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Abstract—The dual-tree complex wavelet transform (DT-CWT)
is extended to the 4D setting. Key properties of 4D DT-CWT, such
as directional sensitivity and shift-invariance, are discussed and
illustrated in a tomographic application. The inverse problem of
reconstructing a dynamic three-dimensional target from X-ray
projection measurements can be formulated as 4D space-time
tomography. The results suggest that 4D DT-CWT offers simple
implementations combined with useful theoretical properties for
tomographic reconstruction.

Index Terms—complex wavelets, dynamic X-ray tomography

I. INTRODUCTION

A wide selection of multiscale methods have been in-
troduced in recent years for representing and process-

ing multidimensional signals. It is well-known that classical
wavelets [21] are not optimal for anisotropic data in dimen-
sions two and higher. On the other hand, they offer simple
and relatively fast implementations (especially considering the
curse of dimensionality), strong theoretical properties (bases
and orthogonality) and thorough theoretical understanding.

Complex-valued wavelets, and in particular the dual-tree
implementation originally introduced by N. Kingsbury [19]
and extended to 3D in [7], utilize most of these advan-
tages. Additionally, they provide directional sensitivity and
shift-invariance with a simpler construction than those of
curvelets [4] or shearlets [20].

These nice features also ease the extension of the dual-
tree complex wavelets to higher dimensions, especially 4D,
where concepts like specific directions and even visualization
are obviously difficult. In some sense the natural world is
4-dimensional (3 spatial dimensions and time) and, more
concretely, a wide variety of different and interesting 4D data
arises from spectral imaging, geospatial applications, computer
graphics, and more.

This motivates the main contribution of our work, namely
the extension of the construction of the dual-tree complex
wavelet transform (DT-CWT) to 4D. Our Matlab implemen-
tation of the 4D dual-tree complex wavelet transform and its
inverse called, respectively, dualtree4 and idualtree4
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(after the 2D and 3D implementations of similar names) is
available on GitHub [12].

We demonstrate the feasibility of the DT-CWT for 4D appli-
cations by applying it to the inverse problem of reconstructing
a changing volume over time from a collection of X-ray
images. In this 3D+time dynamic computed tomography (CT),
the 4D DT-CWT helps to overcome the ill-posedness of the
inverse problem via regularization [9]. The above-mentioned
favorable theoretical properties allow details and edges be
preserved over time in the reconstructions, even when the
measurements are very sparsely collected (only 30 projection
views). The 4D DT-CWT also outperform real-valued wavelet
transform computationally in this application.

While 4D real-valued wavelets have been considered in
applications (e.g., [1, 15]), to our knowledge a 4D complex-
valued wavelet system has not been proposed before. In
addition different extensions of wavelets using quaternions [6]
(which are 4D in a different sense) and hypercomplex num-
bers [5] have been introduced but the actual implementations
have so far been limited to 2D and 3D setting.

The rest of this paper is organized as follows. In section II
we introduce the 4D DT-CWT, after briefly revising the
construction of the DT-CWT in 2D. Properties of the (4D)
DT-CWT, like shift-invariance and directional sensitivity, are
shortly illustrated in section III. In section IV we apply the
4D DT-CWT as a regularizer to the ill-posed problem of 4D
dynamic CT problem: we test our model on both a simulated
and a physical phantom. Finally, we draw some conclusions
in section V.

II. IMPLEMENTATION AND ALGORITHM

The name dual-tree comes from the original implementation
for 1D signals where the two real-valued discrete wavelet
transform (DWT) trees are used side by side to obtain the real
and imaginary parts of the complex wavelet coefficients for all
scales of the decomposition. In 2D (and higher dimensions)
the two DWTs are no longer as separated due to the way
higher dimensional wavelets are usually constructed but its
1D components still share this original design. Moreover, a
dual construction can still be used for a simple and efficient
implementation of complex-valued wavelets in higher dimen-
sions, including 4D. We first cover this method in 2D, then
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move to 4D and finally consider both the inverse and adjoint
of the transform. We also formalize all this by defining the
associated operators.

A. Constructing DT-CWT in 2D and 3D

Before going into the details of the 4D dual-tree complex
wavelet transform (DT-CWT) we begin by briefly discussing
the construction of the 2D version. In some sense the key
changes happen when the complex wavelets are extended from
one dimension to two and from then on it is simply a matter of
accounting the larger number of filters and their permutations.
For a more detailed account on DT-CWT, we refer to the
papers by the original authors [19, 17] (which include the
2D transform) and their work on extending it to 3D [7].

