variation across instances
is encapsulated in the proposed interfacing, for example.

Third-Party Certification Regime: In other domains,
third-party certification bodies play a key role in ensuring
trust and integrity by developing sophisticated infrastruc-
ture for testing/validating that products conform to safety
or interoperability standards (familiar examples including
third-party certification to Wi-Fi or USB standards). We
believe a third-party certification regime that certifies MAP
components compliance to safety and interfacing standards
may be crucial for MAPs to (a) ensure trust when composing
components from different vendors and (b) reducing the
workload of the regulatory body in the context of a high
volume of app and interface submissions.

D. Ecosystem goals

Consensus Interfacing for Device Interfacing: It will
be necessary to develop an organization of key stakeholders
(e.g., device and MAP manufacturers, app suppliers) that
will design and maintain a well-organized collection of
device interfaces that (a) MAP device manufacturers target
when developing interfacing capabilities and (b) developers
will target when coding MAP apps.

Standard Development Environments for MAP Apps
and Interfaces: Similar to the App Development Kits sup-
plied by Apple and Google and Device Driver Development
Kit supplied by Microsoft, the MAP ecosphere should be
supported by development environments for both apps and
device interfaces. These development environments should
include test suites, static analyses, and verification tools that
both developers and third-party certifiers apply to validate
compliance to MAP interface/app standards — ensuring that

Supervisor

App App App
A Ay Aq
! L 1

I ICE App Code Language / Virtual Machine I
1

Network Controller (NC)

[ICE El Interface Description Language |
! :
Ice Equipment Ice Equipment
Interface (El) Interface (EI)
I, 1,
s ~ T
s Y
[y ey N memee- [Ty
El 1 El 1
Adapter : Native Adapter :
: El-Compliant :
1 Physical I
Physical : Device Physical :
Device H Device I
1 I
I I
--------- 4 -
Figure 2. ICE Architecture

elements submitted for certification have been subjected to
a uniform and rigorous validation. A potential model here
is Continua, which provides a variety of code and testing
infrastructure to its members.

V. INTEGRATED CLINICAL ENVIRONMENT

Different architectural solutions for medical application
platforms are possible. One architecture that is gaining
traction is the Integrated Clinical Environment (ICE) [3]
whose development has been led by the CIMIT Medical
Device Plug-and-Play interoperability project and standard-
ized in the ASTM F2761-2009 standard. ASTM F2761-2009
defines the principle components of a MAP architecture and
provides rationale for the role that each of these components
play in establishing interoperability and safety. ICE has
figured prominently in ongoing FDA activities' related to
interoperability and possible approaches to compositional
regulation of MAPs. Several research projects are building
elements of MAP prototypes that conform to ICE including
an NIH/NIBIB Quantum project led by Dr. Julian Goldman
at CIMIT, the Medical Device Coordination Framework [9]
developed by the SAnToS Laboratory at Kansas State and
the PRECISE Center at University of Pennsylvania, and a
prototype illustrating safety principles in the presence of ICE
failures at University of Illinois at Urbana-Champaign [10].

Figure 2 shows the primary components of the ICE
architecture. In the rest of this section, we summarize the
intended functionality and goals for each of these compo-
nents. It is important to understand that ASTM F2761-2009

For example, the FDA Workshop on Medical Device Interoperability,
January 25, 2010 and subsequent formation of the Medical Device Inter-
operability and Safety Working Group.

does not provide detailed requirements for these, nor has a
reference implementation been provided. Thus, our summary
should be viewed as “informed speculation” about what will
ultimately emerge in ICE implementations.

Supervisor: The supervisor provides a secure isolation
kernel and virtual machine (VM) execution environment for
MAP apps. It would be responsible for ensuring that apps
are partitioned in both data and time from each other.

Network Controller: The network controller is the
primary conduit for physiologic signal datastreams and
device control messages. The network controller would be
responsible for maintaining a list of connected devices and
ensuring proper quality of service guarantees in terms of
time and data partitioning of datastreams, as well as security
services for device authentication and data encryption.

