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ABSTRACT
Demand response (DR) is becoming increasingly important
as the volatility on the grid continues to increase. Current
DR approaches are completely manual and rule-based or in-
volve deriving first principles based models which are ex-
tremely cost and time prohibitive to build. We consider the
problem of data-driven end-user DR for large buildings which
involves predicting the demand response baseline, evaluating
fixed rule based DR strategies and synthesizing DR control
actions. We provide a model based control with regression
trees algorithm (mbCRT), which allows us to perform closed-
loop control for DR strategy synthesis for large commercial
buildings. Our data-driven control synthesis algorithm out-
performs rule-based DR by 17% for a large DoE commercial
reference building and leads to a curtailment of 380kW and
over $45, 000 in savings. Our methods have been integrated
into an open source tool called DR-Advisor, which acts as
a recommender system for the building’s facilities manager
and provides suitable control actions to meet the desired load
curtailment while maintaining operations and maximizing the
economic reward. DR-Advisor achieves 92.8% to 98.9% pre-
diction accuracy for 8 buildings on Penn’s campus. We com-
pare DR-Advisor with other data driven methods and rank
2nd on ASHRAE’s benchmarking data-set for energy predic-
tion.

1. INTRODUCTION
In 2013, a report by the U.S. National Climate Assessment
provided evidence that the most recent decade was the na-
tion’s warmest on record [1] and experts predict that temper-
atures are only going to rise. In fact, the year 2015 is very
likely to become the hottest year on record since the begin-
ning of weather recording in 1880 [2]. Heat waves in summer
and polar vortexes in winter are growing longer and pose in-
creasing challenges to an already over-stressed electric grid.

Furthermore, with the increasing penetration of renewable
generation, the electricity grid is also experiencing a shift
from predictable and dispatchable electricity generation to
variable and non-dispatchable generation. This adds another
level of uncertainty and volatility to the electricity grid as
the relative proportion of variable generation vs. traditional
dispatchable generation increases. The organized electricity
markets across the world all use some variant of real-time
price for wholesale electricity. The real-time electricity mar-
ket at PJM, one of the world’s largest independent system
operator (ISO), is a spot market where electricity prices are
calculated at five-minute intervals based on the grid operating

conditions. The volatility due to the mismatch between elec-
tricity generation and supply further leads to volatility in the
wholesale price of electricity. For e.g., the polar vortex trig-
gered extreme weather events in the U.S. in January 2014,
which caused many electricity customers to experience in-
creased costs. Parts of the PJM electricity grid experienced a
86 fold increase in the price of electricity from $31/MW h to
$2, 680/MW hin a matter of a few minutes [3]. Similarly, the
summer price spiked 32 fold from an average of $25/MW h
to $800/MW h in July of 2015. Such events show how un-
foreseen and uncontrollable circumstances can greatly affect
electricity prices that impact ISOs, suppliers, and customers.
Energy industry experts are now considering the concept that
extreme weather, more renewables and resulting electricity
price volatility, could become the new norm.

Across the United States, electric utilities and ISOs are de-
voting increasing attention and resources to demand response
(DR) [4]. Demand response is considered as a reliable means
of mitigating the uncertainty and volatility of renewable gen-
eration and extreme weather conditions and improving the
grid’s efficiency and reliability. The potential demand re-
sponse resource contribution from all U.S. demand response
programs is estimated to be nearly 72,000 megawatts (MW),
or about 9.2 percent of U.S. peak demand [5] making DR the
largest virtual generator in the U.S. national grid. The annual
revenue to end-users from DR markets with PJM ISO alone
is more than $700 million [6]. Global DR revenue is expected
to reach nearly $40 billion from 2014 through 2023 [7].

The volatility in real-time electricity prices poses the biggest
operational and financial risk for large scale end-users of elec-
tricity such as large commercial buildings, industries and in-
stitutions [8]; often referred to as C/I/I consumers. In order to
shield themselves from the volatility and risk of high prices,
such consumers must be more flexible in their electricity de-
mand. Consequently, large C/I/I customers are increasingly
looking to demand response programs to help manage their
electricity costs.

DR programs involve a voluntary response of a building
to a price signal or a load curtailment request from the util-
ity or the curtailment service provider (CSP). Upon success-
fully meeting the required curtailment level the end-users are
financially rewarded, but may also incur penalties for under-
performing and not meeting a required level of load curtail-
ment. On the surface demand response may seem simple.
Reduce your power when asked to and get paid. However, in
practice, one of the biggest challenges with end-user demand
response for large scale consumers of electricity is the follow-
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Figure 1: Majority of DR today is manual and rule-based. (a) The fixed rule based DR is inconsistent and could under-perform compared to the required
curtailment, resulting in DR penalties. (b) Using data-driven models DR-Advisor uses DR strategy evaluation and DR strategy synthesis for a sustained and
sufficient curtailment.

ing: Upon receiving the notification for a DR event, what ac-
tions must the end-user take in order to achieve an adequate
and a sustained DR curtailment? This is a hard question to
answer because of the following reasons:
1. Modeling complexity and heterogeneity: Unlike the au-

tomobile or the aircraft industry, each building is designed
and used in a different way and therefore, it must be uniquely
modeled. Learning predictive models of building’s dy-
namics using first principles based approaches (e.g., with
EnergyPlus [9]) is very cost and time prohibitive and re-
quires retrofitting the building with several sensors [10];
The user expertise, time, and associated sensor costs re-
quired to develop a model of a single building is very high.
This is because usually a building modeling domain ex-
pert typically uses a software tool to create the geometry
of a building from the building design and equipment lay-
out plans, add detailed information about material proper-
ties, about equipment and operational schedules. There is
always a gap between the modeled and the real building
and the domain expert must then manually tune the model
to match the measured data from the building [11].

