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Fly-by-Logic: Control of Multi-Drone Fleets with
Temporal Logic Objectives

Yash Vardhan Pant, Houssam Abbas, Rhudii A. Quaye, Rahul Mangharam

Abstract—The problem of safe planning and control for multi-
drone systems across a variety of missions is of critical impor-
tance, as the scope of tasks assigned to such systems increases.
In this paper, we present an approach to solve this problem for
multi-quadrotor missions. Given a mission expressed in Signal
Temporal Logic (STL), our controller maximizes robustness to
generate trajectories for the quadrotors that satisfy the STL spec-
ification in continuous-time. We also show that the constraints
on our optimization guarantees that these trajectories can be
tracked nearly perfectly by lower level off-the-shelf position and
attitude controllers. Our approach avoids the oversimplifying
abstractions found in many planning methods, while retaining the
expressiveness of missions encoded in STL allowing us to handle
complex spatial, temporal and reactive requirements. Through
experiments, both in simulation and on actual quadrotors, we
show the performance, scalability and real-time applicability of
our method.

I. INTRODUCTION

As the technology behind autonomous systems is starting to
mature, they are being envisioned to perform greater variety
of tasks. Fig. 1 shows a scenario where multiple quadrotors
have to fly a variety of missions in a common air space,
including package delivery, surveillance, and infrastructure
monitoring. Drone A is tasked with delivering a package,
which it has to do within 15 minutes and then return to base
in the following 10 minutes. Drone B is tasked with periodic
surveillance and data collection of the wildlife in the park,
while Drone C is tasked with collecting sensor data from
equipment on top of the white-and-blue building. All of these
missions have complex spatial requirements (e.g. avoid flying
over the buildings highlighted in red, perform surveillance or
monitoring of particular areas and maintain safe distance from
each other), temporal requirements (e.g., a deadline to deliver
package, periodicity of visiting the areas to be monitored)
and reactive requirements (like collision avoidance). The safe
planning and control of multi-agent systems for missions like
these is becoming an area of utmost importance. Most existing
work for this either lacks the expressiveness to capture such
requirements (e.g. [1], [2]), relies on simplifying abstractions
that result in conservative behavior ([3]), or do not take into
account explicit timing constraints ([4]). A more detailed
coverage of existing methods can be found in Section I-A.
In addition to these limitations, many of the planning methods
are computationally intractable (and hence do not scale well or
work in real-time), and provide guarantees only on a simplified
abstraction of the system behavior ([3]).
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Fig. 1: Multiple autonomous drone missions in an urban envi-
ronment. (Figure adapted from https://phys.org/news/2016-12-traffic-
solutions-drones-singapore-airspace.html)

In this work, we aim to overcome some of those limita-
tions, by focusing on a single class of dynamical systems,
namely multi-rotor drones, such as quadrotors. By using
Signal Temporal Logic (STL) as the mission specification
language, we retain the flexibility to incorporate explicit timing
constraints, as well as a variety of behaviors. Without relying
on oversimplifying abstractions, we provide guarantees on the
continuous-time behavior of the dynamical system. We also
show through experiments that the resulting behavior of the
drones is not conservative. The control problem formulation
we present is aimed to be tractable, and through both sim-
ulations and experiments on actual drones we show that we
can control up to two drones in real-time and up to 16 in
simulation.

A. State of the art

The mission planning problem for multiple agents has been
extensively studied. Most solutions work in an abstract grid-
based representation of the environment [4], [5], and abstract
the dynamics of the agents [6], [3]. As a consequence they
have correctness guarantees for the discrete behavior but
not necessarily for the underlying continuous system. Multi-
agent planning with kinematic constraints in a discretized
environment has been studied in [7] with application to ground
robots. Planning in a discrete road map with priorities assigned
to agents has been studied in [2] and is applicable to a
wide variety of systems. Another priority-based scheme for
drones using a hierarchical discrete planner and trajectory
generator has been studied in [1]. Most of these use Linear
Temporal Logic (LTL) as the mission specification language,
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Fig. 2: (Top) Five Crazyflie 2.0 quadrotors executing a reach-avoid
mission. (Bottom) A screenshot of a simulation with 16 quadrotors.
In both cases, the quadrotors have to satisfy a mission given in STL.

which doesn’t allow explicit time bounds on the mission
objectives. The work in [3] uses STL. Other than [2] and
[1], none of the above methods can run in real-time because
of their computational requirements. While [2] and [1] are
real-time, they can only handle the Reach-Avoid mission, in
which agents have to reach a desired goal state while avoiding
obstacles and each other.

In a more control-theoretic line of work, control of systems
with STL or Metric Temporal Logic (MTL) specifications
without discretizing the environment or dynamics has been
studied in [8], [9], [10]. These methods are potentially com-
putationally more tractable than the purely planning-based
approaches discussed earlier, but are still not applicable to real-
time control of complex dynamical systems like quadrotors
(e.g. see [10]), and those that rely on Mixed Integer Pro-
gramming based approaches [8] do not scale well. Stochastic
heuristics like [11] have also been used for STL missions, but
offer very few or no guarantees. Non-smooth optimization has
also been explored, but only for safety properties [12].

In this paper, we focus on multi-rotor systems, and work
with a continuous representation of the environment and take
into account the behavior of the trajectories of the quadrotor.
With the mission specified as a STL formula, we maximize
a smooth version of the robustness ([3], [10]). This, unlike a
majority of the work outlined above, allows us to take into
account explicit timing requirements. Our method also allows
us to use the full expressiveness of STL, so our approach
is not limited to a particular mission type. Finally, unlike
most of the work discussed above, we offer guarantees on the
continuous-time behavior of the system to satisfy the spatio-
temporal requirements. Through simulations and experiments
on actual platforms, we show real-time applicability of our

method for simple cases, as well as the scalability in planning
for multiple quadrotors in a constrained environment for a
variety of mission specifications.

B. Contributions
This paper presents a control framework for mission plan-

ning and execution for fleets of quadrotors, given a STL
specification.

1) Continuous-time STL satisfaction: We develop a con-
trol optimization that selects waypoints by maximizing
the robustness of the STL mission. A solution to the
optimization is guaranteed to satisfy the mission in
continuous-time, so trajectory sampling does not jeopar-
dize correctness, while the optimization only works with
a few waypoints.

2) Dynamic feasibility of trajectories: We demonstrate
that the trajectories generated by our controller respect
pre-set velocity and acceleration constraints, and so can
be well-tracked by lower-level controllers.

3) Real-time control: We demonstrate our controller’s
suitability for online control by implementing it on real
quadrotors and executing a reach-avoid mission.

4) Performance and scalability: We demonstrate our con-
troller’s speed and performance on real quadrotors, and
its superiority to other methods in simulations.

The paper is organized as follows. Section II introduces
STL and its robust semantics, while Section III introduces the
control problem we aim to solve in this paper. Section IV
presents the proposed control architecture and the trajectory
generator we use, and proves that the trajectories are dynam-
ically feasible. The main control optimization is presented
in Section V. Extensive simulation and experiments on real
quadrotors are presented in Sections VI and VII, resp. All
experiments are illustrated by videos available at the links in
Table V in the appendix.