ICE Interface Description Language: The description
language is the primary mechanism for ICE-compliant de-
vices to export their capabilities to the network controller.
These capabilities may include what sensors and actuators
are present on the device, and the command set it supports.

VI. MDCF

The Medical Device Coordination Framework (MDCF)
[9], [11] is an open-source project that provides many of the
capabilities called out in the ICE standard. The MDCF effort
was initiated by the U.S. Food and Drug Administration
and is funded by the National Science Foundation Cyber-
Physical Systems program as an open test bed to allow
academics, industry, and government regulators to explore
engineering and safety issues involved in medical application
platforms. MDCF development is led by research teams from
the SAnToS Laboratory at Kansas State University and the
PRECISE Center and the University of Pennsylvania.

A. Goals

Table I lists initial goals for the MDCF software infras-
tructure that are currently guiding our design and implemen-
tation. These goals represent what we believe to be necessary
to begin exploration of issues faced in realistic MAPs.

There are many other desirable qualities related to veri-
fication and validation, safety, security, and fault-tolerance
not listed here; one of overarching goals is to provide an
infrastructure that enables other research organizations (as
well as our own) to investigate those issues. We choose to
focus on specification/verification issues.

B. Platform Services

The MDCF is implemented as a collection of services
which work together to provide some of the capabilities
called out in Section III as essential for a medical appli-
cation platform. The functionality of these services also
decompose along the architectural boundaries defined in the
ICE architecture (see Figure 3), thus the MDCF consists of
“network controller” services, “supervisor” services and a
global resource management service:

1) Provide distributed networking middleware infrastructure that enables
devices/displays/databases from different vendors to be integrated with
minimal effort.

2) Provide payload capabilities that support common data formats used in the
medical device and medical informatics domains.

3) Provide an app infrastructure that enables easy analysis, integration, and
transformation of device information streams, as well as easy programming
of device control logic.

4) Support a model-based app programming environment that makes it easy
to assemble new functionality from building blocks.

5) Design the infrastructure to incorporate a flexible security framework that
allows experimentation with security properties appropriate for MAPs.

6) Provide a framework that enables experimentation with techniques for real-
time and reliability guarantees on message delivery and app execution.

7) Support the functional and real-time requirements of realistic MAP apps.

8) Use infrastructure that is freely available and open source (to enable
academic research).

9) Use standards-based solutions that can support tech transition to industry.

10) Provide a library of mock medical devices to enable easy experimentation
with the system by academics.

11) Serve as a test-bed for evidence-based static and dynamic verification
technologies appropriate for safety-critical systems.

12) TIllustrate the construction of appropriate certification and regulatory arti-
facts for apps, device interfacing, and infrastructure components.

13) Support prototyping of ICE-related concepts.

Table 1
MDCF DEVELOPMENT GOALS

Supervisor

. Clinician :
N Service N
‘ly App App I—I :
/ Manager

Database lT‘
Service .
e :
Resource
Senice | | Network Controllr
Device Device :
Manager Database : Data
¢ | Logger
% Message Bus >
¥ "y Key
Medical Medical [<=-e- > Pub/Sub interface
Device 1 Device n > Private AP! interface

Figure 3. MDCEF services decomposed along ICE architectural boundaries

1) Network Controller Services:

Message Bus: Abstracts the low level networking im-
plementation (e.g. TCP/IP) and provides a publish/subscribe
messaging service. All communication between medical
devices and the MDCF occurs via the message bus, including
protocol control messages, patient physiologic data, and
commands sent from apps to devices. The Message Bus also
provides basic real-time guarantees (e.g. bounded end-to-
end message transmission delays) that apps can take as as-
sumptions. Additionally, the Message Bus supports various
fine-grained message and stream access control and isolation
policies. While the current implementation of the message
bus encodes messages using XML, the actual encoding
strategy is abstracted away from the apps and devices by

the message bus API which exposes messages as structured
objects in memory.