2. Limitations of rule-based DR: The building’s operating
conditions, internal thermal disturbances and environmen-
tal conditions must all be taken into account to make ap-
propriate DR control decisions, which is not possible with
using rule-based and pre-determined DR strategies since
they do not account for the state of the building but are
instead based on best practices and rules of thumb. As
shown in Fig. 1(a), the performance of a rule-based DR
strategy is inconsistent and can lead to reduced amount of
curtailment which could result in penalties to the end-user.
In our work, we show how a data-driven DR algorithm
outperforms a rule-based strategy by 17% while account-
ing for thermal comfort. Rule based DR strategies have
the advantage of being simple but they do not account for
the state of the building and weather conditions during a
DR event. Despite this lack of predictability, rule-based
DR strategies account for the majority of DR approaches.

3. Control complexity and scalability: Upon receiving a
notification for a DR event, the building’s facilities man-
ager must determine an appropriate DR strategy to achieve
the required load curtailment. These control strategies can
include adjusting zone temperature set-points, supply air
temperature and chilled water temperature set-point, dim-
ming or turning off lights, decreasing duct static pres-
sure set-points and restricting the supply fan operation
etc.. In a large building, it is difficult to asses the ef-
fect of one control action on other sub-systems and on the
building’s overall power consumption because the build-
ing sub-systems are tightly coupled. Consider the case of
the University of Pennsylvania’s campus, which has over a
hundred different buildings and centralized chiller plants.
In order to perform campus wide DR, the facilities man-
ager must account for several hundred thousand set-points
and their impact on the different buildings. Therefore, it
is extremely difficult for a human operator to accurately
gauge the building’s or a campus’s response.

4. Interpretability of modeling and control: Predictive mod-
els for buildings, regardless how sophisticated, lose their
effectiveness unless they can be interpreted by human ex-
perts and facilities managers in the field. For e.g., ar-
tificial neural networks (ANN) obscure physical control
knobs and interactions and hence, are difficult to interpret
by building facilities managers. Therefore, the required
solution must be transparent, human centric and highly
interpretable.
The goal with data-driven methods for cyber-physical en-

ergy systems is to make the best of both worlds; i.e. simplic-
ity of rule based approaches and the predictive capability of
model based strategies, but without the expense of first prin-
ciple or grey-box model development.

In this paper, we present a method called DR-Advisor (De-
mand Response-Advisor), which acts as a recommender sys-
tem for the building’s facilities manager and provides the power
consumption prediction and control actions for meeting the
required load curtailment and maximizing the economic re-
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Figure 2: DR-Advisor Architecture

ward. Using historical meter and weather data along with set-
point and schedule information, DR-Advisor builds a fam-
ily of interpretable regression trees to learn non-parametric
data-driven models for predicting the power consumption of
the building (Figure 2). DR-Advisor can be used for real-
time demand response baseline prediction, strategy evaluation
and control synthesis, without having to learn first principles
based models of the building.

1.1 Contributions
This work has the following data-driven contributions:
1. DR Baseline Prediction: We demonstrate the benefit of

using regression trees based approaches for estimating the
demand response baseline power consumption. Using re-
gression tree-based algorithms eliminates the cost of time
and effort required to build and tune first principles based
models of buildings for DR. DR-Advisor achieves a pre-
diction accuracy of 92.8% to 98.9% for baseline estimates
of eight buildings on the Penn campus.

2. DR Strategy Evaluation: We present an approach for
building auto-regressive trees and apply it for demand re-
sponse strategy evaluation. Our models takes into account
the state of the building and weather forecasts to help
choose the best DR strategy among several pre-determined
strategies.

3. DR Control Synthesis: We introduce a novel model based
control with regression trees (mbCRT) algorithm to en-
able control with regression trees use it for real-time DR
synthesis. Using the mbCRT algorithm, we can optimally
trade off thermal comfort inside the building against the
amount of load curtailment. While regression trees are a
popular choice for prediction based models, this is the first
time regression tree based algorithms have been used for
controller synthesis with applications in demand response.
Our synthesis algorithm outperforms rule based DR strat-
egy by 17% while maintaining bounds on thermal comfort
inside the building.

1.2 Experimental validation and evaluation
We evaluate the performance of DR-Advisor using a mix of
real data from 8 buildings on the campus of the University of
Pennsylvania, in Philadelphia USA and data-sets from a vir-
tual building test-bed for the Department of Energy’s (DoE)
large commercial reference building. We also compare the
performance of DR-Advisor against other data-driven meth-
ods using a bench-marking data-set from AHRAE’s great en-
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ergy predictor shootout challenge.
This paper is organized as follows: Section 2 describes the

challenges with demand response. In Section 3, we present
how data-driven algorithms can be used for the problems as-
sociated with DR. Section 4, presents a new algorithm to per-
form control with regression trees for synthesizing demand
response strategies. Section 5 presents a comprehensive case
study with DR-Advisor using data from several real buildings.
We conclude this paper in Section 7 with a summary of our
results and a discussion about future directions.

2. PROBLEM DEFINITION
The timeline of a DR event is shown in Figure 3. An event
notification is issued by the utility/CSP, at the notification
time (∼30mins). The time by which the reduction must be
achieved, is the reduction deadline. The main period during
which the demand needs to be curtailed is the sustained re-
sponse period (1∼6hrs). The end of the response period is
when the main curtailment is released. The normal operation
is gradually resumed during the recovery period. The DR
event ends at the end of the recovery period.

The key to answering the question of what actions to take
to achieve a significant DR curtailment upon receiving a noti-
fication, lies in making accurate predictions about the power
consumption response of the building. Specifically, it involves
solving the three challenging problems of end-user demand
response, which are described next.

2.1 DR baseline prediction
The DR baseline is an estimate of the electricity that would
have been consumed by a customer in the absence of a de-
mand response event (as shown in In Fig. 3) The measure-
ment and verification of the demand response baseline is the
most critical component of any DR program since the amount
of DR curtailment, and any associated financial reward can
only be determined with respect to the baseline estimate. The
goal is to learn a predictive model g() which relates the base-
line power consumption estimate ˆYbase to the forecast of the
weather conditions and building schedule for the duration of
the DR-event i.e., ˆYbase = g(weather, schedule)

2.2 DR strategy evaluation
Most DR today is manual and conducted using fixed rules and
pre-determined curtailment strategies based on recommended
guidelines, experience and best practices. During a DR event,
the building’s facilities manager must choose a single strat-
egy among several pre-determined strategies to achieve the
required power curtailment. Each strategy includes adjusting
several control knobs such as temperature set-points, light-



ing levels and temporarily switching off equipment and plug
loads to different levels across different time intervals.

As only one strategy can be used at a time, the question
then is, how to choose the DR strategy from a pre-determined
set of strategies which leads to the largest load curtailment?

Instead of predicting the baseline power consumption ˆYbase,
in this case we want the ability to predict the actual response
of the building ˆYkW due to any given strategy. For exam-
ple, in Fig. 3, there are N different strategies available to
choose from. DR-Advisor predicts the power consumption
of the building due to each strategy and chooses the DR strat-
egy (∈ {i, j, · · · k · · ·N}) which leads to the largest load cur-
tailment. The resulting strategy could be a combination of
switching between the available set of strategies.

2.3 DR strategy synthesis
Instead of choosing a DR strategy from a pre-determined set
of strategies, a harder challenge is to synthesize new DR strate-
gies and obtain optimal operating points for the different con-
trol variables. We can cast this problem as an optimization
over the set of control variables, Xc, such that

minimize
Xc

f( ˆYkW )

subject to ˆYkW = h(Xc)

Xc ∈ Xsafe

(1)

we want to minimize the predicted power response of the
building ˆYkW , subject to a predictive model which relates the
response to the control variables and subject to the constraints
on the control variables.

Unlike rule-base DR, which does not account for building
state and external factors, in DR synthesis the optimal control
actions are derived based on the current state of the building,
forecast of outside weather and electricity prices.

3. DATA-DRIVEN DEMAND RESPONSE
Our goal is to find data-driven functional models that relates
the value of the response variable, say power consumption,
ˆYkW with the values of the predictor variables or features

[X1, X2, · · · , Xm] which can include weather data, set-point
information and building schedules. When the data has lots
of features, as is the case in large buildings, which interact
in complicated, nonlinear ways, assembling a single global
model, such as linear or polynomial regression, can be diffi-
cult, and lead to poor response predictions. An approach to
non-linear regression is to partition the data space into smaller
regions, where the interactions are more manageable. We
then partition the partitions again; this is called recursive par-
titioning, until finally we get to chunks of the data space which
are so tame that we can fit simple models to them. Regression
trees is an example of an algorithm which belongs to the class
of recursive partitioning algorithms. The seminal algorithm
for learning regression trees is CART as described in [12].

Regression trees based approaches are our choice of data-
driven models for DR-Advisor. The primary reason for this
modeling choice is that regression trees are highly interpretable,
by design. Interpretability is a fundamental desirable qual-
ity in any predictive model. Complex predictive models like
neural-networks , support vector regression etc. go through a
long calculation routine and involve too many factors. It is not

easy for a human engineer to judge if the operation/decision is
correct or not or how it was generated in the first place. Build-
ing operators are used to operating a system with fixed logic
and rules. They tend to prefer models that are more transpar-
ent, where it is clear exactly which factors were used to make
a particular prediction. At each node in a regression tree a
simple, if this then that, human readable, plain text rule is ap-
plied to generate a prediction at the leafs, which anyone can
easily understand and interpret. Making machine learning al-
gorithms more interpretable is an active area of research [13],
one that is essential for incorporating human centric models
in cyber-physical energy systems.

