Abstract:
In this paper, we study a dynamic topology management problem in the wireless cellular network, in which base stations can be switched on or off to save energy consumptio...Show MoreMetadata
Abstract:
In this paper, we study a dynamic topology management problem in the wireless cellular network, in which base stations can be switched on or off to save energy consumption of the network. To model non-uniform traffic demand over the network, we divide the entire network area into subareas, assuming that each of subareas has its own traffic demand, which can be satisfied by allocating enough bandwidth and power from a base station. With this network model, we propose a two-step algorithm for dynamic topology management. In the first step, we obtain the maximum radius of the service area for each base station by solving an optimization problem. In the second step, we first construct a graph based on the maximum radii obtained in the first step. We then identify the minimal set of base stations that should be switched on to satisfy the demand of each subarea in the network based on the shortest path algorithm on the constructed graph. From numerical results, we show that our algorithm provides a significant amount of energy saving, while adaptively considering the traffic demand of each subarea in the network.
Date of Conference: 21-23 November 2012
Date Added to IEEE Xplore: 10 January 2013
ISBN Information: