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Abstract—Algebraic models for the reconstruction problem in
X-ray computed tomography (CT) provide a flexible framework
that applies to many measurement geometries. For large-scale
problems we need to use iterative solvers, and we need stopping
rules for these methods that terminate the iterations when
we have computed a satisfactory reconstruction that balances
the reconstruction error and the influence of noise from the
measurements. Many such stopping rules are developed in the
inverse problems communities, but they have not attained much
attention in the CT world. The goal of this paper is to describe
and illustrate four stopping rules that are relevant for CT
reconstructions.

Index Terms—tomographic reconstruction, iterative methods,
stopping rules, semi-convergence

I. INTRODUCTION

This paper considers large-scale methods for computed
tomographic (CT) based on a discretization of the problem
followed by solving the system of linear equations by means
of an iterative solver. These methods are quite generic in
the sense that they do not assume any specific scanning
geometry, and they tend to produce good reconstructions with
few artifacts in the case of limited-data and/or limited-angle
problems.

In CT, a forward projection maps the object to the data in
the form of projections of the object onto the detector planes
for various scan positions. In the case of parallel-beam CT the
forward projection is known as the Radon transform [21].

In practise, data consists of noisy measurements of the
attenuation of the X-rays that pass through the object. The
discretization of the reconstruction problem takes the form

Ax ≈ b , b = Ax̄+ e , (1)

where the “system matrix” A ∈ Rm×n is a discretization
of the forward projector, b ∈ Rm is a vector with the
measured data, and x ∈ Rn is a vector that holds the pixels of
the reconstructed image of the object’s interior. Moreover, x̄
represents the exact object and e represents the measurement
noise. A number of discretization schemes are available for
computing the matrix A, see, e.g., [15], [17].

There are no restrictions on the dimensions m and n of the
matrixA; both over-determined and under-determined systems
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are common, depending on the measurement setup. The matrix
AT represents the so-called back projector which maps the
data back onto the solution domain [21]; it plays a central
role in filtered back projection and similar methods.

In large-scale CT problems, the matrix A – in spite of the
fact that it is sparse – is often too large to store explicitly.
For this reason we must use iterative solvers that only access
the matrix via functions that compute the multiplications with
A and AT in a matrix-free fashion, often using GPUs or
other hardware accelerators. In CT these iterative solvers are
collectively referred to as algebraic iterative reconstruction
methods which includes well-known methods such as ART
[11] and SIRT (also known as SART) [3].

Common for all these methods is that they, from an initial
vector x(0) (often the zero vector) produce a sequence of
iteration vectors x(k), k = 1, 2, . . . which, in the ideal
situation, converge to the ground truth x̄. In practise, however,
when noise is present in the measured data we experience a
phenomenon called semi-convergence:

• During the initial iterations, the iteration vector x(k)

approaches the desired but un-obtainable ground truth x̄.

• During later iterations, x(k) converges to the undesired
noisy solution associated with the particular iterative
method (e.g., A−1b if the system matrix is invertible).

This is illustrated in Fig. 1 which shows the error history,
i.e., the reconstruction error ‖x(k) − x̄‖2 versus the number
of iterations k, together with selected iterates x(k) shown as
images. The error history has the characteristic form associated
with semi-convergence.

If we can stop the iterations just when the convergence
behavior changes from the former to the latter, then we achieve
an approximation to x̄ that is not too perturbed by the noise
in the data. This paper describes four such methods based on
certain statistical properties of the noise.

Sections II and III describe four state-of-the-art stopping
rules as well as two methods to efficiently estimate a trace-
term that is needed on some of these rules; all numerical
experiments in these sections were performed by means of
the AIR Tools II software package [14]. In Section IV we
illustrate these techniques with a large-scale example.
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Fig. 1. Illustration of semi-convergence for Landweber’s method applied to a small noisy test problem. Top: the error history, i.e., the reconstruction error
‖x(k) − x̄‖2 as a function of the number of iterations k. The solid green line shows the part where x(k) approaches x̄ while the red dash-dotted line shows
the part where x(k) becomes dominated by the noise. Bottom: selected iterations with inserts that zoom in on a small region; the increasing amount of noise
is clearly visible.