3.1 Data-Description
In order to build regression trees which can predict the power
consumption of the building, we need to train on time-stamped
historical data. As shown in Fig. 2, the data that we use can
be divided into three different categories as described below:
1. Weather Data: It includes measurements of the outside

dry-bulb and wet-bulb air temperature, relative humidity,
wind characteristics and solar irradiation at the building
site.

2. Schedule data: We create proxy variables which correlate
with repeated patterns of electricity consumption e.g., due
to occupancy or equipment schedules. Day of Week is a
categorical predictor which takes values from 1 − 7 de-
pending on the day of the week. This variable can capture
any power consumption patterns which occur on specific
days of the week. For instance, there could a big audito-
rium in an office building which is only used on certain
days. Likewise, Time of Day is quite an important predic-
tor of powe consumption as it can adequately capture daily
patterns of occupancy, lighting and appliance use without
directly measuring any one of them. Besides using proxy
schedule predictors, actual building equipment schedules
can also be used as training data for building the trees.

3. Building data: The state of the building is required for
DR strategy evaluation and synthesis. This includes (i)
Chilled Water Supply Temperature (ii) Hot Water Supply
Temperature (iii) Zone Air Temperature (iv) Supply Air
Temperature (v) Lighting levels.

3.2 Data-Driven DR Baseline
DR-Advisor uses a mix of several algorithms to learn a reli-
able baseline prediction model. For each algorithm, we train
the model on historical power consumption data and then vali-
date the predictive capability of the model against a test data-
set which the model has never seen before. In addition to
building a single regression tree, we also learn cross-validated
regression trees, boosted regression trees (BRT) and random
forests (RF). The ensemble methods like BRT and RF help in
reducing any over-fitting over the training data. They achieve
this by combining the predictions of several base estimators
built with a given learning algorithm in order to improve gen-
eralizability and robustness over a single estimator. For a
more comprehensive review of random forests we refer the
reader to [14]. A boosted regression tree (BRT) model is an
additive regression model in which individual terms are sim-
ple trees, fitted in a forward, stage-wise fashion [15].
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Figure 4: Example of a regression tree with linear regression model in leaves.
Not suitable for control due to the mixed order of the controllable Xc (solid
blue) and uncontrollable Xd features.

3.3 Data-Driven DR Evaluation
The regression tree models for DR evaluation are similar to
the models used for DR baseline estimation except for two
key differences: First, instead of only using weather and proxy
variables as the training features, in DR evaluation, we also
train on set-point schedules and data from the building it-
self to capture the influence of the state of the building on
its power consumption; and Second, in order to predict the
power consumption of the building for the entire length of
the DR event, we use the notion of auto-regressive trees. An
auto-regressive tree model is a regular regression tree except
that the lagged values of the response variable are also pre-
dictor variables for the regression tree i.e., the tree structure
is learned to approximate the following function:

ˆYkW (t) = f([X1, X2, · · · , Xm, YkW (t−1), · · · , YkW (t−δ)])
(2)

where the predicted power consumption response ˆYkW at time
t, depends on previous values of the response itself [YkW (t−
1), · · · , YkW (t− δ)] and δ is the order of the auto-regression.
This allows us to make finite horizon predictions of power
consumption for the building. At the beginning of the DR
event we use the auto-regressive tree for predicting the re-
sponse of the building due to each rule-based strategy and
choose the one which performs the best over the predicted
horizon. The prediction and strategy evaluation is re-computed
periodically throughout the event.

4. DATA-DRIVEN CONTROL SYNTHESIS
The data-driven methods described so far use the forecast
of features to obtain building power consumption predictions
for DR baseline and DR strategy evaluation. In this section,
we extend the theory of regression trees to solve the demand
response synthesis problem described earlier in Section 2.3.
This is our primary contribution.

Recall that the objective of learning a regression tree is to
learn a model f for predicting the response Y with the val-
ues of the predictor variables or features X1, X2, · · · , Xm;
i.e., Y = f([X1, X2, · · · , Xm]) Given a forecast of the fea-
tures X̂1, X̂2, · · · , X̂m we can predict the response Ŷ . Now
consider the case where a subset, Xc ⊂ X of the set of fea-
tures/variables X’s are manipulated variables i.e., we can change

Figure 5: Example of a tree structure obtained using the mbCRT algorithm.
The separation of variables allows using the linear model in the leaf to use
only control variables.

their values in order to drive the response (Ŷ ) towards a cer-
tain value. In the case of buildings, the set of variables can
be separated into disturbances (or non-manipulated) variables
like outside air temperature, humidity, wind etc. while the
controllable (or manipulated) variables would be the tempera-
ture and lighting set-points within the building. Our goal is to
modify the regression trees and make them suitable for syn-
thesizing the optimal values of the control variables in real-
time.