Similarly to the 2D (real-valued) discrete wavelet trans-
form [21], to define the 2D DT-CWT we can use any 1D
(complex-valued) mother wavelet 𝜓(𝑥) = 𝜓C (𝑥) = 𝜓Re (𝑥) +
𝑖𝜓Im (𝑥) (associated with a high-pass filter 𝐻) and scaling
function 𝜑(𝑥) = 𝜑C (𝑥) = 𝜑Re (𝑥) + 𝑖𝜑Im (𝑥) (associated with a
low-pass filter 𝐿). By taking their tensor product and switching
their role along the directions 𝑥 and 𝑦, we obtain the 2D scaling
and wavelet functions. For example, the 2D wavelet whose
both directions use the wavelet function (typically denoted by
𝐻𝐻) is given by:

𝜓C (𝑥, 𝑦) := 𝜓(𝑥)𝜓(𝑦)
= [𝜓Re (𝑥) + 𝑖𝜓Im (𝑥)] × [𝜓Re (𝑦) + 𝑖𝜓Im (𝑦)] (1)
= 𝜓Re (𝑥)𝜓Re (𝑦) − 𝜓Im (𝑥)𝜓Im (𝑦)
+ 𝑖 (𝜓Re (𝑥)𝜓Im (𝑦) + 𝜓Im (𝑥)𝜓Re (𝑦)) . (2)

If 𝜓Re and 𝜓Im form (approximately) a Hilbert transform pair
𝜓Im = H(𝜓Re) (i.e., they are 90◦ out of phase with each other)
then 𝜓 is (approximately) analytic and 𝜓(𝑥) vanishes for 𝑥 <

0. This means that the 2D wavelet 𝜓C (𝑥, 𝑦) is only supported
on the positive orthant of the frequency domain (𝑥, 𝑦̂ > 0).
Let’s denote it by 𝜓𝑂1 (𝑥, 𝑦) and define a second wavelet:

𝜓𝑂2 (𝑥, 𝑦) := 𝜓(𝑥)𝜓(𝑦)
= 𝜓Re (𝑥)𝜓Re (𝑦) + 𝜓Im (𝑥)𝜓Im (𝑦)
+ 𝑖 (𝜓Re (𝑥)𝜓Im (𝑦) − 𝜓Im (𝑥)𝜓Re (𝑦)) , (3)

where 𝜓(𝑥) = 𝜓Re (𝑥) − 𝑖𝜓Im (𝑥) is the complex conjugate of
𝜓(𝑥). Then 𝜓𝑂2 is supported on the second orthant of the
frequency domain (𝑥 < 0, 𝑦̂ > 0). Similarly, we could define
wavelets for the other two orthants (where 𝑦̂ < 0) but if
we only wish to apply our wavelet transform to real valued
functions 𝑓 , then it is not necessary since:

〈 𝑓 , 𝜓𝑂3〉 = 〈 𝑓 , 𝜓(𝑥)𝜓(𝑦)〉 = 〈 𝑓 , 𝜓(𝑥)𝜓(𝑦)〉 = 〈 𝑓 , 𝜓𝑂2〉, (4)

meaning the coefficients corresponding to 𝑂3 are complex
conjugates of 𝑂2. The symmetry is analogous between 𝜓𝑂1
and 𝜓𝑂4. This shows that we only need complex conjugation
in the 𝑥-component.

Next, we still need to consider the other complex wavelet
configurations given by

𝜓(𝑥)𝜑(𝑦) (𝐻𝐿 wavelet),
𝜑(𝑥)𝜓(𝑦) (𝐿𝐻 wavelet),
𝜑(𝑥)𝜑(𝑦) (𝐿𝐿 wavelet).

The last one is known as the 2D scaling function or father
wavelet, which we will consider separately later. In total, we
have three 2D complex wavelet configurations and, for each
one, we also need to consider the complex conjugate on the
𝑥-component which means there are 3 · 2 = 6 different 2D
complex wavelet functions. However, it is not necessary to
consider all 6 explicitly as we did with the 𝐻𝐻 wavelet.
Instead, we will introduce some new notation which will be
particularly useful later on in the 4D setting.

First, note that both pairs of 1D functions {𝜓Re, 𝜑Re} and
{𝜓Im, 𝜑Im} constitute regular 1D real-valued wavelet systems
which are only connected through the Hilbert transform.
Therefore, they are associated with two different pairs of low-
pass, high-pass filters: 𝐻𝑎 and 𝐿𝑎 for the real part; 𝐻𝑏 and
𝐿𝑏 for the imaginary one. The construction of these so-called
“q-shift” wavelet filters is thoroughly explained and motivated
in [17, 18], to which we refer the reader for a more detailed
discussion.

In the original 1D DT-CWT the two wavelet systems would
produce the two independent halves of a tree-like structure,
whence the name: tree 𝑎 would only produce the real part
while tree 𝑏 only the imaginary one. This is no longer true in
2D as we see, for example, in equation (2). The real part is a
sum of two functions, one of which is purely from tree 𝑎 and
the second one is purely from tree 𝑏. The imaginary part is a
sum of two terms made by mixing both trees. How the filters
from the two trees are multiplied and added is the key to a
simpler implementation. By comparing equations (2) and (3)
we notice that both 2D wavelets are computed by summing
up the same 4 terms and only the signs change due to the
imaginary unit changing from positive to negative. In fact, the
orthants alone determine the signs no matter which filter is
used.