II. PRELIMINARIES ON SIGNAL TEMPORAL LOGIC

Consider a continuous-time dynamical system H and its
uniformly discretized version

ẋc(t) = fc(xc(t), u(t)), x+ = f(x, u) (1)

where x ∈ X ⊂ Rn is the current state of the system, x+

is the next state, u ∈ U ⊂ Rm is its control input and f :
X×U → X is differentiable in both arguments. The system’s
initial state x0 takes values from some initial set X0 ⊂ Rn.
In this paper we deal with trajectories of the same duration
(e.g. 5 seconds) but sampled at different rates, so we introduce
notation to make the sampling period explicit. Let dt ∈ R+ be
a sampling period and T ∈ R+ be a trajectory duration. We
write [0 : dt : T ] = (0, dt, 2dt, . . . , (H−1)dt) for the sampled
time interval s.t. (H − 1)dt = T (we assume T is divisible
by H − 1). Given an initial state x0 and a finite control input
sequence u = (u0, ut1 . . . , utH−2

), ut ∈ U, tk ∈ [0 : dt : T ],
a trajectory of the system is the unique sequence of states
x = (x0, xt1 . . . , xtH−1

) s.t. for all t ∈ [0 : dt : T ], xt is in
X and xtk+1

= f(xtk , utk). We also denote such a trajectory
by x[dt]. Given a time domain T = [0 : dt : T ], the signal
space XT is the set of all signals x : T→ X . For an interval
I ⊂ R+ and t ∈ R+, set t + I = {t + a | a ∈ I}. The max
operator is written t and min is written u.
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A. Signal Temporal Logic (STL)

The controller of H is designed to make the closed loop
system (1) satisfy a specification expressed in Signal Temporal
Logic (STL) [13], [14]. STL is a logic that allows the succinct
and unambiguous specification of a wide variety of desired
system behaviors over time, such as “The quadrotor reaches
the goal within 10 time units while always avoiding obstacles”
and “While the quadrotor is in Zone 1, it must obey that zone’s
altitude constraints”. Formally, let M = {µ1, . . . , µL} be a
set of real-valued functions of the state µk : X → R. For
each µk define the predicate pk := µk(x) ≥ 0. Set AP :=
{p1, . . . , pL}. Thus each predicate defines a set, namely pk
defines {x ∈ X | fk(x) ≥ 0}. Let I ⊂ R denote a non-
singleton interval, > the Boolean True, p a predicate, ¬ and
∧ the Boolean negation and AND operators, respectively, and
U the Until temporal operator. An STL formula ϕ is built
recursively from the predicates using the following grammar:

ϕ := >|p|¬ϕ|ϕ1 ∧ ϕ2|ϕ1UIϕ2

Informally, ϕ1UIϕ2 means that ϕ2 must hold at some point
in I , and until then, ϕ1 must hold without interruption. The
disjunction (∨), implication ( =⇒ ), Always (�) and Eventu-
ally (♦) operators can be defined using the above operators.
Formally, the pointwise semantics of an STL formula ϕ define
what it means for a system trajectory x to satisfy ϕ.

Definition 2.1 (STL semantics): Let T = [0 : dt : T ]. The
boolean truth value of ϕ w.r.t. the discrete-time trajectory x :
T→ X at time t ∈ T is defined recursively.

(x, t) |= > ⇔ >
∀pk ∈ AP, (x, t) |= p ⇔ µk(xt) ≥ 0

(x, t) |= ¬ϕ ⇔ ¬(x, t) |= ϕ

(x, t) |= ϕ1 ∧ ϕ2 ⇔ (x, t) |= ϕ1 ∧ (x, t) |= ϕ2

(x, t) |= ϕ1UIϕ2 ⇔ ∃t′ ∈ (t+ I) ∩ T.(x, t′) |= ϕ2

∧∀t′′ ∈ (t, t′) ∩ T, (x, t′′) |= ϕ1

We say x satisfies ϕ if (x, 0) |= ϕ.
All formulas that appear in this paper have bounded tempo-

ral intervals: 0 ≤ inf I < sup I < +∞. To evaluate whether
such a bounded formula ϕ holds on a given trajectory, only a
finite-length prefix of that trajectory is needed. Its length can
be upper-bounded by the horizon of ϕ, hrz(ϕ) ∈ N, calculable
as shown in [8]. For example, the horizon of �[0,2](♦[2,4]p)
is 2+4=6: we need to observe a trajectory of, at most, length
6 to determine whether the formula holds.

B. Control using the robust semantics of STL

Designing a controller that satisfies the STL formula ϕ1

is not always enough. In a dynamic environment, where the
system must react to new unforeseen events, it is useful to have
a margin of maneuverability. That is, it is useful to control the
system such that we maximize our degree of satisfaction of
the formula. When unforeseen events occur, the system can
react to them without violating the formula. This degree of
satisfaction can be formally defined and computed using the
robust semantics of temporal logic [14], [15].

1Strictly, a controller s.t. the closed-loop behavior satisfies the formula.

Definition 2.2 (Robustness[15], [14]): The robustness of
STL formula ϕ relative to x : T→ X at time t ∈ T is

ρ>(x, t) = +∞
ρpk(x, t) = µk(xt)∀pk ∈ AP,
ρ¬ϕ(x, t) = −ρϕ(x, t)

ρϕ1∧ϕ2(x, t) = ρϕ1(x, t) u ρϕ2(x, t)

ρϕ1UIϕ2
(x, t) = tt′∈(t+I)∩T

(
ρϕ2

(x, t′)
l

ut′′∈[t,t′)∩Tρϕ1(x, t′′)
)

When t = 0, we write ρϕ(x) instead of ρϕ(x, 0).
The robustness is a real-valued function of x with the follow-
ing important property.

Theorem 2.1: [15] For any x ∈ XT and STL formula ϕ, if
ρϕ(x, t) < 0 then x violates ϕ at time t, and if ρϕ(x, t) > 0
then x satisfies ϕ at t. The case ρϕ(x, t) = 0 is inconclusive.

Thus, we can compute control inputs by maximizing the
robustness over the set of finite input sequences of a certain
length. The obtained sequence u∗ is valid if ρϕ(x∗, t) is
positive, where x∗ and u∗ obey (1). The larger ρϕ(x∗, t), the
more robust is the behavior of the system: intuitively, x∗ can
be disturbed and ρϕ might decrease but not go negative. In
fact, the amount of disturbance that x∗ can sustain is precisely
ρϕ: that is, if x∗ |= ϕ, then x∗ + e |= ϕ for all disturbances
e : T→ X s.t. supt∈T ‖e(t)‖ < ρϕ(x∗).

If T = [0, T ] then the above naturally defines satisfaction
of ϕ by a continuous-time trajectory yc : [0, T ]→ X .

III. CONTROL USING A SMOOTH APPROXIMATION OF STL
ROBUSTNESS

The goal of this work is to find a provably correct control
scheme for fleets of quadrotors, which makes them meet a
control objective ϕ expressed in temporal logic. So let ε >
0 be a desired minimum robustness. We solve the following
problem.