Device Manager: Maintains a registry of all medical
devices currently connected with the MDCF. The Device
Manager implements the server side of the MDCF device
connection protocol (medical devices implement the client
side) and tracks the connectivity of those devices, notifying
the appropriate apps if a device goes offline unexpect-
edly. The Device Manager serves another important role:
it validates the trustworthiness of any connecting device by
determining if the connecting device has a valid certificate.

Device Database: Maintains a list of all specific medi-
cal devices that the healthcare provider’s bioengineering staff
has approved for use. In particular, the database lists each
allowed device’s unique identifier (like an Ethernet MAC
address), the manufacturer of the device, and any security
keys or certificates that the Device Manager will use to
authenticate connecting devices against.

Data Logger: Taps into the flows of messages moving
across the message bus and selectively logs them. The logger
can be configured with a policy specifying which messages
should be recorded. Because the message bus carries carries
every message in the system, the logger can be configured
to record any message or event that propagates through the
MDCEF. Logs must be tamper resistant, tamper evident, and
access to logs must itself be logged, and be physically and
electronically controlled by a security policy.

2) Supervisor Services:

Application Manager: Provides a virtual machine for
apps to execute in. In addition to simply executing program
code, the Application Manager checks that the MDCF can
guarantee the app’s requirements at runtime and provides
resource and data isolation, as well as access control and
other security services. If the app requires a certain medical
device, communications latency, or response time from app
tasks but the MDCF cannot currently make those guarantees
(e.g. due to system load or the appropriate medical device
has not been connected) then the App Manager will not
let the clinician start the app in question. If the resources
are available, the application manager will reserve those
resources in order to guarantee the required performance
to the app. The application manager further detects and
flags potential medically meaningful app interactions, since
individual apps are isolated and may not be aware what other
apps are associated with a given patient.

Application Database: Stores the applications installed
in the MDCEF. Each application contains executable code and
requirement metadata used by the application manager to
allocate the appropriate resources for app execution.

Clinician Service: Provides an interface for the clini-
cian console GUI to check the status of the system, start
apps, and display app graphical user interface elements.
Since this interface is exposed as a service, the clinician
console can be run locally (on the same machine) that is

running the supervisor, or remotely (e.g. at a nurse’s station).

Administrator Service: Provides an interface for the
administrator’s console. System administrators can use the
administrator’s console to install new applications, remove
applications, add devices to the device database and monitor
the performance of the system.

C. Resources and Applications

In addition to the open-source distribution [9], a variety
of resources are available for the MDCEF including tutorials,
presentations, and video lectures on topics such as the
architecture and code organization of the MDCEF, building in-
terfaces for real devices, building simulated devices, building
apps, developing app regulatory/certification artifacts, and a
variety of clinical application scenarios.

In addition to the simple apps included in the distribution,
the MDCF has been used to develop some more significant
examples including an app which provides closed-loop con-
trol of a PCA pump [12], a generic smart alarm framework
that uses fuzzy set classification to generate more precise
alarms by aggregating physiological readings from a multi-
parameter monitor [1].

MDCEF is also being used in demonstration efforts on the
CIMIT-led NIBIB Quantum project that aims to deliver an
ICE-compliant open-source hospital intranet, and as part of
an NSF FDA Scholar-in-Residence project to demonstrate
MAP concepts and artifacts to FDA engineers.

VII. CONCLUSION

We have presented the concept of a medical application
platform as a means by which a much-needed ‘“systems
perspective” can be achieved in the cyber-physical system
domain of medical systems. In addition, we have sketched
some of the fundamental and distinguishing characteristics
of MAPs and presented a selection of goals that we believe
properly developed MAP solutions must satisfy.