Therefore, we introduce the following notation. Define
the real-valued terms 𝑃 𝜄, where the multi-index 𝜄 ∈
{𝑎𝑎, 𝑎𝑏, 𝑏𝑎, 𝑏𝑏} denotes from which tree the filters along
the 𝑥 and 𝑦-directions are chosen from. To be precise these
terms should be unique to each wavelet configuration: for
example, for the 𝐻𝐿 wavelet the precise notation should
be 𝑃𝐻𝑎𝐿𝑎

, 𝑃𝐻𝑎𝐿𝑏
, 𝑃𝐻𝑏𝐿𝑎

and 𝑃𝐻𝑏𝐿𝑏
. However, if we ease

the notation by dropping the explicit dependence on the
filters, we can generalize computations by considering only the
dependence on the tree. The actual filter types can be inferred
from the generated wavelet. With this notation, all wavelets
(i.e., 𝐿𝐻, 𝐻𝐿 and 𝐻𝐻) in the two orthants with 𝑦̂ > 0 have
the following form:

𝜓𝑂1 (𝑥, 𝑦) = 𝑃𝑎𝑎 − 𝑃𝑏𝑏 + 𝑖 (𝑃𝑎𝑏 + 𝑃𝑏𝑎) ,
𝜓𝑂2 (𝑥, 𝑦) = 𝑃𝑎𝑎 + 𝑃𝑏𝑏 + 𝑖 (𝑃𝑎𝑏 − 𝑃𝑏𝑎)



and to compute them, we only need the corresponding 𝑃 𝜄

for all 𝜄 ∈ {𝑎𝑎, 𝑎𝑏, 𝑏𝑎, 𝑏𝑏}. Since computing each 𝑃 𝜄 term
amounts to the same complexity as computing wavelet coeffi-
cients with any real-valued 2D wavelet transform, this provides
a considerable simplification for the implementation of 2D DT-
CWT.

The same approach is also used to calculate each 𝑃 𝜄

corresponding to the scaling function (𝐿𝐿), but the different
orthants are not considered explicitly since the complex-valued
coefficients are not extracted from the 𝑃 𝜄 terms. Instead, these
are stored in an alternating pattern where values of 𝑃𝑎𝑎 are
stored on even columns and rows, 𝑃𝑎𝑏 on even columns and
odd rows and so on. This produces a single larger set of real-
valued scaling coefficients which is then passed on as the input
for the next decomposition level.

At the final decomposition level, the complex-valued scaling
coefficients for the two orthants are computed just like the
wavelet coefficients, that is:

𝜑𝑂1 (𝑥, 𝑦) = 𝑃𝑎𝑎 − 𝑃𝑏𝑏 + 𝑖 (𝑃𝑎𝑏 + 𝑃𝑏𝑎) ,
𝜑𝑂2 (𝑥, 𝑦) = 𝑃𝑎𝑎 + 𝑃𝑏𝑏 + 𝑖 (𝑃𝑎𝑏 − 𝑃𝑏𝑎) .

Finally, to invert the 2D DT-CWT, we reverse the operations
above and obtain each term 𝑃 𝜄 from the respective complex-
valued coefficients:

𝑃𝑎𝑎 =
1
2

Re (𝜓𝑂1 + 𝜓𝑂2) , 𝑃𝑏𝑏 =
1
2

Re (𝜓𝑂1 − 𝜓𝑂2) ,

𝑃𝑎𝑏 =
1
2

Im (𝜓𝑂1 + 𝜓𝑂2) , 𝑃𝑏𝑎 =
1
2

Im (𝜓𝑂1 − 𝜓𝑂2) .

Hence, also the reconstruction can be carried out as in any 2D
real-valued wavelet system.

Constructing the DT-CWT system in 3D follows similarly.
We will not go into details here since the construction and
an application of the system are thoroughly discussed in [7].
Just to build intuition to then generalize to 4D, the wavelet
and scaling functions are constructed as a tensor product of
3 complex-valued components for the 𝑥, 𝑦 and 𝑧-directions
respectively. In 3D we have 23 = 8 configurations, 1 for the
3D scaling function (𝐿𝐿𝐿) and 7 for the different wavelet
functions. Similarly to the 2D case, complex conjugated com-
ponents are needed in two directions to cover the negative
parts of the respective frequency domain while in the third
direction the covering is obtained by symmetry, if only real-
valued inputs are used. In total 7 · 23−1 = 28 different 3D
wavelets at each decomposition level are needed.

B. Constructing DT-CWT in 4D

To construct the 4D DT-CWT, we extend the approach de-
scribed in section II-A to four dimensions, where the different
directions are denoted by 𝑥, 𝑦, 𝑧 and 𝑡. Also in 4D the different
wavelet configurations have a separable construction, using
tensor products of 1D (dual-tree) complex-valued wavelet or
scaling function for any given direction. This yields 24 = 16
configurations, 1 of which corresponds to the 4D scaling
function while the other 15 are wavelets.