II. FOUR STOPPING RULES

Our stopping rules apply to methods of the general form

x(k+1) = x(k) +DATM
(
b−Ax(k)

)
, (2)

where different choices of the diagonal matrices D and M
lead to different methods – see, e.g., [5] for an overview. To
simplify the presentation, we focus on the simple case where
D and M are identity matrices, in which case we obtain
Landweber’s method (which is equivalent to the steepest
descent method applied to the least squares problem):

Landweber’s method

x(0) = initial vector
for k = 0, 1, 2, . . .

x(k+1) = x(k) + ωAT (b−Ax(k))
end

We will frequently refer to the residual for the kth iterate,
defined as the vector

%(k) = b−Ax(k) , k = 1, 2, 3, . . . (3)

Moreover, after a bit of algebraic manipulations it turns out
that we can write the kth iteration vector as

x(k) =

k−1∑
j=0

(I − ωATA)jωAT b = A#
k b , (4)

which defines the matrix A#
k such that we can write the kth

iterate as x(k) = A#
k b. This is convenient as a theoretical tool,

but A#
k is never computed explicitly.

To set the stage, we need to introduce a small amount of
statistical framework and notation. We will often need the
exact noise-free data that corresponds to the ground truth
image, and we write

b̄ = Ax̄ . (5)

We can then write the measured data as b = b̄ + e. The
elements of the noise vector e are random variables, i.e., their
values depend on a set of well-defined random events. The
vector of expected values E(e) and the covariance matrix
Cov(e) are defined as

E(e) =

E(e1)
E(e2)

...

 , (6)

Cov(e) = E
((
e− E(e)

) (
e− E(e)

)T)
. (7)



To simplify our discussion and make the ideas clearer, through-
out this section we will restrict our analysis to white Gaussian
noise with zero mean:

E(e) = 0 , Cov(e) = η2I , E(‖e‖22) = mη2 , (8)

where η is the standard deviation of the noise and m is the
number of elements in e. Noise in tomographic problems is
rarely strictly Gaussian, but sometimes this is a reasonable
assumption.

A. Fitting to the Noise Level

Our description of this stopping rule is based on [15,
§11.2.3]. A simple idea is to choose the number of iterations
k such that the residual %(k) is “of the same size” as the
noise vector e. Specifically, such that ‖%(k)‖2 approximates
the expected value E(‖e‖2) of the latter:

‖%(k)‖2 ≈ η
√
m . (9)

In the literature this is referred to as the discrepancy principle
[6]. Since ‖%(k)‖2 takes discrete values for k = 1, 2, 3, . . .
we cannot expect to find a k such that the above holds with
equality.

It is common to include a constant τ slightly larger than 1,
say, τ = 1.02, such that the above condition takes the form
‖%(k)‖2 ≤ τ η

√
m. This constant can be useful as a “safety

factor” when we have only a rough estimate of the noise.
If we replace x(k) with the ground truth x̄ then the residual

is b−Ax̄ = e and the residual norm obviously equals ‖e‖2.
However, this is not a sound statistical argument that the norm
of the residual %(k) in Eq. (3) should be equal to ‖e‖2 for the
optimal iterate x(k).

Here we present an alternative that is based on statistical
principles. To motivate this stopping rule, we split the residual
vectors as follows:

%(k) = b−Ax(k) = b−AA#
k b

= (I −AA#
k ) b̄ + (I −AA#

k ) e .

The heuristic insight is then as follows:
• When k is too small then Ax(k) is not a good

approximation the exact data b̄. Hence, the residual %(k)

is dominated by (I −AA#
k ) b̄ and ‖(I −AA#

k ) b̄‖2 is
larger than ‖(I −AA#

k ) e‖2.

• When k is “just about right” then Ax(k) approximates
b̄ as well as possible; the norm ‖(I − AA#

k ) b̄‖2 has
now become smaller and it is of the same size as the
norm ‖(I −AA#

k ) e‖2.

• When k is too large then the residual %(k) is dominated
by the noise component (I − AA#

k ) e, and therefore
‖(I −AA#

k ) e‖2 dominates the residual norm.
According to these observations we should therefore choose k
such that ‖(I−AA#

k ) b̄‖2 ≈ ‖(I−AA#
k ) e‖2. Unfortunately

both these are unknown.
The above heuristic reasoning has been formalized in [13],

[18] and [25], and we will summarize the main results as they

apply here. The key points are that ‖(I − AA#
k ) b‖2 is an

approximation to the prediction error ‖(I − AA#
k ) b‖2 and

that
E(‖(I −AA#

k ) e‖22) = η2 (m− tk)

in which
tk = trace(AA#

k ) . (10)

Hence, at the optimal k we have

E(‖%(k)‖22) ≈ η2 (m− tk) . (11)

Here, k is “optimal” in the sense that it is the largest iteration
number for which we cannot reject x(k) – computed from the
noisy data b – as a possible solution to the noise-free system,
cf. [25, p. 93].