P : max
u∈UN−1

ρϕ(x) (2a)

s.t. xk+1 = f(xk, uk), ∀k = 0, . . . , N − 1 (2b)
xk ∈ X,uk ∈ U ∀k = 0, . . . , N (2c)
ρϕ(x) ≥ ε (2d)

Because ρϕ uses the non-differentiable functions max and
min (see Def. 2.2), it is itself non-differentiable as a func-
tion of the trajectory and the control inputs. A priori, this
necessitates the use of Mixed-Integer Programming solvers [8],
non-smooth optimizers [16], or stochastic heuristics [11] to
solve Pρ. However, it was recently shown in [10] that it
is more efficient and more reliable to instead approximate
the non-differentiable objective ρϕ by a smooth (infinitely
differentiable) function ρ̃ϕ and solve the resulting optimization
problem P̃ using Sequential Quadratic Programming. The
approximate smooth robustness is obtained by using smooth
approximations of min and max in Def. 2.2. In this paper, we
also use the smoothed robustness ρ̃ϕ and solve P̃ instead of
P . The lower bound on robustness (2d) is used to ensure that
if ρ̃ϕ ≥ ε then ρϕ ≥ 0. In [10] it was shown that an ε can be
computed such that |ρϕ − ρ̃ϕ| ≤ ε. This approach was called
Smooth Operator [10].



4

Despite the improved runtime of Smooth Operator, our
experiments have shown that it is not possible to solve P̃
in real-time using the full quadrotor dynamics. Therefore, in
this paper, we develop a control architecture that is guaranteed
to produce a correct and dynamically feasible quadrotor tra-
jectory. By ‘correct’, we mean that the continuous-time, non-
sampled trajectory satisfies the formula ϕ, and by ‘dynam-
ically feasible’, we mean that it can be implemented by the
quadrotor dynamics. This trajectory is then tracked by a lower-
level MPC tracker. The control architecture and algorithms are
the subject of the next section.

IV. QUADROTOR CONTROL ARCHITECTURE

Fig. 3 shows the control architecture used in this paper, and
its components are detailed in what follows. The overall idea
is that we want the continuous-time trajectory yc : [0, T ]→ X
of the quadrotor to satisfy the STL mission ϕ, but can only
compute a discrete-time trajectory x : [0 :dt :T ]→ X sampled
at a low rate 1/dt. So we do two things, illustrated in Fig.3:
A) to guarantee continuous-time satisfaction from discrete-
time satisfaction, we ensure that a discrete-time high-rate
trajectory q : [0 : dt′ : T ] → X satisfies a suitably stricter
version ϕs of ϕ. This is detailed in Section V.
B) To compute, in real-time, a sufficiently high-rate discrete-
time q[dt′] that satisfies ϕs, we perform a (smooth) robustness
maximization over a low-rate sequence of waypoints x with
sampling period dt >> dt′. In the experiments (Sections VI
and VII) we used dt = 1s and dt′ = 50ms. The optimization
problem is such that the optimal low-rate trajectory x : [0 :dt :
T ] → X and the desired high-rate q are related analytically:
q = L(x) for a known L : R(T/dt) → R(T/dt′). So the
robustness optimization maximizes ρ̃ϕs

(L(x)), automatically
yielding q[dt′]. Moreover, we must add constraints to ensure
that q is dynamically feasible, i.e., can be implemented by
the quadrotor dynamics. Thus, qualitatively, the optimization
problem we solve is

max
x[dt]

ρ̃ϕs(L(x[dt]))

s.t. L(x[dt]) obeys quadrotor dynamics and is feasible
x and L(x[dt]) are in the allowed air space
ρ̃ϕs

(L(x[dt])) ≥ ε (3)

The mathematical formulation of the above problem, in-
cluding the trajectory generator L, is given in Section IV-A.
But first, we end this section by a brief description of the
position and attitude controllers that take the high-rate q[dt′]
and provide motor forces to the rotors, and a description of the
quadrotor dynamics. The state of the quadrotor consists of its
3D position p and 3D linear velocity v = ṗ. A more detailed
version of the quad-rotor dynamics is in Section IX-A.

Position controller To track the desired positions and
velocities from the trajectory generator, we consider a Model
Predictive Controller (MPC) formulated using the quadrotor
dynamics of (17)linearized around hover. Given desired po-
sition and velocity commands in the fixed-world x, y, z co-
ordinates, the controller outputs a desired thrust, roll, and
pitch command (yaw fixed to zero) to the attitude controller.
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Fig. 3: The control architecture. Given a mission specification in
STL, the high-level control optimization (centralized) generates a
sequence of waypoints. These waypoints are sent over to the drones,
and through a hierarchical control on-board control architecture, the
resulting trajectories are tracked near perfectly, with the continuous
time behavior of the system satisfying the STL specification.

This controller also takes into account bounds on positions,
velocities and the desired roll, pitch and thrust commands.

Attitude controller Given a desired angular position and
thrust command generated by the MPC, the high-bandwidth
(50− 100 Hz) attitude controller maps them to motor forces.
In our control architecture, this is implemented as part of the
preexisting firmware on board the Crazyflie 2.0 quadrotors.
An example of an attitude controller can be found in [17].

A. The trajectory generator

The mapping L between low-rate x[dt] and high-rate y[dt′]
is implemented by the following trajectory generator, adapted
from [18]. It takes in a motion duration Tf > 0 and
a pair of position, velocity and acceleration tuples, called
waypoints: an initial waypoint q0 = (p0, v0, a0) and a fi-
nal waypoint qf = (pf , vf , af ). It produces a continuous-
time minimum-jerk (time derivative of acceleration) trajectory
q(t) = (p(t), v(t), a(t)) of duration Tf s.t. q(0) = q0 and
q(Tf ) = qf . In our control architecture, the waypoints are
the elements of the low-rate x computed by solving (3).
The generator of [18] formulates the quadrotor dynamics
in terms of 3D jerk and this allows a decoupling of the
equations along three orthogonal jerk axes. By solving three
independent optimal control problems, one along each axis, it
obtains three minimum-jerk trajectories, each being a spline
q∗ : [0, Tf ]→ R3 of the form:p∗(t)v∗(t)

a∗(t)

 =

 α
120 t

5 + β
24 t

4 + γ
6 t

3 + a0t
2 + v0t+ p0

α
24 t

4 + β
6 t

3 + γ
2 t

2 + a0t+ v0
α
6 t

3 + β
2 t

2 + γt+ a0

 (4)

Here, α, β, and γ are scalar linear functions of the initial q0
and final qf . Their exact expressions depend on the desired
type of motion:

1. Stop-and-go motion. [18] This type of motion yields
straight-line position trajectories p(·). These are suitable for
navigating tight spaces, since we know exactly the robot’s



5

-0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

Position of q0

p0

Position of q(kdt
′

)

p1

Position of q1

p2

Fig. 4: Planar splines connecting position waypoints p0, p1 and p2.
q0 is the continuous spline (positions, velocities and accelerations)
connecting p0 and p1 and q1 is the spline from p1 to p2. q(kdt

′
) is

the kth sample of q0, with sampled time dt
′
. Note, unlike the stop-go

case, non-zero end point velocities mean that the resulting motion is
not simply a line connecting the way points.