Again, the 1D complex-valued wavelet and scaling func-
tions have, by construction, frequency support only on one half

of the domain. Thus, in order to obtain complete frequency
tiling, a complex conjugated function needs to be included for
each dimension as well. Once more, with real-valued inputs
one order of symmetry is obtained in the Fourier domain and
hence, for one dimension, conjugated functions are not needed:
let us fix this to be the fourth dimension, corresponding to 𝑡.

As a result, the total number of 4D wavelet functions used
is 15 · 2(4−1) = 15 · 8 = 120 for each decomposition level.
Luckily, 120 unique filters are not explicitly needed since we
can use the same trick seen in the 2D setting to obtain the 8
directional orthants.

All mother wavelet functions have the same form:

𝜓𝑂𝜁 (𝑥, 𝑦, 𝑧, 𝑡) : = [𝛾Re (𝑥) + i𝑥 (𝜁)𝛾Im (𝑥)]
× [𝛾Re (𝑦) + i𝑦 (𝜁)𝛾Im (𝑦)]
× [𝛾Re (𝑧) + i𝑧 (𝜁)𝛾Im (𝑧)]
× [𝛾Re (𝑡) + i𝑡 (𝜁)𝛾Im (𝑡)]

where, depending on the desired wavelet, the functions 𝛾Re and
𝛾Im can be wavelet (𝜓Re, 𝜓Im) or scaling functions (𝜑Re, 𝜑Im)
in any of the 15 configurations. Here, i𝑑 (𝜁) = ±𝑖 determines
the sign of the imaginary unit 𝑖 for each dimension 𝑑 based
on the orthant 𝜁 . Thanks to the symmetry with real valued
inputs, we can fix i𝑡 (𝜁) = +𝑖 for any 𝜁 . All values of i𝑑 are
listed in table I.

Calculating this product always gives a sum of 16 terms,
8 for the real part (i.e., even number of i𝑑’s) and 8 for the
imaginary part (i.e., odd number of i𝑑’s). The sign of each
term is determined solely by the product of the i𝑑’s. It is
clear that by simply changing the signs of the 16 terms all 8
orthants can be covered by any given wavelet. Choosing how
the imaginary units affects each term can be easily seen from
the tree-like structure in Figure 1: each time a filter is chosen
from the tree 𝑏 for direction 𝑑, each subsequent term on that
branch is multiplied by i𝑑 .

Since an even number of “imaginary” wavelets produces
the real part of the coefficient, neither wavelet tree is purely
imaginary (or real) valued. For this reason we denote them by
𝑎 and 𝑏 instead. Then, for tree 𝑎 we have high-pass filter 𝐻𝑎

and low-pass filter 𝐿𝑎 corresponding to wavelet and scaling
functions 𝜓Re and 𝜑Re, respectively. Similarly for tree 𝑏 we
have high-pass filter 𝐻𝑏 and low-pass filter 𝐿𝑏 corresponding
to 𝜓Im and 𝜑Im, respectively. Individually they produce orthog-
onal real-valued wavelet systems and they are only connected
by the Hilbert transform pairing 𝜓Im = H(𝜓Re).

As an example consider the complex-valued wavelet de-
noted by 𝐻𝐻𝐻𝐻 and obtained using a high-pass filter 𝐻 in
every direction. To uniquely identify this wavelet, we need to
further differentiate whether the filter 𝐻 is from tree 𝑎 or 𝑏.
As in 2D, let us denote these terms by 𝑃 𝜄 where the multi-
index 𝜄 marks the tree for each of the four dimensions, namely
𝜄 ∈ {𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑏, . . . , 𝑏𝑏𝑏𝑏}. This is precisely the structure
illustrated in Figure 1. Then, each 𝐻𝐻𝐻𝐻 wavelet is given by
16 terms, all of which are computed using the different high-
pass filters from the two trees. The signs for the imaginary
units in the different orthants of the frequency domain are
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Fig. 1. Illustration of the tree-like structure which determines the terms
𝑃𝜄 , with 𝜄 ∈ {𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑏, . . . , 𝑏𝑏𝑏𝑏}, of every wavelet filter and the
combined imaginary units coming from each dimension. Cells highlighted
with dashed boundary form the imaginary part of the final output.

TABLE I
IMAGINARY UNIT VALUES FOR EACH OF THE ORTHANTS. NEGATIVE

IMAGINARY UNIT CORRESPONDS TO COMPLEX CONJUGATION OF THE
COMPLEX WAVELET COMPONENT IN THAT DIRECTION.

Orthant i𝑥 i𝑦 i𝑧 i𝑡
𝑂1 +𝑖 +𝑖 +𝑖 +𝑖
𝑂2 −𝑖 +𝑖 +𝑖 +𝑖
𝑂3 +𝑖 −𝑖 +𝑖 +𝑖
𝑂4 −𝑖 −𝑖 +𝑖 +𝑖
𝑂5 +𝑖 +𝑖 −𝑖 +𝑖
𝑂6 −𝑖 +𝑖 −𝑖 +𝑖
𝑂7 +𝑖 −𝑖 −𝑖 +𝑖
𝑂8 −𝑖 −𝑖 −𝑖 +𝑖

given in Table I. See also Figure 2 for an illustration of the
orthants in the (𝑥, 𝑦̂, 𝑧)-Fourier space; the 𝑡-dimension is left
out for clarity.