The real number m− tk is sometimes referred to as the ef-
fective (or equivalent) degrees of freedom [27] in the residual.
An exact computation of tk is cumbersome for most methods,
but it can be approximated quite efficiently as described in
§III. We have thus arrived at the following “fit-to-noise-level”
(FTNL) stopping rule where, again, we include the “safety
factor” τ :

Stop rule: FTNL

Stop at the smallest k

for which ‖%(k)‖2 ≤ τ η
√
m− tk .

Example 1. We illustrate the FTNL “fit-to-noise-level”
stopping rule with two small parallel-beam CT problems
with image size 64 × 64 and 91 detector pixels. The pro-
jection angles are, respectively, 3◦, 6◦, 9◦, . . . , 180◦ (giving
an over-determined system) and 8◦, 16◦, 24◦, . . . , 180◦ (giving
an under-determined system). In both cases we removed zero
rows from the system matrix.

We used Landweber’s method to solve these two problems.
Figure 2 shows the reconstruction errors ‖x(k) − x̄‖2 and the
norms ‖%(k)‖2 versus k, together with the threshold η

√
m and

the function η
√
m− tk, i.e., here we use τ = 1. The graphs

confirm the monotonic decrease of the residual norm. For both
problems, the “fit-to-noise-level” stopping rule terminates the
iterations close to the optimal number of iterations. A stopping
rule involving η

√
m, on the other hand, would terminate the

iterations much too early. �

B. Minimization of the Prediction Error – UPRE

The key idea is to find the number of iterations that
minimizes the prediction error, i.e., the difference between
the noise-free data b̄ = Ax̄ and the predicted data Ax(k).
Statisticians refer to various measures of this difference as the
predictive risk, and the resulting method for choosing k is
often called the unbiased predictive risk estimation (UPRE)
method.

Here we present the results specifically in the framework
of iterative reconstruction methods and using the matrix A#

k

defined in Eq. (4). Following [26, §7.1], where all the details



Fig. 2. Illustration of the FTNL stopping rule for Landweber’s method, with
two parallel-beam tomographic problems. The smallest reconstruction error is
marked with the black dot, and the residual norms that satisfies the stopping
rules are marked with red circles. The FTNL rule works well, while stopping
at that k for which ‖%(k)‖2 ≈ η

√
m terminates the iterations much too

early.

can be found, the expected squared norm of the prediction
error (the risk) is

E
(
‖b̄−Ax(k)‖22

)
=‖(I −AA#

k ) b̄‖22 +

η2 trace
(
(AA#

k )2
)

while the expected squared norm of the residual can be written
as

E
(
‖b − Ax(k)‖22

)
= ‖(I −AA#

k ) b̄‖22 +

η2 trace
(
(AA#

k )2
)
− 2η2 trace(AA#

k ) + η2m .

Combining these two equations we can eliminate one of the
trace terms and arrive at the following expression for the risk:

E
(
‖b̄−Ax(k)‖22

)
= E

(
‖b−Ax(k)‖22

)
+

2η2 trace(AA#
k )− η2m .

Substituting the actual squared residual norm ‖%(k)‖22 =
‖b−Ax(k)‖22 for its expected value, we thus define the UPRE
risk as a function of k:

U (k) = ‖%(k)‖22 + 2 η2 tk − η2m (12)

with tk given by (10). A minimizer of U (k) will then give an
approximation to a minimizer of the prediction error. We note
that U (k) may not have a unique minimizer, and we therefore
choose the smallest k at which U (k) has a local minimum.
Thus we arrive at the following stopping rule:

Stop rule: UPRE

Minimize U (k) = ‖%(k)‖22 + 2 η2 tk − η2m .

C. Another Rule Based on the Prediction Error – GCV

The above UPRE stopping rule depends on an estimate of
the standard deviation η of the noise – which may or may not
be a problem in practise. We shall now describe an alternative
method for minimization of the prediction error, derived by
Wahba [27], that does not depend on knowledge of η.

The outset for this method is the principle of cross vali-
dation. Assume that we remove the ith element bi from the
right-hand side (the noisy data), compute a reconstruction
x
(k)
[i] , and then use this reconstruction to compute a prediction

b̂i = rTi x
(k)
[i] of the missing data bi, where

rTi = A(i , :) = ith row of A.

The goal would then be to choose the number of iterations k
that minimizes the mean of all the squared prediction errors:

Ĝ(k) =
1

m

m∑
i=1

(
bi − b̂i

)2
=

1

m

m∑
i=1

(
bi − rTi x

(k)
[i]

)2
.