4.1 Model-based control with regression trees
The key idea in enabling control synthesis for regression trees
is in the separation of features/variables into manipulated and
non-manipulated features. Let Xc ⊂ X denote the set of
manipulated variables and Xd ⊂ X denote the set of distur-
bances/ non-manipulated variables such that Xc ∪ Xd ≡ X.
Using this separation of variables we build upon the idea of
simple model based regression trees [16, 17] to model based
control with regression trees (mbCRT).

Figure 4 shows an example of how manipulated and non-
manipulated features can get distributed at different depths of
model based regression tree which uses the a linear regression
function in the leaves of the tree:

ˆYRi = β0,i + βT
i X (3)

Where ˆYRi is the predicted response in region Ri of the tree
using all the features X. In such a tree the prediction can only
be obtained if the values of all the features X’s is known,
including the values of the control variables Xci’s. Since the
manipulated and non-manipulated variables appear in a mixed
order in the tree depth, we cannot use this tree for control
synthesis. This is because the value of the control variables
Xci’s is unknown, one cannot navigate to any single region
using the forecasts of disturbances alone.

The mbCRT algorithm avoids this problem using a simple
but clever idea. We still partition the entire data space into



regions using CART algorithm, but the top part of the regres-
sion tree is learned only on the non-manipulated features Xd

or disturbances as opposed to all the features X (Figure 5) In
every region at the leaves of the “disturbance” tree a linear
model is fit but only on the control variables Xc:

YRi = β0,i + βT
i Xc (4)

Separation of variables allows us to use the forecast of the dis-
turbances X̂d to navigate to the appropriate region Ri and use
the linear regression model (YRi = β0,i + βT

i Xc) with only
the control/manipulated features in it as the valid prediction
model for that time-step.

Algorithm 1 mbCRT: Model Based Control With Regression
Trees

1: DESIGN TIME
2: procedure MODEL TRAINING
3: Separation of Variables
4: Set Xc ← non-manipulated features
5: Set Xd← manipulated features
6: Build the power prediction tree TkW with Xd

7: for all Regions Ri at the leaves of TkW do
8: Fit linear model ˆkWRi = β0,i + βT

i Xc

9: Build q temperature trees T1, T2 · · ·Tq with Xd

10: end for
11: for all Regions Ri at the leaves of Ti do
12: Fit linear model T̂ i = β0,i + βT

i Xc

13: end for
14: end procedure
15: RUN TIME
16: procedure CONTROL SYNTHESIS

17: At time t obtain forecast X̂d(t + 1) of disturbances
X̂d1(t+ 1), X̂d2(t+ 1), · · ·

18: Using X̂d(t+1) determine the leaf and regionRrt for
each tree.

19: Obtain the linear model at the leaf of each tree.
20: Solve optimization in Eq5 for optimal control action

X∗
c(t)

21: end procedure

4.2 DR synthesis optimization
In the case of DR synthesis for buildings, the response vari-
able is power consumption, the objective function can denote
the financial reward of minimizing the power consumption
during the DR event. However, the curtailment must not re-
sult in high levels of discomfort for the building occupants. In
order to account for thermal comfort, in addition to learning
the tree for power consumption forecast, we can also learn
different trees to predict the temperature of different zones
in the building. As shown in Figure 6 and Algorithm 1, at
each time-step during the DR event, a forecast of the non ma-
nipulated variables is used by each tree, to navigate to the
appropriate leaf node. For the power forecast tree, the linear
model at the leaf node relates the predicted power consump-
tion of the building to the manipulated/control variables i.e.,
ˆkW = β0,i + βT

i Xc.
Similarly, for each zone 1, 2, · · · q, a tree is built whose re-

sponse variable is the zone temperature Ti. The linear model
at the leaf node of each of the zone temperature tree relates
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Xd3

ˆkWRi = β0,i +
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∑j=p
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∑j=p
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...

Xc ∈ Safe

linear model at leaf node is the optimization constraint

Figure 6: DR synthesis with thermal comfort constraints. Each tree is respon-
sible for contributing one constraint tot the demand response optimization.

the predicted zone temperature to the manipulated variables
T̂ i = α0,j + βT

j Xc. Therefore, at every time-step, based
on the forecast of the non-manipulated variables, we obtain
q + 1 linear models between the power consumption and q
zone temperatures and the manipulated variables. We can
then solve the following DR synthesis optimization problem
to obtain the values of the manipulated variables Xc:

minimize
Xc

f( ˆkW ) + Penalty[
q∑

k=1

(T̂k − Tref )]

subject to
ˆkW = β0,i + βT

i Xc

T̂1 = α0,1 + βT
1 Xc

· · ·
T̂ d = α0,q + βT

q Xc

Xc ∈ Xsafe

(5)

The linear model between the response variable YRi and
the control features Xc is assumed for computational simplic-
ity. Other models could also be used at the leaves as long as
they adhere to the separation of variables principle. Figure 7
shows that the linear model assumption in the leaves of the
tree is a valid assumption.

The intuition behind the mbCRT Algorithm 1 is that at run
time t, we use the forecast X̂d(t + 1) of the disturbance fea-
tures to determine the region of the uncontrollable tree and
hence, the linear model to be used for the control. We then
solve the simple linear program corresponding to that region
to obtain the optimal values of the control variables.

The mbCRT algorithm is the first ever algorithm which
allows the use of regression trees for control synthesis.
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Figure 8: DR-Advisor toolbox for power, price, weather and schedule data
capture, baseline prediction, DR policy evaluation and DR synthesis

5. CASE STUDY
DR-Advisor (Figure 8) has been developed into a MATLAB
toolbox available at http://mlab.seas.upenn.edu/
dr-advisor/. In this section, we present a comprehensive
case study to show how DR-Advisor can be used to address all
the aforementioned demand response challenges (Section 2)
and we compare the performance of our tool with other data-
driven methods.

5.1 Building description
We use historical weather and power consumption data from
8 buildings on the Penn campus (Figure 9). These buildings
are a mix of scientific research labs, administrative buildings,
office buildings with lecture halls and bio-medical research
facilities. The total floor area of the eight buildings is over 1.2
million square feet spanned across. The size of each building
is shown in Table 1.

We also use the DoE Commercial Reference Building (DoE
CRB) simulated in EnergyPlus [18] as the virtual test-bed
building. This is a large 12 story office building consisting of
73 zones with a total area of 500, 000 sq ft. There are 2, 397
people in the building during peak occupancy. During peak
load conditions the building can consume up to 1.6 MW of
power. For the simulation of the DoE CRB building we use
actual meteorological year data from Chicago for the years

Table 1: Model validation with Penn data

Building Name Total Area (sq-ft) Floors Accuracy (%)
LRSM 92,507 6 94.52
College Hall 110,266 6 96.40
Annenberg Center 107,200 5 93.75
Clinical Research Building 204,211 8 98.91
David Rittenhouse Labs 243,484 6 97.91
Huntsman Hall 320,000 9 95.03
Vance Hall 106,506 7 92.83
Goddard Labs 44,127 10 95.07

2012 and 2013. On July 17, 2013, there was a DR event on
the PJM ISO grid from 15:00 to 16:00 hrs. We simulated the
DR event for the same interval for the virtual test-bed build-
ing.

5.2 Model Validation
For each of the Penn buildings, multiple regression trees were
trained on weather and power consumption data from Au-
gust 2013 to December 2014. Only the weather forecasts
and proxy variables were used to train the models. We then
use the DR-Advisor to predict the power consumption in the
test period i.e., for several months in 2015. The predictions
are obtained for each hour, making it equivalent to baseline
power consumption estimate. The predictions on the test-set
are compared to the actual power consumption of the build-
ing during the test-set period. One such comparison for the
clinical reference building is shown in Figure 10. The follow-
ing algorithms were evaluated: single regression tree, k-fold
cross validated (CV) trees, boosted regression trees (BRT)
and random forests (RF). Our chosen metric of prediction ac-
curacy is the one minus the normalized root mean square error
(NRMSE). NRMSE is the RMSE divided by the mean of the
data. The accuracy of the model of all the eight buildings is
summarized in Table 1. We notice that DR-Advisor performs
quite well and the accuracy of the baseline model is between
92.8% to 98.9% for all the buildings.

5.3 Energy Prediction Benchmarking
We compare the performance of DR-Advisor with other data-
driven method using a bench-marking data-set from the Amer-
ican Society of Heating, Refrigeration and Air Condition-
ing Engineers (ASHRAE’s) Great Energy Predictor Shootout
Challenge [19]. The goal of the ASHRAE challenge was to
explore and evaluate data-driven models that may not have
such a strong physical basis, yet that perform well at pre-
diction. The competition attracted ∼ 150 entrants, who at-
tempted to predict the unseen power loads from weather and

Figure 9: 8 different buildings on Penn campus were modeled with DR-
Advisor

http://mlab.seas.upenn.edu/dr-advisor/
http://mlab.seas.upenn.edu/dr-advisor/


Figure 10: Model validation for the clinical research building at Penn.

Table 2: ASHRAE Energy Prediction Competition Results

ASHRAE Team ID WBE CV CHW CV HW CV Average CV
9 10.36 13.02 15.24 12.87

DR-Advisor 11.72 14.88 28.13 18.24
6 11.78 12.97 30.63 18.46
3 12.79 12.78 30.98 18.85
2 11.89 13.69 31.65 19.08
7 13.81 13.63 30.57 19.34

solar radiation data using a variety of approaches. In addition
to predicting the hourly whole building electricity consump-
tion, WBE (kW), both the hourly chilled water, CHW (mil-
lions of Btu/hr) and hot water consumption, HW (millions
of Btu/hr) of the building was also required to be a predic-
tion output. Four months of training data with the follow-
ing features was provided: (a) 1. Outside temperature (◦F)
2. Wind speed (mph) 3. Humidity ratio (water/dry air) 4. Solar
flux (W/m2) In addition to these training features, we added
three proxy variables of our own: hour of day, IsWeekend and
IsHoliday to account for correlation of the building outputs
with schedule.

Finally, we use different ensemble methods within DR-
Advisor to learn models for predicting the three different build-
ing attributes. In the actual competition, the winners were se-
lected based on the accuracy of all predictions as measured
by the normalized root mean square error, also referred to as
the coefficient of variation statistic CV. The smaller the value
of CV, the better the prediction accuracy. ASHRAE released
the results of the competition for the top 19 entries which they
received. In Table 2, we list the performance of the top 5 win-
ners of the competition and compare our results with them. It
can be seen from table 2, that the random forest implementa-
tion in the DR-Advisor tool ranks 2nd in terms of WBE CV
and the overall average CV. The winner of the competition
was an entry from David Mackay [20] which used a particu-
lar form of bayesian modeling using neural networks.

The result we obtain clearly demonstrates that the regres-
sion tree based approach within DR-Advisor can generate
predictive performance that is comparable with the ASHRAE
competition winners. Furthermore, since regression trees are
much more interpretable than neural networks, their use for
building electricity prediction is, indeed, very promising.

5.4 DR-Evaluation
We test the performance of 3 different rule based strategies
shown in Fig. 11. Each strategy determines the set point
schedules for chiller water, zone temperature and lighting dur-
ing the DR event. These strategies were derived on the ba-
sis of automated DR guidelines provided by Siemens [21].
Chiller water set point is same in Strategy 1 (S1) and Strategy
3 (S3), higher than that in Strategy 2 (S2). Lighting level in

Figure 11: Rule-based strategies used in DR Evaluation. CHSTP denotes
Chiller set point and CLGSTP denotes Zone Cooling temperature set point.

Figure 12: Prediction of power consumption for 3 strategies. DR Evaluation
shows that Strategy 1 (S1) leads to maximum power curtailment.

S3 is higher than in S1 and S2.
We use auto-regressive trees (Section 3.3) with order, δ =

6 to predict the power consumption for the entire duration (1
hour) at the start of DR Event. In addition to learning the tree
for power consumption, additional auto-regressive trees are
also built for predicting the zone temperatures of the build-
ing. At every time step, first the zone temperatures are pre-
dicted using the trees for temperature prediction. Then the
power tree uses this temperature forecast along with lagged
power consumption values to predict the power consumption
recursively until the end of the prediction horizon.

Fig. 12 shows the power consumption prediction using the
auto-regressive trees and the ground truth obtained by sim-
ulation of the DoE CRB virtual test-bed for each rule-based
strategy. Based on the predicted response, in this case DR-
Advisor chooses to deploy the strategy S1, since it leads to
the least amount of electricity consumption. The predicted re-
sponse due to the chosen strategy aligns well with the ground
truth power consumption of the building due to the same strat-
egy, showing that DR strategy evaluation prediction of DR-
Advisor is reliable and can be used to choose the best rule-
based strategy from a set of pre-determined rule-based DR
strategies.

5.5 DR-Synthesis
We now evaluate the performance of the mbCRT (Section 4.1)
algorithm for real-time DR synthesis. Similar to DR evalua-
tion, the regression tree is trained on weather, proxy features,
set-point schedules and data from the building. We first par-
tition the set of features into manipulated features (or con-
trol inputs) and non-manipulated features (or disturbances).
There are three control inputs to the system: the chilled water
set-point, zone air temperature set-point and lighting levels.



Figure 13: DR synthesis using the mbCRT algorithm for July 17, 2013. A
curtailemnt of 380kW is sustained during the DR event period.

Figure 14: Optimal DR strategy as determined by the mbCRT algorithm.

At design time, the model based tree built (Algorithm 1) has
369 leaves and each of them has a linear regression model fit-
ted over the control inputs with the response variable being
the power consumption of the building.

In addition to learning the power consumption prediction
tree, 19 additional model based trees were also built for pre-
dicting the different zone temperatures inside the building.
When the DR event commences, at every time-step (every 5
mins), DR-Advisor uses the mbCRT algorithm to determine
which leaf, and therefore, which linear regression model will
be used for that time-step to solve the linear program (Eq 5)
and determine the optimal values of the control inputs to meet
a sustained response while maintaining thermal comfort.

Figure 13 shows the power consumption profile of the build-
ing using DR-Advisor for the DR event. We can see that using
the mbCRT algorithm we are able to achieve a sustained cur-
tailed response of 380kW over a period of 1 hour as compared
to the baseline power consumption estimate. Also shown in
the figure is the comparison between the best rule based fixed
strategy which leads to the most curtailment in Section 5.4. In

Figure 15: The mbCRT algorithm maintains the zone temperatures within
the specified comfort bounds during the DR event.

this case the DR strategy synthesis outperforms the best rule
base strategy (from Section 5.4, Fig. 12) by achieving a 17%
higher curtailment while maintaining thermal comfort. The
rule-based strategy does not directly account for any effect
on thermal comfort. The DR strategy synthesized by DR-
Advisor is shown in Figure 14. We can see in Figure 15 how
the mbCRT algorithm is able to maintain the zone tempera-
tures inside the building within the specified comfort bounds.
These results demonstrate the benefit of synthesizing optimal
DR strategies as opposed ot relying on fixed rules and pre-
determined strategies which do not account for any guaran-
tees on thermal comfort. Figure 16 shows a close of view of
the curtailed response. The leaf node which is being used for
the power consumption constraint at every time-step is also
shown in the plot. We can see that the model switches several
times during the event, based on the forecast of disturbances.