For the real and imaginary parts of any wavelet in, e.g., the
first orthant this yields the following expressions:

Re (𝜓𝑂1) =
1
2
(
𝑃𝑎𝑎𝑎𝑎 − 𝑃𝑎𝑎𝑏𝑏 − 𝑃𝑎𝑏𝑎𝑏 − 𝑃𝑎𝑏𝑏𝑎

− 𝑃𝑏𝑎𝑎𝑏 − 𝑃𝑏𝑎𝑏𝑎 − 𝑃𝑏𝑏𝑎𝑎 + 𝑃𝑏𝑏𝑏𝑏

)
,

Im (𝜓𝑂1) =
1
2
(
𝑃𝑎𝑎𝑎𝑏 + 𝑃𝑎𝑎𝑏𝑎 + 𝑃𝑎𝑏𝑎𝑎 − 𝑃𝑎𝑏𝑏𝑏

+ 𝑃𝑏𝑎𝑎𝑎 − 𝑃𝑏𝑎𝑏𝑏 − 𝑃𝑏𝑏𝑎𝑏 − 𝑃𝑏𝑏𝑏𝑎

)
,

(5)

whereas the real and imaginary parts of any wavelet in the
second orthant (where i𝑥 = −𝑖) are be given by:

Re (𝜓𝑂2) =
1
2
(
𝑃𝑎𝑎𝑎𝑎 − 𝑃𝑎𝑎𝑏𝑏 − 𝑃𝑎𝑏𝑎𝑏 − 𝑃𝑎𝑏𝑏𝑎

+ 𝑃𝑏𝑎𝑎𝑏 + 𝑃𝑏𝑎𝑏𝑎 + 𝑃𝑏𝑏𝑎𝑎 − 𝑃𝑏𝑏𝑏𝑏

)
,

Im (𝜓𝑂2) =
1
2
(
𝑃𝑎𝑎𝑎𝑏 + 𝑃𝑎𝑎𝑏𝑎 + 𝑃𝑎𝑏𝑎𝑎 − 𝑃𝑎𝑏𝑏𝑏

− 𝑃𝑏𝑎𝑎𝑎 + 𝑃𝑏𝑎𝑏𝑏 + 𝑃𝑏𝑏𝑎𝑏 + 𝑃𝑏𝑏𝑏𝑎

)
.

(6)

As we can see the terms coming from the bottom half of
the tree in Figure 1 have their signs changed because, by
construction, the imaginary unit i𝑥 is always present in those
terms. All terms are also multiplied by a factor of 1

2 to lower
the frame bound of the wavelet system. This is not strictly
necessary and some other options for the normalization are
mentioned in subsection II-C.

To obtain all the other possible configurations, we simply
reiterate the same procedure. Namely, for every configuration
of the low-pass and high-pass filters we obtain 16 terms
denoted by 𝑃 𝜄 where 𝜄 keeps track on which tree each filter
was chosen from. By changing the signs of these terms we
can obtain the real and imaginary parts of any “directional
orthant”. Therefore, the sign of each 𝑃 𝜄 and how its values
are computed are independent of each other.

Remark II.1 (first decomposition level). The first decompo-
sition level differences from the others in that it uses just
one low-pass and high-pass filter which correspond to a
biorthogonal wavelet system. Here, instead of tree 𝑎 and
tree 𝑏 the final output consists of the odd and even values
of the filters convolved with the odd and even values of the
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Fig. 2. Illustration of the different orthants in the 3D ( 𝑥̂, 𝑦̂, 𝑧̂)-Fourier space;
the 𝑡-dimension is left out for clarity.

input. This method is simpler than using two sets of q-shift
filters and faster to compute thanks to shorter filters. This is
especially advantageous in higher dimensions where most of
the computational load is on the first decomposition level. For
example in 4D every subsequent level is only 1

16 𝑡ℎ of the size
of the previous one.

However, using just one set of filters does not work properly
beyond the first level due to the different sampling rate,
therefore the q-shift filters are required. Nevertheless, once
the convolutions produce the 𝑃 𝜄 terms, the rest of the com-
putations are carried out identically in every decomposition
level.

Furthermore, one could also consider simply discarding
these first level details coefficients, gaining faster computations
at the cost of an imperfect final reconstruction, due to the
partial missing information encoded by these detail coeffi-
cients. This option is offered both by Matlab’s built-in 3D
DT-CWT [7] and also our dualtree4 implementation [12].

We conclude the subsection by formally introducing the
definition of complex wavelet transform C which acts as
analysis operator, i.e., it maps (decomposes) any input 𝑓 to
its complex wavelet coefficients.