path between waypoints. For Stop-and-Go, the quadrotor starts
from rest and ends at rest: v0 = a0 = vf = af = 0. I.e. the
quadrotor has to come to a complete stop at each waypoint.
In this case, the constants are defined as follows:αβ

γ

 =
1

T 5
f

 720(pf − p0)
−360Tf (pf − p0)

60T 2
f (pf − p0)

 (5)

2. Trajectories with free endpoint velocities [18] Stop-
and-go trajectories have limited reach, since the robot must
spend part of the time coming to a full stop at every waypoint.
In order to get better reach, the other case from [18] that we
consider is when the desired initial and endpoint velocities,
v0 and vf , are free. Like the previous case, we still assume
a0 = af = 0. The constants in the spline (4) are then:αβ

γ

 =
1

T 5
f

 90 −15T 2
f

−90Tf 15T 3
f

30T 2
f −3T 4

f

[pf − p0 − v0Tf
af − a0

]
(6)

In this case, the trajectories between waypoints are not
restricted to be on a line, allowing for a wider range of
maneuvers, as will be demonstrated in the simulations of
Section VI. An example of such a spline (planar) is shown
in Fig. 4.

B. Constraints for dynamically feasible trajectories
The splines (4) that define the trajectories come from

solving an unconstrained optimal control problem, so they
are not guaranteed to respect any state and input constraints,
and thus might not be dynamically feasible. By dynamically
feasible, we mean that the quadrotor can be actuated (by the
motion controller) to follow the spline. Typically, feasibility
requires that the spline velocity and acceleration be within
certain bounds. E.g. a sharp turn is not possible at high speed,
but can be done at low speed. Therefore, we formally define
dynamic feasibility as follows.

Definition 4.1 (Dynamically feasible trajectories): Let [v, v̄]
be bounds on velocity and [a, ā] be bounds on acceleration. A
trajectory q : [0, Tf ] → R3, with q(t) = (p(t), v(t), a(t)), is
dynamically feasible if v(t) ∈ [v, v̄] and a(t) ∈ [a, ā] for all
t ∈ [0, Tf ] for each of the three axes of motion.

Assumption 4.1: We assume that dynamically feasible tra-
jectories, as defined here, can be tracked almost perfectly
by the position (and attitude) controller. This assumption is
validated by our experiments on physical quadrotor platforms.
See Section VII.

In this section we derive constraints on the desired end state
(pf , vf , af ) such that the resulting trajectory q(·) computed by
the generator [18] is dynamically feasible.

Since the trajectory generator works independently on each
jerk axis, we derive constraints for a one-axis spline given
by (4). An identical analysis applies to the splines of other
axes. Since a quadrotor can achieve the same velocities and
accelerations in either direction along an axis, we take v <
0 < v̄ = −v and a < 0 < ā = −a. We derive the bounds for
the two types of motion described earlier.

Stop-and-go trajectories: vf = v0 = 0 = af = a0 = 0
Since the expressions for the splines are linear in pf and p0
((4), (5)), without loss of generality we assume p0 = 0. By
substituting (5) in (4), we get:

p∗t = (6
t5

T 5
f

− 15
t4

T 4
f

+ 10
t3

T 3
f

)pf (7a)

v∗t = (30
t4

T 5
f

− 60
t3

T 4
f

+ 30
t2

T 3
f

)︸ ︷︷ ︸
K1(t)

pf (7b)

a∗t = (120
t4

T 5
f

− 180
t2

T 4
f

+ 60
t2

T 4
f

)︸ ︷︷ ︸
K2(t)

pf (7c)

Fig. 10 in the appendix shows the functions K1 and K2 for
Tf = 1. The following lemma is proved by examining the first
two derivatives of K1 and K2.

Lemma 4.1: The function K1 : [0, Tf ] → R is non-
negative and log-concave. The function K2 : [0, Tf ] → R
is anti-symmetric around t = Tf/2, concave on the interval
t ∈ [0, Tf/2) and convex on the interval [Tf/2, Tf ].

Let maxt∈[0,Tf ]K1(t) = K∗1 and maxt∈[0,Tf ] |K2(t)| =
K∗2 . These are easily computed thanks to Lemma 4.1. We can
now state the feasibility constraints for Stop-and-Go motion.
See the appendix for a proof sketch.

Theorem 4.1 (Stop-and-go feasibility): Given an initial po-
sition p0 (and v0 = a0 = 0), a maneuver duration Tf , and
desired bounds [v, v̄] and [a, ā], if v/K∗1 ≤ pf − p0 ≤ v̄/K∗1
and a/K∗2 ≤ pf −p0 ≤ ā/K∗2 then v∗t ∈ [v, v̄] and a∗t ∈ [a, ā]
for all t ∈ [0, Tf ].

Since v, v̄, a, ā,K∗1 ,K
∗
2 are all available offline, they can be

used as constraints if solving problem (3) offline.
Free end velocities: af = a0 = 0, free vf . Here too,

without loss of generality p0 = 0. Substituting (6) in (4)
and re-arranging terms yields the following expression for the
optimal translational state:
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Fig. 5: The upper and lower bounds on pf due to the accel-
eration and velocity constraints. Shown as a function of v0 for
t = 0, 0.1, . . . , Tf = 1. The shaded region shows the feasible values
of pf as a function of v0.

p∗t = (
90t5

240T 5
f

−
90t4

48T 4
f

+
30t3

12T 3
f

)pf − (
90t5

240T 4
f

−
90t4

48T 3
f

+
30t3

12T 2
f

− t)v0

v∗t = (
90t4

48T 5
f

−
90t3

12T 4
f

+
30t2

4T 3
f

)︸ ︷︷ ︸
K3(t)

pf − (
90t4

48T 4
f

−
90t3

12T 3
f

+
30t2

4T 2
f

− 1)v0

a∗t = (
90t3

12T 5
f

−
90t2

4T 4
f

+
30t

2T 3
f

)︸ ︷︷ ︸
K4(t)

pf − (
90t3

12T 4
f

−
90t2

4T 3
f

+
30t

2T 2
f

)v0

(8)

Applying the velocity and acceleration bounds v ≤ v∗ ≤ v̄
and a ≤ a∗ ≤ ā to (8) and re-arranging terms yields:

(v − (1− TfK3(t))v0)

K3(t)
≤ pf ≤

(v̄ − (1− TfK3(t))v0)

K3(t)
∀t ∈ [0, Tf ]

(9a)
a/K4(t) + Tfv0 ≤ pf ≤ ā/K4(t) + Tfv0 ∀t ∈ [0, Tf ] (9b)

The constraints on pf are linear in v0, but parametrized by
functions of t. Since t is continuous in [0, Tf ], (9) is an infinite
system of linear inequalities. Fig. 5 shows these linear bounds
for t = 0, 0.1, 0.2, . . . , 1 = Tf with v̄ = 1 = −v, ā = 2 = −a.
Fig. 10 in the appendix shows the functions K3 and K4 for
Tf = 1.

The infinite system can be reduced to 2 inequalities only,
as proved in the appendix.

Lemma 4.2: pf satisfies (9) if it satisfies the following

v − (1− TfK3(Tf ))v0
K3(Tf )

≤ pf ≤ v̄ − (1− TfK3(Tf ))v0
K3(Tf )

Tfv0 + a/K4(t′) ≤ pf ≤ Tfv0 + ā/K4(t′) (10)

where t′ is a solution of the quadratic equation dK4(t)
dt = 0,

such that t′ ∈ [0, Tf ].
The main result follows:

Theorem 4.2 (Free endpoint velocity feasibility): Given
an initial translational state p0, v0 ∈ [v, v̄], a0 = 0, and a
maneuver duration Tf , if pf satisfies

v − (1− TfK3(Tf ))v0

K3(Tf )
≤ pf − p0 ≤

v̄ − (1− TfK3(Tf ))v0

K3(Tf )

Tfv0 + a/K4(t′) ≤ pf − p0 ≤ Tfv0 + ā/K4(t′)

(11)

with t′ defined as in Lemma 4.2, then v∗(t) ∈ [v, v̄] and
a∗t ∈ [a, ā] for all t ∈ [0, Tf ] and p∗(Tf ) = pf .

V. CONTROL OF QUADROTORS FOR SATISFACTION OF STL
SPECIFICATIONS

We are now ready to formulate the mathematical robustness
maximization problem we solve for temporal logic planning.
We describe it for the Free Endpoint Velocity motion; an
almost-identical formulation applies for the Stop-and-Go case
with obvious modifications.

Recall the notions of low-rate trajectory x and high-rate
discrete-time trajectory q defined in Section IV. Consider an
initial translational state xI = (pI , vI) and a desired final
position pf to be reached in Tf seconds, with free end velocity
and zero acceleration. Given such a pair, the generator of Sec-
tion IV-A computes a trajectory q = (p, v, a) : [0, Tf ] → R9

that connects pI and pf . By (4), for every t ∈ [0, Tf ], q(t)
is a linear function of pI , pf and vI . If the spline q(·) is
uniformly sampled with a period of dt′, let H = Tf/dt

′ be
the number of discrete samples in the interval [0, Tf ]. Every
q(·dt′) (sampled point along the spline) is a linear function

of pI , vI , pf . Hereinafter, we use xI
Tf→ xf as shorthand for

saying that xI is the initial state, and xf = (pf , vf ) is the final
state with desired end position pf and end velocity vf = v(Tf )
computed using the spline.

More generally, consider a sequence of low-rate waypoints
(x0

Tf→ x1, x1
Tf→ x2, . . . , xN−1

Tf→ xN ), and a sequence
(qk)N−1k=0 of splines connecting them and their high-rate sam-
pled versions q̂k sampled with a period dt′ << Tf . Then every
sample qk(i·dt′) is a linear function of pk−1, vk−1 and pk.

We now put everything together. Write
q̂ = (q0(0), . . . , qN−1(Hdt)) ∈ R9N(H−1),
x = ((p0, v0), . . . , (pN−1, vN−1)) ∈ R6N , and let
L : R6N → R9N(H−1) be the linear map between them. In
the Stop-and-Go case, this uses all velocities to 0 and uses
(7) for positions, and in the free velocity case, L uses (8).
The robustness maximization problem is finally:

max
x

ρ̃ϕs(L(x)) (12a)

s.t. LBv(vk−1) ≤ pk − pk−1 ≤ UBv(vk−1)∀k = 1, . . . , N, (12b)
LBa(vk−1) ≤ pk − pk−1 ≤ UBa(vk−1)∀k = 1, . . . , N, (12c)
ρ̃ϕs(L(x)) ≥ ε (12d)

where (12b) and (12c) are the constraints from (11) in
Free Endpoint Velocity motion, and Thm. 4.1 in Stop-and-Go
motion, with pI = pk−1 and pf = pk.

Since the optimization variables are only the waypoints
p, and not the high-rate discrete-time trajectory, this makes
the optimization problem much more tractable. In general,
the number N of low-rate waypoints p is a design choice
that requires some mission specific knowledge. The higher
N is, the more freedom of movement there is, but at a cost
of increased computation burden of the optimization (more
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constraints and variables). A very small N on the other
hand will restrict the freedom of motion and might make
it impossible for the resulting trajectory to satisfy the STL
specification.

A. Strictification for Continuous time guarantees
In general, if the sampled trajectory q satisfies ϕ, this

does not guarantee that the continuous-time trajectory q also
satisfies it. For that, we use [19, Thm. 5.3.1], which defines a
strictification operator str:ϕ 7→ ϕs that computes a syntactical
variant of ϕ having the following property.

Theorem 5.1: [19] Let dt be the sampling period, and
suppose that there exists a constant ∆g ≥ 0 s.t. for all t,
‖q(t)−q(t+dt)‖ ≤ ∆gdt. Then ρϕs

(q) > ∆g ⇒ (q, 0) |= ϕ.
Intuitively, the stricter ϕs tightens the temporal intervals and
the predicates µk so it is ‘harder’ to satisfy ϕs than ϕ. See [19,
Ch. 5]. For the trajectory generator g of Section IV-A, ∆g can
be computed given Tf , v, v̄, a and ā.

We need the following easy-to-prove result, to account for
the fact that we optimize a smoothed robustness:

Corollary 5.1.1: Let ε be the worst-case approximation error
for smooth robustness. If ρ̃ϕs

(q) > ∆g + ε then (q, 0) |= ϕ

B. Robust and Boolean modes of solution
The control problem of (12) can be solved in two modes [8]:

the Robust (R) Mode, which solves the problem until a
maximum is found (or some other optimizer-specific criterion
is met). And a Boolean (B) Mode, in which the optimization
(12) stops as soon as the smooth robustness value exceeds ε.

C. Implementation of the control
The controller can be implemented in one of two ways:
One-shot: The optimization of (12) is solved once at time

0 and the resulting trajectories are then used as a plan for the
quadrotors to follow. In our simulations, where there are no
disturbances, this method is acceptable or when any expected
disturbances are guaranteed to be less than ρ̃∗, the robustness
value achieved by the optimization.

Shrinking horizon: In practice, disturbances and modeling
errors necessitate the use of an online feedback controller. We
use a shrinking horizon approach. At time 0, the waypoints are
computed by solving (12) and given to the quadrotors to track.
Then every Tf seconds, estimates for p, v, a are obtained, and
the optimization is solved again, while fixing all variables
for previous time instants to their observed/computed values,
to generate new waypoints for the remaining duration of the
trajectory. For the kth such optimization, we re-use the k−1st

solution as an initial guess. This results in a faster optimization
that can be run online, as will be seen in the experiments.

VI. SIMULATIONS RESULTS

We demonstrate the efficiency and the guarantees of our
method through multiple examples, in simulation and in real
experiments. For the simulations, we consider two case stud-
ies: a) A multi-drone reach-avoid problem in a constrained
environment, and b) A multi-mission example where several
drones have to fly one of two missions in the same environ-
ment. We assume a disturbance-free environment, and solve

the problem in one shot, i.e. the entire trajectory that satisfies
the mission is computed in one go (aka open-loop). Links to
the videos for all simulations are in Table V on the last page of
this paper. The MATLAB code for all examples in this paper
can be obtained at https://github.com/yashpant/FlyByWire.

A. Simulation setup

The following simulations were done in MATLAB 2016b,
with the optimization formulated in Casadi [20] with Ipopt
[21] as the NLP solver. HSL routines [22] were used as
internal linear solvers in Ipopt. All simulations were run on a
laptop with a quadcore i7-7600 processor (2.8 Ghz) and 16Gb
RAM running Ubuntu 17.04. For all simulations, waypoints
are separated by Tf = 1 second.

B. Multi drone reach-avoid problem

The objective of the drone d is to reach a goal set Goal
([1.5, 2] × [1.5, 2] × [0.5, 1]) within the time interval [0, T ],
while avoiding an unsafe set Unsafe ([−1, 1]× [−1, 1]× [0, 1])
throughout the interval, in the 3D position space. This envi-
ronment is similar to the one in Fig. 7. With p denoting the
drone’s 3D position, the mission for a single drone d is:

ϕdsra = �[0,T ]¬(p ∈ Unsafe) ∧ ♦[0,T ](p ∈ Goal) (13)

The Multi drone Reach-Avoid problem adds the requirement
that every two drones d, d′ must maintain a minimum separa-
tion δmin > 0 from each other: ϕd,d

′

sep = �[0,T ](||pd − pd
′ || ≥

δmin. Assuming the number of drones is D, the specification
reads:

ϕmra = ∧D
d=1 ϕ

d
sra

∧
∧D

d=1(∧d′ 6=dϕ
d,d′
sep ) (14)

The horizon of this formula is hrz(ϕmra) = T . The robust-
ness of ϕmra is upper-bounded by 0.25, which is achievable if
all drones visit the center of the set Goal (as defined above) -
at that time, they would be 0.25m away from the boundaries of
Goal - and maintain a minimum distance of 0.25 to Unsafe and
each other. We analyze the runtimes and achieved robustness
of our controller by running a 100 simulations, each one from
different randomly-chosen initial positions of the drones in the
free space X/(Goal ∪ Unsafe)).

1) Stop and go trajectories: We show the results of con-
trolling using (12) to satisfy ϕmra for the case of Stop-and-Go
motion (see Section IV-A) with T = 6 seconds. Videos of
the computed trajectories are available at link 1 (in Boolean
mode) and at link 2 (in Robust Mode) in Table V.

Table I shows the run-times for an increasing number of
drones D in the Robust and Boolean modes. It also shows
the robustness of the obtained optimal trajectories in Robust
mode. (We maximize smooth robustness, then compute true
robustness on the returned trajectories). As D increases, the
robustness values decrease. Starting from the upper bound of
0.25 with 1 drone, the robustness decreases to an average
of 0.122 for D = 5. This is expected, as more and more
drones have to visit Goal within the same time [0,6], while
maintaining a pairwise minimum separation of δmin. As a
result, the drones cannot get deep into the goal set, and this
lowers the robustness value.
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Up to 5 drones, the controller is successful in accomplishing
the mission every time. By contrast, for D > 5, the controller
starts failing, in up to half the simulations. We conclude that
for T = 6, the optimization can only handle up to 5 drones
for this mission, in this environment.

Comparison to MILP-based solution. The problem of
maximizing ρϕmra(y) to satisfy ϕmra can be encoded as a
Mixed Integer Linear Program (MILP) and solved. The tool
BluSTL [8] implements this approach. We compare our run-
times to those of BluSTL for the case D = 1. The robustness
maximization in BluSTL took 1.2 ± 0.3s (mean ± standard
deviation) and returned a robustness value of 0.25 for each
simulation, while the Boolean mode took 0.65±0.2s seconds.
(Note we do not include the time it takes BluSTL to encode the
problem in these numbers.) Thus our approach out-performs
MILP in both modes. For D > 1, BluSTL could not return
a solution with positive robustness. The negative-robustness
solutions it did return required several minutes to compute. It
should however be noted that BluSTL is a general purpose
tool for finding trajectories of dynamical systems that satisfy
a given STL specification, while our approach is tailored to
the particular problem of controlling multi-rotor robots for
satisfying a STL specification.

TABLE I: Stop-and-Go motion. Mean ± standard deviation for run-
times (in seconds) and robustness values from 100 runs of the reach-
avoid problem.

D Boolean mode Robust mode ρ∗ (Robust mode)
1 0.078± 0.004 0.40± 0.018 0.244± 0
2 0.099± 0.007 1.313± 0.272 0.198± 0.015
3 0.134± 0.015 2.364± 0.354 0.176± 0.018
4 0.181± 0.024 3.423± 0.370 0.160± 0.031
5 0.214± 0.023 7.009± 3.177 0.122± 0.058

2) Trajectories with free end point velocities: We also
solved the multi-drone reach-avoid problem for Free Velocity
motion (Section IV-A), with T = 6. An instance of the
resulting trajectories are available in links 3 and 4 for Boolean
mode and at links 5 and 6 for Robust mode in Table V in the
appendix.Table II shows the runtimes for an increasing number
of drones D in the Robust and Boolean modes. It also shows
the robustness of the obtained optimal trajectories in Robust
mode. As before, the achieved robustness value decreases as
D increases. Unlike the stop-and-go case, positive robustness
solutions are achieved for all simulations, up to D = 16
drones. This is due to the added freedom of motion between
waypoints. This matches the intuition that a wider range of
motion is possible when the quadrotors do not have to come
to a full stop at every waypoint.

For this case, we did not compare with BluSTL as the there
is no easy way to incorporate this formulation in BluSTL.

Discussion The simulations show the performance and
scalability of our method, finding satisfying trajectories for
ϕmra for 16 drones in less than 2 seconds on average, while
maximizing robustness in 35 seconds. On the other hand, the
MILP-based approach does not scale well, and for the cases
where it does work, is considerably slower than our approach.

Since the high-level control problem is solved at 1 Hz, the
runtimes (in the boolean mode) suggest that we can control up
to 2 drones online in real-time without too much computation
delay: Stop-and-Go takes an average of 0.099s for 2 drones

TABLE II: Free Endpoint Velocity motion. Mean ± standard
deviation for runtimes (in seconds) and robustness values from 100
runs of the reach-avoid problem.

D Boolean mode Robust mode ρ∗ (Robust mode)
1 0.081± 0.005 0.32± 0.18 0.247± 0
2 0.112± 0.016 0.86± 0.15 0.188± 0.026
4 0.244± 0.017 1.88± 0.17 0.149± 0.040
5 0.307± 0.056 3.48± 0.56 0.137± 0.018
6 0.439± 0.073 9.08± 0.85 0.102± 0.032
8 0.651± 0.042 15.86± 2.15 0.0734± 0.018
10 0.843± 0.077 16.64± 1.30 0.051± 0.017
12 1.123± 0.096 23.99± 5.81 0.033± 0.003
16 1.575± 0.114 32.21± 6.25 0.028± 0.005

(Table I), and Free Endpoint Velocity takes an average of
0.11s for 2 drones (Table II). Moreover, when applied online,
we solve the optimization in a shrinking horizon fashion,
drastically reducing runtimes in later iterations.