There are several noteworthy activities that are aiming
to mature these concepts and appropriately expose them
to the broader community. The Medical Device Interop-
erability Safety Working Group (MDISWG) — a working
group that grew out of the January 2010 FDA workshop
entitled “Medical Device Interoperability: achieving safety
and effectiveness” — is focused on clarifying the regulatory
pathway for MAP systems by writing documents outlining
principles of component-wise safety submitted to the FDA as
part of its Investigational Device Exemption (IDE) program.
An NIBIB Quantum Project led by Dr. Julian Goldman
at CIMIT is aiming to develop a prototype healthcare
intranet that complies with the ICE standard. MD FIRE
is a CIMIT-led effort to promote the adoption of fully
interoperable medical devices and systems in support of
patient safety by developing sample RFP and Contracting
language requirements for interoperability that health care
delivery organizations can use when purchasing medical

equipment. UL (Underwriters Laboratory) is developing a
family of standards related to device interoperability that
aim to address many of the issues presented in this paper.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge discussions with the
Medical Device Safety and Interoperability Working Group
and NIBIB Quantum Project “Development of a Prototype
Healthcare Intranet for Improved Health Outcomes” that
contributed to the formation of ideas presented in this paper.

REFERENCES

[1] A. L. King, A. Roederer, D. Arney, S. Chen, M. Fortino-
Mullen, A. Giannareas, W. Hanson, III, V. Kern, N. Stevens,
J. Tannen, A. V. Trevino, S. Park, O. Sokolsky, and I. Lee,
“GSA: A framework for rapid prototyping of smart alarm
systems,” in Proceedings of the 1st ACM International Health
Informatics Symposium, 2010.

[2] G. Hackmann, M. Chen, O. Chipara, C. Lu, Y. Chen,
M. Kollef, and T. Bailey, “Toward a two-tier clinical warning
system for hospitalized patients,” in Proceedings of the 2011
American Medical Informatics Association Annual Sympo-
sium (AMIA’11), Oct. 2011.

[3] ASTM F2761-2009. Medical Devices and Medical Systems
— Essential Safety Requirements for Equipment Comprising
the Patient-Centric Integrated Clinical Environment (ICE),
Part 1: General Requirements and Conceptual Model, ASTM
International, 2009.

[4] R. A. Caplan, M. E Vistica, K. L. Posner, and F. W.
Cheney, “Adverse anesthetic outcomes arising from gas de-
livery equipment: A closed claims analysis,” Anesthesiology,
vol. 87, no. 4, 1997.

[5] P. B. Langevin, V. Hellein, S. M. Harms, W. K. Tharp,
C. Cheung-Seekit, and S. Lampotang, “Synchronization of
radiograph film exposure with the inspiratory pause,” Ameri-
can Journal of Respiratory Critical Care Medicine, vol. 160,
no. 6, 1999.

[6] A.S. Lofsky, “Turn your alarms on,” APSF Newsletter, vol.
Winter, 2005.

[7] K. Grifantini, ““Plug and Play” hospitals: Medical devices
that exchange data could make hospitals safer,” MIT Tech-
nology Review, Jul. 2008.

[8] M. Maier, “Architecting principles for systems of systems,”
Systems Engineering, vol. 1, no. 4, 1998.

[9] “Medical Device Coordination Framework (MDCF) website,”
http://mdcf.santos.cis.ksu.edu.

[10] M. Sun, Q. Wang, and L. Sha, “Building reliable MD
PnP systems,” in Proceedings of the Joint Workshop On
High Confidence Medical Devices, Software, and Systems
(HCMDSS) and Medical Device Plug-and-Play (MD PnP)
Interoperability, 2007.

[11] A. King, S. Procter, D. Andresen, J. Hatcliff, S. Warren,
W. Spees, R. Jetley, P. Jones, and S. Weininger, “An open
test bed for medical device integration and coordination,” in
Proceedings of the 31st International Conference on Software
Engineering, 2009.

[12] A. King, D. Arney, I. Lee, O. Sokolsky, J. Hatcliff, and
S. Procter, “Prototyping closed loop physiologic control with
the medical device coordination framework,” in ICSE Com-
panion, 2010.