Definition II.2. Let 𝜓 (𝜅,𝜁 ) (𝑥, 𝑦, 𝑧, 𝑡), 𝜅 = 0, 1, . . . , 15, 𝜁 =

1, . . . , 8 denote the different mother wavelets (based on the
configurations and orthants), including for 𝑘 = 0 the scaling
function 𝜑 = 𝜓 (0) , with a slight abuse of notation. Let 𝑓 ∈
𝐿2 (R4) be a real-valued function. Then C is defined to be the
linear mapping:

C : 𝑓 (𝑥, 𝑦, 𝑧, 𝑡) ↦−→ 𝑐( 𝑗 , 𝑚; 𝜅, 𝜁) = 〈 𝑓 , 𝜓 (𝜅,𝜁 )
𝑗 ,𝑚

〉 (7)

where 𝜓
(𝜅,𝜁 )
𝑗 ,𝑚

= 2−2 𝑗𝜓 (𝜅,𝜁 ) (2− 𝑗 · −𝑚) with ( 𝑗 , 𝑚) ∈ N0 ×Z4.

Notice that, since in the numerical setting the scale is in
practice limited 𝑗 6 𝐽 and we must also include translates of

the scaling function (namely, for 𝜅 = 0 with 𝜑 (𝜁 ) = 𝜑 (0,𝜁 ) ).
This can be done, for example, by defining

𝑐(𝐽, 𝑚; 𝜅, 𝜁) = 〈 𝑓 , 𝜑 (𝜁 )
𝐽 ,𝑚

〉 =
〈
𝑓 , 2−2𝐽𝜑 (𝜁 ) (2−𝐽 · −𝑚)

〉
for the different orthants 𝜁 = 1, . . . , 8. As usual, the maximum
decomposition level is bounded by the resolution of the data:
2𝐽 6 min{𝑁𝑥 , 𝑁𝑦 , 𝑁𝑧 , 𝑁𝑡 }. For practical reasons dualtree4
only works when each 𝑁𝑥 , 𝑁𝑦 , 𝑁𝑧 and 𝑁𝑡 is even.

C. Inverting 4D DT-CWT

Inverting the dual-tree complex wavelet decomposition is a
very straight forward process once the terms 𝑃 𝜄 are separated
from the complex valued coefficients. Let Re

(
𝜓𝑂𝜁

)
and

Im
(
𝜓𝑂𝜁

)
denote, respectively, the real and imaginary parts of

some complex wavelet at scale 𝑗 and orthant 𝜁 . Similarly to
the 2D case, we can compute the corresponding 𝑃 𝜄 as follows:

𝑃𝑎𝑎𝑎𝑎 =
1
4

(
Re

(
𝜓𝑂1 + 𝜓𝑂2 + 𝜓𝑂3 + 𝜓𝑂4

+ 𝜓𝑂5 + 𝜓𝑂6 + 𝜓𝑂7 + 𝜓𝑂8
) )
,

𝑃𝑎𝑎𝑏𝑏 =
1
4

(
Re

(
𝜓𝑂1 − 𝜓𝑂2 − 𝜓𝑂3 − 𝜓𝑂4

+ 𝜓𝑂5 + 𝜓𝑂6 + 𝜓𝑂7 + 𝜓𝑂8
) )
,

(8)

and so on for the terms which were summed for the real
part in (5). Similarly the terms which were summed for the
imaginary part are given by

𝑃𝑎𝑎𝑎𝑏 =
1
4

(
Im

(
𝜓𝑂1 + 𝜓𝑂2 + 𝜓𝑂3 + 𝜓𝑂4

+ 𝜓𝑂5 + 𝜓𝑂6 + 𝜓𝑂7 + 𝜓𝑂8
) )
,

𝑃𝑎𝑏𝑏𝑏 =
1
4

(
Im

(
− 𝜓𝑂1 − 𝜓𝑂2 + 𝜓𝑂3 + 𝜓𝑂4

+ 𝜓𝑂5 + 𝜓𝑂6 − 𝜓𝑂7 − 𝜓𝑂8
) )
,

(9)

and analogously for the remaining 𝑃 𝜄 terms. The division by
4 is required since in the decomposition step each term 𝑃 𝜄 is
divided by 2 and here we obtain 8 · 1

2𝑃 𝜄 = 4𝑃 𝜄 for the desired
term while the rest cancel out. Another option would be to
use a uniform normalization of 1√

8
for both the decomposition

and the reconstruction steps which would produce a Parseval
frame but also be computationally slightly more expensive
than multiplying by a fraction.

From this point onward the reconstruction is carried out just
like with any DWT. For levels 𝑗 > 1 the reconstruction filters
𝐻𝑎, 𝐿̃𝑎, 𝐻𝑏 and 𝐿̃𝑏 are “time-reversed” (i.e., the 1D filters are
mirrored) versions of the respective decomposition filters. For
𝑗 = 1 the reconstruction filters 𝐻, 𝐿̃ are the associated dual
filters of the biorthogonal wavelet system.

We end the subsection by formally defining the inverse 4D
DT-CWT C−1 which allows to reconstruct the original signal
from its DT-CWT coefficients.



Definition II.3. Let 𝜅 = 0, . . . , 15, 𝜁 = 1, . . . , 8 and ( 𝑗 , 𝑚) ∈
N0 ×Z4. The inverse complex wavelet transform C−1 is given
by

C−1 : 𝑐( 𝑗 , 𝑚; 𝜅, 𝜁) ↦−→ 𝑓 (𝑥, 𝑦, 𝑧, 𝑡)
𝑓 =

∑︁
𝑗

∑︁
𝑚

∑︁
𝜅,𝜁

𝑐( 𝑗 , 𝑚; 𝜅, 𝜁)𝜓 (𝜅,𝜁 )
𝑗 ,𝑚

. (10)

Here, 𝜓 marks the dual wavelet function of the biorthogonal
wavelet system used at 𝑗 = 1 as mentioned in remark II.1. For
𝑗 > 2 these are the same as for the analysis operator. In the
numerical setting the scaling function is once again included
with 𝜅 = 0.

D. Adjoint 4D DT-CWT

In some applications (such as the one we propose in
section IV) the adjoint C∗ of the complex wavelet transform C
is required in place of the inverse. The adjoint of the analysis
operator is also known as the synthesis operator. Since the
orthogonal wavelet systems used for levels 𝑗 > 2 use the
same filters (just time-reversed) for the inverse, the adjoint
is the inverse but scaled by 1

2 (instead of the normalization
factor 1

4 in equations (8) and (9)): namely, it has the same
normalization factor of decomposition operator. However, for
the first level the dual filters 𝐻, 𝐿̃ also need to be replaced by
the time-reversed decomposition filters 𝐻, 𝐿.

This produces a fairly accurate approximation of the ad-
joint operator and in our implementation is available by
using the parameter “adjoint” when calling the function
idualtree4 [12]. Further improvement could be obtained
by a more detailed consideration of the boundary conditions
of the discrete convolution, as explained in [11], but we leave
this to future work.

It is worth mentioning that since this particular implemen-
tation does not constitute a Parseval frame but a tight frame
with frame bound 𝑢 = 2, this bound is also present in the
adjoint. Hence, the largest eigenvalue of the normal operator
CC∗ is 22.

III. PROPERTIES

Since the dual-tree complex wavelet system is constructed
using two real-valued DWT systems side by side, compu-
tationally it is at least 24 = 16 times as demanding as
using real-valued discrete wavelet transform of similar filter
lengths. However, the dual-tree complex wavelets exhibit many
appealing properties (lacking in the real-valued DWT) which
make them a tempting option many tasks.

A. Shift-invariance

While real-valued wavelets are well suited for many appli-
cations, their implementation is in general sensitive to small
translations in the input. This means that the DWT coefficients
from data which have been slightly shifted can significantly
differ from those of the non-shifted data.

This is not the case for DT-CWT. Since the real and
imaginary parts of the dual-tree complex wavelet are in
quadrature (i.e., 90◦ difference in phase) and the absolute value

Fig. 3. 3D isosurface rendering of a ball growing over time reconstructed
using only the coefficients corresponding to complex-valued (left) or real-
valued (right) wavelets aligned vertically (along the 𝑧-axis). Only the middle
time step (𝑡 = 16) is shown here.

of the wavelet is not oscillatory, errors caused by shifts are in
general less severe. In fact, aiming for shift-invariant wavelets
leads precisely to complex-valued wavelets: shift-invariance
can be numerically confirmed using various filters, as shown
in [17]. As an example, figure 4 demonstrates how shift-
invariance in DT-CWT, coupled with its directional sensitivity
(see subsection III-B), helps preserving edges over time.

For a particular class of complex-valued wavelets, called
modulated wavelets, it is possible to formally prove that the
errors caused by shifts are optimally small [2]. We leave the
extension of this result to the 4D dual-tree complex wavelets
presented in this paper to future work.

B. Directionality

One of the main drawbacks of real-valued DWT is the lack
of ability of capturing directional information in 2-dimensions
and beyond. This was the main reason for introducing multidi-
mensional systems like curvelets [4] or shearlets [20]. From a
theoretical perspective, complex-valued wavelets share certain
limitations of real-valued wavelet systems1, given that the
scaling is still isotropic and there is no explicit encoding
of directionality. However, in practice, it can be seen that
dual-tree complex wavelets can capture directional information
across a fixed number of orientations per scale.

Indeed, with dual-tree complex wavelets, details in different
parts of the spatial domain are analyzed by wavelets supported
in different orthants of the Fourier domain. This “one-sided
frequency support” results in a major selectivity (compared
to DWT) in representing singularities which eventually entails
the ability to naturally encode some directionality.

In figure 3, we demonstrate this by comparing the recon-
struction of a simple 3D ball growing over time using the
coarsest scale “LLHL”-wavelet coefficients of both dual-tree
complex wavelets and (Daubechies 2) real-valued wavelets.