C. Multi drone multi mission example
Our method can be applied to scenarios with multiple mis-

sions We illustrate this with the following 2-mission scenario:
- Mission Pkg: A package delivery mission. The drone(s) d
has to visit a Delivery region to deliver a package within the
first 10 seconds and then visit the Base region to pick up
another package, which becomes available between 10 and 20
seconds later. In STL,

ϕd
pkg = ♦[0,10](p

d ∈ Deliver) ∧ ♦(10,20](p
d ∈ Base) (15)

- Mission Srv: A surveillance mission. The drone(s) d has to,
within 20 seconds, monitor two regions sequentially. In STL,

ϕd
srv = ♦[0,5](p

d ∈ Zone1) ∧ ♦(5,10](p
d ∈ Zone2)

∧ ♦[10,15)(p
d ∈ Zone1) ∧ ♦(15,20](p

d ∈ Zone2)
(16)

In addition to these requirements, all the drones have to
always maintain a minimum separation of δmin from each other
(ϕd,d

′

sep above), and avoid two unsafe sets Unsafe1 and Unsafe2.
Given an even number D of drones, the odd-numbered drones
are flying mission Pkg, while the even-numbered drones are
flying mission Srv. The overall mission specification over all
D drones is:

ϕx-mission = ∧d Odd ϕ
d
pkg

∧
∧d Even ϕ

d
srv

∧
∧d≤D ∧d′ 6=d ϕ

d,d′
sep∧

∧d≤D ∧2
i=1 �[0,20]¬(pd ∈ Unsafei)

The mission environment is shown in Fig. 6. Note that the
upper bound on robustness is again 0.25.

TABLE III: Mean ± standard deviation for runtimes (in seconds)
and robustness values for one-shot optimization. Obtained from 50
runs of the multi-mission problem with random initial positions.

D Boolean mode Robust mode ρ∗ (Robust mode)
2 0.33± 0.08 4.93± 0.18 0.2414± 0
4 0.65± 0.10 16.11± 4.05 0.2158± 0.0658
6 2.38± 0.28 24.83± 7.50 0.1531± 0.0497
8 20.82± 4.23 32.87± 2.26 0.0845± 0.0025

Results. We solved this problem for D = 2, 4, 6, 8 drones,
again with randomly generated initial positions in both Robust
and Boolean modes. Videos of the resulting trajectories are in
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Fig. 6: The environment for the multi-mission problem.

links 7-10 of Table V. The runtimes increase with the number
of drones, as shown in Table III.The runtimes are very suitable
for offline computation. For online computation in a shrinking
horizon fashion, they impose an update rate of at most 1/2
Hz (once every 2 seconds). In general, in the case of longer
horizons, this method can serve as a one-shot planner.

For D > 8, the optimization could not return a solution that
satisfied the STL specification. This is likely due to the small
size of the sets that have to be visited by all drones in the
same time interval, which is difficult to do while maintaining
minimum separation (see Fig. 6). So it is likely the case
that no solution exists, which is corroborated by the fact that
maximum robustness decreases as D increases (Table III).

VII. EXPERIMENTS ON REAL QUADROTORS

We evaluate our method on Crazyflie 2.0 quadrotors (Fig. 2).
Through these experiments we aim to show that: a) the
velocity and acceleration constraints from Section IV-B indeed
ensure that the high-rate trajectory y generated by robustness
maximization is dynamically feasible and can be tracked by
the MPC position controller, and b) our approach can control
the quadrotors to satisfy their specifications in a real-time
closed loop manner. A real-time playback of the experiments
is in the links 11-16 of Table V in the appendix, on the last
page of this paper.

A. Experimental Setup
The Crazyflies are controlled by a single laptop running

ROS and MATLAB. For state estimation, a Vicon motion
capture system gave us quadrotor positions, velocities, orienta-
tions and angular velocities. In order to control the Crazyflies,
we: a) implemented the robustness maximization using Casadi
in MATLAB, and interfaced it to ROS using the MATLAB-
ROS interface provided by the Robotics Toolbox, b) im-
plemented a Model Predictive Controller (MPC) using the
quadrotor dynamics linearized around hover for the position
controller, coded in C using CVXGEN and ROS, c) modified
the ETH tracker in C++ to work with ROS. The Crazyflie has
its own attitude controller flashed to the onboard microcon-
troller. The robustness maximizer runs at 1Hz, the trajectory
generator runs at 20Hz, the position controller runs at 20Hz
and the attitude controller runs at 50Hz.

Fig. 7: The desired and actual trajectories for a Crazyflie 2.0 flying
the reach-avoid problem with closed-loop control. The unsafe set is
in red and the goal set is in green (Color in online version).

B. Online real-time control

We fly the reach-avoid problem (in both Stop-and-Go and
Free Endpoint Velocity modes), for one and two drones, with
T = 6 seconds, and with a maneuver duration Tf set to 1
second. The controller operates in Boolean mode.

The shrinking horizon approach of Section V is used with a
re-calculation rate of 1 Hz. This approach can be implemented
in an online manner in real-time when the computation time
for the high-level optimization (12) is much smaller than the
re-calculation rate of the optimization, as it is in the cases we
consider here.

We repeat each experiment multiple times. For every run,
the quadrotors satisfied the STL specification of (14). The
runtimes are shown in Table IV. Using the optimal solution
at the previous time step as the initial solution for the current
time step results in very small average runtimes per time-step.
This shows that our method can be easily applied in a real-time
closed-loop manner.

TABLE IV: Average runtime per time-step (in seconds) of shrinking
horizon robustness maximization in Boolean mode. These are aver-
aged over 5 repetitions of the experiment from the same initial point,
to demonstrate the reproducibility of the experiments.

D Stop-and-Go Free Endpoint Velocity)
1 0.052 0.065
2 0.071 0.088

We observed that for more than 2 quadrotors, the online
delay due to the optimization and the MATLAB-ROS interface
(the latter takes up to 10ms for receiving a state-estimate
and publishing a waypoint command) is large enough that
the quadrotor has significantly less than Tf time to execute
the maneuver between waypoints, resulting in trajectories that
sometimes do not reach the goal state. Videos are in links
11-13 in Table V in the appendix.

C. Validating the dynamic feasibility of generated trajectories.

Figs. 7 and 8 shows the tracking of the positions and
velocities commanded by the spline. The near-perfect tracking
shows that we are justified in assuming that imposing velocity
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Fig. 8: The desired (dashed green) and actual (blue) positions and
velocities along the 3 axes (color in online version). The near-perfect
tracking shows the dynamical feasibility of the selected waypoints.

and acceleration bounds on the robustness maximizer produces
dynamically feasible trajectories that can be tracked by the
position and attitude controllers.

D. Offline planning for multiple drones

Our approach can be used as an offline path planner. Specif-
ically, we solve the problem (12) offline for Free Endpoint
Velocity motion, and use the solution low-rate trajectory x
as waypoints. Online, we run the trajectory generator of
Section IV-A (and lower-level controllers) to navigate the
Crazyflies between the waypoints in a shrinking horizon
fashion. We did this for all 8 Crazyflies at our disposal, and we
expect it is possible to support significantly more Crazyflies,
since the online computation (for the individual position and
attitude controllers of the drones) is completely independent
for the various drones. A video of this experiment is available
in the links of Table V in the appendix.