Then it is proved in [27, Thm. 4.2.1] that we can avoid the
vectors x(k)

[i] and write Ĝ(k) directly in terms of x(k):

Ĝ(k) =
1

m

m∑
i=1

(
bi − rTi x(k)

1− α(k)
i

)2

, (13)

where α(k)
i is the ith diagonal element of the matrix product

AA#
k associated with x(k).

At this stage, recall that the 2-norm is invariant under an
orthogonal transformation, of which a permutation is a special
case. Specifically, if Q is an orthogonal matrix then

‖Q (Ax− b)‖2 = ‖Ax− b‖2

which means that the reconstruction x(k) is invariant to such
a transformation. Unfortunately it can be proved [27] that
the minimizer of Ĝ(k) is not invariant to an orthogonal
transformation of the data. In particular, it is inconvenient that
a stopping rule based on Ĝ(k) would produce a k that depends
on the particular ordering of the data.

The generalized cross validation (GCV) method circum-
vents this problem by replacing all α(k)

i with their average

µ(k) =
1

m

m∑
i=1

α
(k)
i =

1

m
trace(AA#

k ) =
tk
m

,



leading to the modified measure

G̃(k) =
1

m

1

(1− µ(k))2

m∑
i=1

(
bi − rTi x(k)

)2
=
‖b−Ax(k)‖22
m(1− tk/m)2

= m
‖%(k)‖22

(m− tk)2
. (14)

The minimizer of G̃(k) is, of course, independent of the factor
m and hence we choose to define the GCV risk as a function
of k as

G(k) =
‖%(k)‖22

(m− tk)2
. (15)

We have thus arrived at the following η-free stopping rule
where again, in practice, we need to estimate the quantity tk:

Stop rule: GCV

Minimize G(k) = ‖%(k)‖22 / (m− tk)2 .

The above presentation follows [27, §4.2–3]. A different
derivation of the GCV method was presented in [10]; here the
coordinate system for Rm is rotated such that the correspond-
ing influence matrix becomes a circulant matrix with identical
elements along all its diagonals. This approach leads to the
same GCV risk G(k) as above.

Perhaps the most important property of the GCV stopping
rule is that the value of k which minimizes G(k) in (15) is also
an estimate of the value that minimizes the prediction error.
Specifically, if kGCV minimizes the GCV risk G(k) and kPE

minimizes the prediction error ‖b̄−Ax(k)‖22, then it is shown
in [27, §4.4] that

E
(
‖b̄−Ax(kGCV)‖22

)
→ E

(
‖b̄−Ax(kPE)‖22

)
for m→∞ .

The UPRE and GCV stopping rules have the slight inconve-
nience that we need to take at least one iteration too many in
order to detect a minimum of U (k) and G(k), respectively. In
practise, this is not really a problem. For tomography problems
the iteration vector x(k) does not change very much from
one iteration to the next, and hence the minimum of the error
history ‖x̄−x(k)‖2 is usually very flat. Hence it hardly makes
any difference if we implement the UPRE and GCV stopping
rules such that we terminate the method one iteration (or a
few iterations) after the actual minimum of U (k) or G(k).

Example 2. We illustrate the UPRE and GCV stopping rules
applied to Landweber’s method with the two CT problems
from Example 1. In both cases we removed zero rows from
the system matrix. Figure 3 shows U (k) and G(k) from Eqs.
(12) and (15) versus k, together with the error histories. The
two stopping rules terminate the iterations at approximately the
same number of iterations – not too far from the minimum of
the error history. Note how flat the error history is: in practise
it makes no difference if we terminate the iterations exactly
at the minimum of U (k) and G(k) or a few iterations later. �

Fig. 3. Illustration of the UPRE and GCV stopping rules for Landweber’s
method applied to the two parallel-beam CT problems in Example 1 and 2.

D. Stopping When All Information is Extracted — NCP

The above stopping rules include the trace term tk in Eq.
(10). This term can be estimated at additional cost as discussed
in §III below, but it is also worthwhile to consider a stopping
rule that needs neither the trace term tk nor the standard
deviation η of the noise. The so-called NCP criterion from
[16] and [23] is one such method. The considerations that
underly this method are as follows:

1) noisy data only contain partial information about the
reconstruction,

2) in each iteration we extract more information from the
data, and

3) eventually we have extracted all the available informa-
tion in the noisy data.

Therefore we want to monitor the properties of the residual
vector. During the initial iterations we have not yet extracted
all information present in the data and the residual still
resembles a meaningful signal, while at some stage – when
all information is extracted – the residual starts to appear like
noise. When we iterate beyond this point, we solely extract
noise from the data (we “fit the noise”) and the residual vector
will appear as filtered noise where some of the noise’s spectral
components are removed.

To formalize this approach, in the white-noise setting of this
presentation, we need a computational approach to answering
the questions: when does the residual vector look the most like
white noise? To answer this question, statisticians introduced
the so-called normalized cumulative periodogram.

In the terminology of signal processing, a periodogram is
identical to a discrete power spectrum defined as the squared
absolute values of the discrete Fourier coefficients. Hence the
periodogram for an arbitrary vector v ∈ Rm is given by

p̂i =
∣∣v̂i∣∣2, i = 1, 2, . . . , q , v̂ = DFT(v) . (16)



Fig. 4. Illustration of NCP vectors c(v) ∈ R256 for vectors v that are white
noise (left), dominated by low-frequency components (middle), and dominated
by high-frequency components (right).

Here, DFT denotes the discrete Fourier transform (computed
by means of the FFT algorithm) and q = bm/2c denotes
the largest integer such that q ≤ m/2. The reason for
including only about half of the Fourier coefficients in the
periodogram/power spectrum is that the DFT of a real vector
is symmetric about its midpoint. We then define the corre-
sponding normalized cumulative periodogram (NCP) for the
vector v as the vector c(v) of length q with elements, for
j = 1, 2, . . . , q,

cj(v) =
p̂2 + · · ·+ p̂j+1

p̂2 + · · ·+ p̂q+1
=
‖v̂2:j+1‖22
‖v̂2:q+1‖22

. (17)

White noise is characterized by having a flat power spectrum
(similar to white light having equal amounts of all colors), and
thus the expected value of its power spectrum components is
a constant independent of i. Consequently, the expected value
of the NCP for a white-noise vector vw is the vector

E
(
c(vw

)
) = cw =

(
1

q
,

2

q
, . . . , 1

)
.

How much a given vector v deviates from being white noise
can be measured by the deviation of the corresponding c(v)
from cw, e.g., as measured by the norm ‖c(v)− cw‖2.

Example 3. Figure 4 illustrates the appearance of NCP
vectors c(v) for vectors v of length m = 256 with dif-
ferent spectra. The completely flat spectrum for white noise
corresponds to a straight line from (0, 0) to (q, 1) with
q = b256/2c = 128. The left plot shows NCPs for 10
random realizations of white noise, and they are all close to the
ideal white-noise NCP cw. The middle and right plots show
NCPs for random vectors that are dominated by low-frequency
and high-frequency components, respectively; their systematic
deviation from cw is obvious. �

To utilize the NCP framework in the algebraic iterative
methods for tomographic reconstruction, a first idea might be
to terminate the iterations when the deviation measured by
‖c(%(k))−cw‖2 exhibits a minimum. However, this would be
a bit naive since the residual vector does not really correspond
to a 1D signal of length m. Rather, the right-hand side b
consists of a number of projections, one for each angle of the
measurements – and the residual vector inherits this structure.
Hence, a better approach is to apply an NCP analysis to each
projection’s residual, and then combine this information into
a simple measure.

Depending on the CT scanner, each projection is either a 1D
or 2D image, when we perform 2D and 3D reconstructions,

respectively. To simplify our presentation, we assume that our
data consists of mθ 1D projections, one for each projection
angle θ1, θ2, . . . , θmθ

. We also assume that the data are orga-
nized such that we can partition the right-hand side b and the
residual vector into mθ sub-vectors,

b =


b1
b2
...
bmθ

 , %(k) =


%
(k)
1

%
(k)
2
...

%
(k)
mθ

 , (18)

with each sub-vector corresponding to a single 1D projection.
Now define the corresponding quantities

ν
(k)
` =

∥∥c(%(k)`

)
− cw

∥∥
2
, ` = 1, 2, . . . ,mθ (19)

that measure the deviation of each residual sub-vector from
being white noise. Then for the kth iteration we propose to
measure the residual’s deviation from being white noise by
averaging the above quantities, i.e., by means of the “NCP-
number”

N (k) =
1

mθ

mθ∑
`=1

ν
(k)
` . (20)

This multi-1D approach for 2D reconstruction problems leads
to the following stopping rule:

Stop rule: NCP

Minimize N (k) =
1

mθ

mθ∑
`=1

∥∥c(%(k)`

)
− cw

∥∥
2
.

In the case of 3D reconstructions, where the data consist
of a collection of 2D images, the computation of ν(k)` should
take this into consideration. In particular we need to define
the NCP vector c

(
%
(k)
`

)
when the residual sub-vector %(k)`

represents an image; how to do this is explained in [16].
Similar to the previous stopping rules, in practise it is more

convenient to implement the NCP stopping rule such that
we terminate the iterations at the first iteration k for which
N (k) increases. There is no theory to guarantee that N (k) will
behave smoothly, and we occasionally see that N (k) exhibits
a minor zig-zag behavior. Hence it may be necessary to apply
the NCP stopping rule to a smoothed version of the NCP-
numbers, obtained by applying a “local” low-pass filter to the
N (k)-sequence.

Example 4. We illustrate the NCP stopping rule with a
parallel-beam CT problem with image size 256×256 and with
362 detector pixels and projection angles 1◦, 2◦, . . . , 180◦. The
performance is shown in Fig. 5 together with surface plots
of the matrix

[
c
(
%
(k)
1

)
, c
(
%
(k)
2

)
, . . . , c

(
%
(k)
mθ

)]
for selected

iterations k. We clearly see the changing shape of the NCP
vectors c

(
%
(k)
`

)
as k increases. The minimum of N (k) is

obtained at kNCP = 179. This is somewhat early, considering
that the minimum reconstruction error is obtained at k = 497
iterations – but on the other hand, the reconstruction and the
error changes only little between iterations 150 and 700. �



Fig. 5. Illustration of the NCP stopping rules for Landweber’s method applied to a parallel-beam test problem. We also show surface plots of the matrix[
c
(
%
(k)
1

)
, c

(
%
(k)
2

)
, . . . , c

(
%
(k)
mθ

)]
for selected iterations k. This stopping rule leads to a somewhat premature termination of the iterations at kNCP = 179

(the minimum error occurs for k = 497 iterations), but it should be noted that the error does not change much between iterations 179 and 700.

III. ESTIMATION OF THE TRACE TERM

The FTNL, UPRE and GCV stopping rules include the term
tk = trace(AA#

k ). To make these methods practical to use,
we need to be able to estimate this trace term efficiently,
without having to compute the SVD of the system matrix A
or form the influence matrix AA#

k . The most common way
to compute this estimate is via a Monte Carlo approach.

Underlying this approach is the following result from [9].
If w ∈ Rm is a random vector with elements wi ∼ N (0, 1),
and if S ∈ Rm×m is a symmetric matrix, then wTSw is an
unbiased estimate of trace(S). Therefore t estk = wTAA#

k w

is an unbiased estimator of tk = trace(AA#
k ).

To compute this estimate we need to compute the matrix-
vector product A#

k w efficiently. Recalling the definition of
A#
k in Eq. (4), this can be done simply by applying the

algebraic iterative method to the system Aξ = w which, after
k iterations, produces the iteration vector ξ

(k)
= A#

k w. The
resulting estimate

t̄ estk = wTA ξ
(k)

= (ATw)T ξ
(k)

(21)

is the standard Monte Carlo trace estimate from [9]. In an
efficient implementation of (21) the vector ATw is pre-
computed and stored.

An alternative approach was presented in [24]. This ap-
proach also applies to the general method in (2) with D = I

and with a general m×m matrix M (it is not required to be
symmetric). When we apply such a method with an arbitrary
nonzero starting vector ξ(0) to the system Aξ = 0, then it
follows from Eq. (4) that the iterates are

ξ(k) = (I − ωATBA)k ξ(0) .

Then it is shown in [24] that if we use a random starting
vector ξ(0) = w ∈ Rn with elements wi ∼ N (0, 1), and if
ξ(k) denotes the corresponding iterations for the system Aξ =
0, then wT ξ(k) is an unbiased estimator of n− trace(AA#

k ).
This leads to the alternative trace estimate

t estk = n−wT ξ(k). (22)

In order to use either of these trace estimates instead of the
exact tk, we must simultaneously apply the iterative method
to two right-hand sides, which essentially doubles the amount
of work. The Landweber method with the two different trace
estimation schemes are shown below.

If we are willing to increase the overhead further, we can
compute a more robust estimate of tk by applying the above
idea to several random vectors and computing the mean or
median of the t estk -values.



Fig. 6. Comparison of the two trace estimates t̄ estk and t estk for Landweber’s
method applied to the over-determined test problem from Example 1. The
thick red line is the exact trace tk , and the thin black lines are the trace
estimates for 10 different random vectors w and w.

Landweber method with (21) trace estimator

w = random m-vector for trace estimation
x(0) = initial vector

ξ
(0)

= 0 initial zero vector for trace estimation
z = ATw
for k = 0, 1, 2, . . .

x(k+1) = x(k) + ωAT (b−Ax(k))

ξ
(k+1)

= ξ
(k)

+ ωAT (w −Aξ(k))

t̄ estk+1 = zT ξ
(k+1)

trace estimate
stopping rule goes here

end

Landweber method with (22) trace estimator

w = random n-vector
x(0) = initial vector
ξ(0) = w initial vector for for trace estimation
for k = 0, 1, 2, . . .

x(k+1) = x(k) + ωAT (b−Ax(k))

ξ(k+1) = ξ(k) + ωAT (0−Aξ(k))
t estk+1 = n−wT ξ(k+1) trace estimate
stopping rule goes here

end

Example 5. We illustrate the two trace estimates t̄ estk and
t estk for Landweber’s method applied to the over-determined
test problem from Example 1. Figure 6 shows the trace esti-
mates for 10 different realizations of the random vectorsw and
w, together with the exact trace tk. We see that the estimate
t estk , shown in the bottom plot, has the smallest variance. We

Fig. 7. Illustration of the use of the trace estimate t estk in the FTNL stopping
rule for Landweber’s method applied to the over-determined test problem
from Examples 1. We used 10 different random vectors w in (22) and the
corresponding 10 intersections between ‖%(k)‖22 (thick red line) and η2 (m−
t estk ) (thin blue lines) are shown by the red circles. The black dot shows the
intersection with the exact η2 (m− tk).

are not aware of theory that supports this observation. �
Example 6. Continuing from the previous example, Fig. 7

illustrates the use of the trace estimate t estk in the FTNL
stopping rule. To show the variability of the stopping rule we
used 10 different random vectors w, leading to 10 different
realizations of η2 (m− t estk ). Their intersections with ‖%(k)‖22
are shown by the red circles, corresponding to stopping the
iterations at

k = 3100, 3112, 3421, 3512, 3722,

3875, 4117, 4133, 5553, 7000.

The black dot marks the intersection of the exact of ‖%(k)‖22
with η2 (m− tk), corresponding to iteration k = 3846. �

IV. LARGE-SCALE NUMERICAL EXAMPLE

In this section we use a simulated large-scale CT recon-
struction problem to illustrate the use of the GCV and NCP
stopping rules described above. We focus on an application in
dynamic tomography where the time scale of the process being
examined dictates the use of a small number of projections as
well as short exposure times of each projection. This leads to
challenging reconstruction problems where it is critical to use
a stopping rules that terminates the iterations such that x(k)

is as close as possible to x̄ and without having knowledge of
the noise level in the data.

Specifically we study the use of the GCV and NCP stopping
rules applied to the reconstruction of a single time step in a
simulation of a dynamic CT experiment. The dynamic process
under study is the separation of an emulsion of oil and water in
a porous rock; the components separate vigorously over time,
due to the two fluids being immiscible.

The basis of our simulation is a segmentation of a nano-CT
scan of a piece of chalk from the Hod field in the North Sea
Basin (sample id HC #15) which was scanned, reconstructed
and segmented as described in [4], [20]. A subset consisting
of 200× 256× 256 voxels is chosen for the fluid simulation.
Pixels outside a radius of 124 pixels from the center axis
are set to zero to form a cylinder, which is mirrored along
its vertical axis to ensure that the multiphase flow simulation
has periodic boundary conditions. The flow simulation is done



Fig. 8. A single slice of the volume being examined. White corresponds to
rock while light and dark grey correspond to water and oil respectively.

with a phase-field Lattice Boltzmann method for systems that
are isothermal and incompressible [7], [8]. The simulation pro-
duces phase values for each voxel that describes the fraction
of oil and water in the voxel. These phase values are converted
to attenuation values based on values measured in [19] where
a sandstone filled with a brine and oil is imaged with X-rays
at 80 keV.

Figure 8 shows a slice from a single time frame in the
simulation; the rock matrix is white, the water phase is light
grey, and the oil phase is dark grey. The time frame which
was chosen for testing the stopping rules is fairly early in the
simulation where multiple interfaces between the two fluids
are present.

Forward projection: The forward projection of the volume
is performed using the ASTRA toolbox with a parallel beam
geometry [1], [2], [22]. We use 362 detector pixels and 360
projection angles. The forward projection in ASTRA can be
considered an ideal experiment with monochromatic X-rays
and infinite brilliance, i.e., without any noise.

Noise: We create noisy data from the above clean data
in such a way that we emulate the noise present in X-ray
tomography as a result of the finite count of photons, cf.
[15, §4.4]. Specifically, if b̄ = Ax̄ denotes the clean data
computed by means of ASTRA, then the corresponding X-ray
intensities at the detector are given by

Īi = I0 exp(−b̄i) , i = 1, . . . ,m ,

where I0 is the source’s intensity. We then use Īi as the
expected value in a Poisson distribution to obtain noisy in-
tensities

Ii = P(Īi) = P(I0 exp(−b̄i)) , i = 1, . . . ,m .

Finally, we convert these noisy intensities back to the noisy
data vector b via the relation

bi = − log(Ii/I0) , i = 1, . . . ,m .

We use three different noise levels 0.25%, 1% and 5% which
visually corresponds to low, moderate and high noise. The
noise level is given by

ρ =
‖e‖2
‖b̄‖2

, e = b− b̄ , (23)

where e denotes the measurement error in Eq. (1). This noise
does not exactly fit with the assumption of white Gaussian
noise which is used for the previous derivations, but it is a
good approximation to the noise present in CT experiments.

Reconstruction: We compute reconstructions from the sim-
ulated projection data with the ASTRA toolbox by using
the Simultaneous Iterative Reconstruction Technique (SIRT)
iterative method. This is a special case of the general method
in Eq. (2) where the diagonal matrices D and M contain the
inverse column and row sums of A:

djj = 1/

m∑
i=1

aij and mii = 1/

n∑
j=1

aij .

We perform 1000 SIRT iterations and for UPRE and GCV
the trace t(k) in U (k) and G(k) is estimated using Eq. (21).
Note that only a single random vector w is used to reduce
computation time. This is not a concern in this specific case as
the estimation of t(k) proved very stabile for different random
vectors.

The forward projection of x(k) used in the calculation
of N (k) is computed with ASTRA, and the remaining part
of the algorithm is calculated with CuPy, a Python package
which makes it possible to offload calculations to a CUDA-
compatible GPU to improve the computation time of N (k).
The vector v in (16) is padded with zeros such that its
length can be written in the form n = 2a + 3b + 5c + 7d

as this substantially speeds up the calculation when the DFT

is calculated with CUDA.
Results: As previously mentioned, we reconstruct the data

at three different noise levels. Moreover, we subsample the
number of projections used for the reconstruction such that
it is performed with 360, 120 and 45 projection angles. This
leads to 9 different data sets.

Figure 9 shows graphs of ‖%(k)‖2, τ η
√
m− tk (called

FTNL), U (k), G(k), N (k) and ‖x(k) − x̄‖2 along with their
local minima. In general we see that the FTNL and UPRE
stopping rules perform well in this simulated example; but
they depend on knowledge of the noise level η which is rarely
known for real data. An advantage of the GCV and NCP
stopping rules is that they do not rely on an estimate of η.
GCV performs well in the case with 1% and 5% noise, but
it overestimates the number of iterations with the small noise
level ρ = 0.25%. The NCP stopping rule is also a robust
method and it performs well for all noise levels. It is worth
noting that the reconstruction error is very flat for this noise
level, which means the exact amount of iterations used is less
critical.

Figure 10 shows the effect of semi-convergence on the data
set when it is reconstructed with Nproj = 360 and ρ = 1.00%.
A single slice of the reconstruction is shown in all subfigures.



Fig. 9. Illustration of the four different stopping rules for the large-scale example. The filled circles on each curve represent the minimum. Each column
has a varying number of projections and each row has a varying amount of noise, as shown in the titles of each subplot.

All images in Fig. 10 are truncated such that their intensities
are between 0 and 25,000. Image a is the reconstruction after
k = 100 iteration where it still has a blurred appearance,
showing that more iterations are necessary. Images b and
c are the reconstructions at the number of iterations which
minimize the reconstruction error and N (k), respectively. The
appearance of these reconstructions is very similar, but c
has a slight increase in noise. The rightmost image d is the
reconstruction after 1000 iterations where it is noticeable more
noisy than b and c.

V. CONCLUSION

We surveyed several state-of-the-art stopping rules, based on
statistical considerations, that are useful for algebraic iterative
reconstruction methods in X-ray computed tomography (CT).
Common for these stopping rules is that they seek to terminate
the iterations at the optimal point where the reconstruction
error and the noise error balance each other. They are easy to
use and they are also easy to integrate in existing software.
We also illustrated the use of two of these methods for a
large-scale CT problem related to the study of multiphase flow
in chalk. Our numerical experiments show that especially the
NCP stopping rule – which is based on statistical properties of



Fig. 10. Illustration of semi-convergence for the large-scale example with 360 projections and noise level ρ = 1%. Results for four different iteration
numbers are shows. Image a is the reconstruction after 100 iterations. Image b is the reconstruction at kmin = 157 which is the number of iterations that
minimizes the reconstruction error. Image c is the reconstruction at kNCP = 189 which is the number of iterations that minimizes N(k). Finally, image d is
the reconstruction after k = 1000 iterations.

the residual and does not depend on knowledge of the noise
level – works well for this problem.
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