These results show the effectiveness of the mbCRT algo-
rithm to synthesize DR actions in real-time while utilizing a
simple data-driven tree-based model.

5.5.1 Revenue from Demand Response
We use Con Edison utility company’s commercial demand re-
sponse tariff structure [22] to estimate the financial reward ob-
tained due to the curtailment achieved by the DR-Advisor for
our Chicago based DoE commercial reference building. The
utility provides a $25/kW per month as a reservation incen-
tive to participate in the real-time DR program for summer.
In addition to that, a payment of $1 per kWh of energy cur-
tailed is also paid. For our test-bed, the peak load curtailed
is 380kW. If we consider ∼ 5 such events per month for 4
months, this amounts to a revenue of ∼ $45, 600 for partici-
pating in DR which is 37.9% of the energy bill of the build-
ing for the same duration ($120, 317). This is a significant
amount, especially since using DR-Advisor does not require
an investment in building complex modeling or installing sen-
sor retrofits to a building.

6. RELATED WORK
There is a vast amount of literature ([23, 24, 25]) which ad-
dresses the problem of determining demand response strate-
gies. The majority of approaches are using either rule-based
approaches for curtailment or white/grey box model-based
approaches. These usually assume that the model of the sys-
tem is either perfectly known or found in literature, whereas
the task is much more complicated and time consuming in
case of a real building and sometimes, it can be even more

Figure 16: Zoomed in view of the DR synthesis showing how the mbCRT
algorithm selects the appropriate linear model for each time-step based on
the forecast of the disturbances.



complex and involved than the controller design itself. Af-
ter several years of work on using first principles based mod-
els for demand response, multiple authors [10, 26] have con-
cluded that the biggest hurdle to mass adoption of intelli-
gent building control is the cost and effort required to cap-
ture accurate dynamical models of the buildings. Since DR-
Advisor learns an aggregate building level models and com-
bined with the fact that weather forecasts are expected to be-
come cheaper; there is little to no additional sensor cost of im-
plementing the DR-Advisor recommendation system in large
buildings. OpenADR standard and protocol [27] describes the
formats for information exchange to facilitate DR but model-
ing, prediction and control strategies are out of scope.

Several machine learning approaches [28, 29, 30] have
been utilized before for forecasting electricity load including
some which use regression trees. However, there are three
significant shortcomings of the work in this area: (a) First,
the time-scales at which the load forecasts are generated range
from 15−20 min upto an hour; which is too coarse grained for
DR events which only last for at most a couple of hours and
for real-time electricity prices which exhibit frequent changes.
(b) Secondly, these approaches are not aimed at solving de-
mand response problems but are restricted to long term load
forecasting with applications in evaluating building retrofits
savings and building energy ratings. (c) Lastly, in these meth-
ods, there is no focus on control synthesis or addressing the
suitability of the model to be used in control design; whereas
the mbCRT algorithm enables the use of regression trees for
control synthesis with applications in demand response.

7. CONCLUSION
We present a data-driven approach for modeling and control
of large scale cyber-physical energy systems which are in-
herently messy to model using first principles based methods.
We show how regression tree based methods are well suited to
address challenges associated with demand response for large
C/I/I consumers while being simple and interpretable. We
have incorporated all our methods into the DR-Advisor tool -
http://mlab.seas.upenn.edu/dr-advisor/.

DR-Advisor achieves a prediction accuracy of 92.8% to
98.9% for eight buildings on the University of Pennsylva-
nia’s campus. We compare the performance of DR-Advisor
on a benchmarking data-set from AHRAE’s energy predictor
challenge and rank 2nd among the winners of that compe-
tition. We show how DR-Advisor can select the best rule-
based DR strategy, which leads to the most amount of cur-
tailment, from a set of several rule-based strategies. We pre-
sented a model based control with regression trees (mbCRT)
algorithm which enables control synthesis using regression
tree based structures for the first time. Using the mbCRT
algorithm, DR-Advisor can achieve a sustained curtailment
of 380kW during a DR event. Using a real tariff structure,
we estimate a revenue of ∼ $45,600 for the DoE reference
building over one summer which is 37.9% of the summer
energy bill for the building. The mbCRT algorithm outper-
forms even the best rule-based strategy by 17%. DR-Advisor
bypasses cost and time prohibitive process of building high
fidelity models of buildings that use grey and white box mod-
eling approaches while still being suitable for control design.
These advantages combined with the fact that the tree based
methods achieve high prediction accuracy, make DR-Advisor

an alluring tool for evaluating and planning DR curtailment
responses for large scale cyber-physical energy systems.
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