VIII. CONCLUSIONS AND FUTURE WORK

We presented a method for generating trajectories for
multiple drones to satisfy a given STL requirement. The
correctness of satisfaction is guaranteed for the continuous-
time behavior of the resulting trajectories, and they can be
tracked nearly perfectly by lower level position and attitude
controllers. Through simulations, as well as experiments on
actual quadrotors, we show the applicability of our method as a
real-time high-level controller in a hierarchical control scheme.
We also show that our method is computationally tractable and
scales well for problems involving up to 16 drones.

While the examples in this paper show the good per-
formance of our method, the method itself is not without
limitations: a) The high-level optimization (12) at the heart
of this approach is a non-convex problem and the solvers
used guarantee convergence only to a local optima, which
may have a negative robustness value. Parallel instances of
the solver with different initial starting points can alleviate
this problem in practice. b) The approach still cannot scale to
control a large number of drones in an online and real-time
manner. Ongoing work is on extending our method to STL
formulae with unbounded time horizons through a receding

horizon approach, as well as addressing some of the existing
limitations of this method.
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Fig. 9: World frame and rotation angles (left) and quadrotor frame
with angular rates (right). g is gravitational force. Figure adapted
from Fig. 2 in [18].

IX. APPENDIX

A. Quadrotor dynamics
Multi-rotor dynamics have been studied extensively in the

literature [17], [18], and we closely follow the conventions of
[18] Fig. 9 illustrates the following definitions. The quadrotor
has 6 degrees of freedom. The first three, (x, y, z), are the
linear position of the quadrotor in R3 expressed in the world
frame. We write p = (x, y, z) for position. The remaining
three are the rotation angles (φ, θ, ψ) of the quadrotor body
frame with respect to the fixed world frame. Their first
time-derivatives, ω1, ω2, ω3, resp., are the quadrotor’s angular
velocities. We also write v = ṗ for linear velocity and a = v̇
for acceleration. If we let R denote the rotation matrix [17]
that maps the quadrotor frame to the world frame at time t,
e3 = [0, 0, 1]′, and h ∈ R be the input to the system, which is
the total thrust normalized by the mass of the quadrotor, then
the dynamics are given by

p̈ = Re3h+ [0, 0, 9.81]′

Ṙ = R

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (17)

B. Links to videos
Table V on the last page of this paper has the links for the

visualizations of all simulations and experiments performed in
this work.

C. Dyanmic feasibility proofs for Section IV-B
Stop-and-go motion. Dynamical feasibility for velocities

implies that v∗t ∈ [v, v̄]∀t ∈ [0, Tf ], so by (7), v ≤ K1(t)pf ≤
v̄. Similarly for accelerations, a ≤ K2(t)pf ≤ ā. By non-
negativity of K1 and negativity of v, the velocity constraints
are equivalent to:

v/K∗1 ≤ pf ≤ v̄/K∗1 (18)

Similarly for acceleration, the constraints are

a/K∗2 ≤ pf ≤ ā/K∗2 (19)

This establishes the result for p0 = 0. For the general case,
simply replace pf by pf − p0 and apply the p0 = 0 result.
Through the decoupling of axes, this result holds for all 3 jerk
axes.

Fig. 10: The functions K1 to K4 for Tf = 1.

Free velocity motion. Proof of Lemma 4.2. We first prove
the upper bound of the first inequality, derived from velocity
bounds. The lower bound follows similarly. First, note that the
upper bounds v0 7→ (v̄ − (1 − TfK3(t))v0)/K3(t) are lines
that intersect at v0 = v̄ for all t. Indeed, substituting v0 = v̄
in the upper bound yields v̄− (1− TfK3(t))v̄)/K3(t) = Tf v̄
regardless of t. See Fig. 5. Thus the least upper bound is
the line with the smallest intercept with the y-axis. Setting
v0 = 0 in 9, the intercept is v̄/K3(t). This is smallest when
K3(t) is maximized. Since K3 is monotonically increasing
(dK3(t)

dt ≥ 0), K3(t) is largest at t = Tf . Thus the least upper
bound on pf is (v̄ − (1− TfK3(Tf ))v0)/K3(Tf ).

We now prove the upper bound for the second inequality,
derived from acceleration bounds. The lower bound follows
similarly. The upper bounds t 7→ ā/K4(t) + Tfv0 have the
same slope, T . See Fig. 5. The least upper bound therefore has
the smallest intercept with the y-axis, which is ā/K4(t). The
smallest intercept, yielding the smallest upper bound, occurs
at the t that maximizes K4. Since K4(t) is concave in t in the
interval [0, Tf ], it is maximized at the solution of dK4(t)

dt = 0.
This concludes the proof. Refer to Fig. 5 for the intuition
behind this proof.
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TABLE V: Links for the videos for simulations and experiments. Here, Sim. stands for Matlab simulations, CF2.0 for experiments on the
Crazyflies. Stop-go and vel. free are the two modes of operation of the trajectory generator, and B (R) is the Boolean (Robust) mode of
solving the control problem. Shr. Hrz. stands for the shrinking horizon mode for online control. The reader is advised to make sure while
copying the link that special characters are not ignored when pasted in the browser.

Link number Platform Mode Specification Drones (D) Link
1 Sim. One-shot (B), stop-go ϕmRA 1,2,4,5 http://bit.ly/RABstopgo
2 Sim. One-shot (R), stop-go ϕmRA 1,2,4,5 http://bit.ly/RARstopgo
3 Sim. One-shot (B), vel. free ϕmRA 1,2,4,5,6 http://bit.ly/RAB1to6varvel
4 Sim. One-shot (B), vel. free ϕmRA 8,10,12,16 http://bit.ly/RAB8to16varvel
5 Sim. One-shot (R), vel. free ϕmRA 1,2,4,5,6 http://bit.ly/RAR1to6varvel
6 Sim. One-shot (R), vel. free ϕmRA 8,10,12,16 http://bit.ly/RAR8to16varvel
7 Sim. One-shot (R), vel. free ϕx−mission 2 http://bit.ly/multi2mission
8 Sim. One-shot (R), vel. free ϕx−mission 4 http://bit.ly/multi4mission
9 Sim. One-shot (R), vel. free ϕx−mission 6 http://bit.ly/multi6mission

10 Sim. One-shot (R), vel. free ϕx−mission 8 http://bit.ly/multi8mission
11 CF2.0 Shr.Hrz (B), vel. free ϕsRA 1 http://bit.ly/varvel1
12 CF2.0 Shr.Hrz (B), vel. free ϕmRA 2 http://bit.ly/varvel2
13 CF2.0 Shr.Hrz (B), stop-go ϕsRA 1 http://bit.ly/stopgo1
14 CF2.0 One-shot (R), vel. free ϕmRA 4 http://bit.ly/varvel4
15 CF2.0 One-shot (R), vel. free ϕmRA 6 http://bit.ly/varvel6
16 CF2.0 One-shot (R), vel. free ϕmRA 8 http://bit.ly/varvel8