It is clear from figure 3 that dual-tree complex wavelets
(left) produce a remarkably cleaner representation of the edges

1For example, the asymptotic decay rate remains O(𝑁 −1) in 2D [20] and
O(𝑁 − 1

𝑑−1 ) in 𝑑-dimensions for 𝑑−1 dimensional edges, which is known to
be suboptimal in terms of best nonlinear 𝑁 -term approximation.



𝑡

𝑧

𝑥

Fig. 4. 3D “time-cone” rendering of a central 𝑥𝑧-slice of a ball growing
over time (left) reconstructed using only the coefficients which correspond to
a complex-valued (middle) or real-valued (right) wavelets aligned diagonally
(along the 𝑧𝑡-plane).

of the ball in the vertical direction and the reconstruction
remains symmetric.

Instead, real-valued wavelets (right) result in a reconstruc-
tion with jagged and unintuitive edges and the overall rounded
shape of the growing ball seems to be lost. These problems
become even more prominent with wavelet configurations
made of multiple wavelet (highpass) components, see for
example the “HHLL”-wavelet in Figure 4. This is because,
unlike the DT-CWT, by construction DWT must represent
multiple “diagonal” directions by just one wavelet.

In figure 4 we show the reconstruction of the same 3D
ball growing over time but we now visualize the central 𝑥𝑧-
plane over time, resulting in a “time-cone” shape. Analo-
gously to figure 3, we compare the reconstructions obtained
from the coarsest scale “LLHH”-wavelet coefficients with
both dual-tree complex wavelets and (Daubechies 2) real-
valued wavelets. Here, real-valued wavelets (right) reveal only
partially the edge perpendicular to the 𝑧𝑡-plane and the region
is disjoint as it shifts over time. In contrast, complex wavelets
(middle), thanks also to shift-invariance, manage to represent
the edge faithfully even as the singularity shifts outwards.

Notice that, in figures 3 and 4, for the DT-CWT wavelets
from all 8 orthants are used. Furthermore, the top half of
the volume is given by the 4 wavelets corresponding to
orthants 1-4 (where i𝑧 = +𝑖) and the bottom half by wavelets
corresponding to orthants 5-8 (i𝑧 = −𝑖). Hence, carefully
choosing certain orthants of a particular wavelet could be used
to formally analyze the geometry of the decomposed object:
we leave this to future work.

IV. APPLICATIONS

In order to demonstrate the potentiality of the 4D DT-
CWT, we apply it to the inverse problem of reconstructing a
volume over time, namely, 4D (3D+time) dynamic computed
tomography (CT).

CT is a well known inverse problem where the inner
structure of an unknown object is determined from external

measurements of its X-ray attenuation intensity. This task is
notoriously ill-posed, especially when only a sparse sample
of measurements is available. One way to overcome ill-
posedness, and therefore guarantee a stable (and unique)
solution, is to add regularization to the problem [9]. In the
latest years, sparse regularization strategies, based on the
paradigm that for each class of data, there exists a sparsifying
representation system (such as wavelets or shearlets), have
been widely used in CT applications, including dynamic CT
(see [3] and references therein).

Starting from the model first introduced in [3] for the
2D+time case, we extend it to the 4D case, using complex
wavelets rather than shearlets as a regularizer.

A. Mathematical model

Modern cone-beam CT scanners collect 2D projection im-
ages from given angle views. These can then be used to
reconstruct a 3D volume of the interior attenuation of the
targeted object. If this measurement process is then repeated
over time, the object of interest can be understood as a 4D
object. Given the sparse measurements and the violation of
the static assumption that it is often assumed in classic CT
reconstruction schemes, recovering a moving object from mul-
tiple sparse measurements over a given time period requires
regularization with an appropriate representation system. Here,
we use the 4D DT-CWT: in analogy with the approach in [3],
we are not only regularizing spatially on the 3D volume but
also across time frames by considering the 3D moving volume
as a 4D object.

Formally, for each time step 𝑡 = 1, ..., 𝑇 , let 𝒇 𝑡 (𝑥, 𝑦, 𝑧) ∈
R𝑁
+ , with 𝑁 = 𝑁𝑥𝑁𝑦𝑁𝑧𝑁𝑡 , be a vector representing the

unknown 3D object, R𝑡 ∈ R𝑀×𝑁 a matrix modelling the
tomographic cone-beam measurement process and 𝒎𝑡 + 𝜼 =:
𝒎

𝜼
𝑡 ∈ R𝑀 the data corrupted by measurement errors 𝜼 = 𝜼(𝑡).

To further simplify our notation we set:

𝒇 =


𝒇 1
...

𝒇𝑇

 , R =


R1

. . .

R𝑇

 , 𝒎𝜼 =


𝒎

𝜼
1
...

𝒎
𝜼
𝑇

 .
Then a regularized solution 𝒇 ∈ R𝑁𝑇

+ can be obtained by
minimizing the functional

𝐽 ( 𝒇 ) = 1
2
‖R 𝒇 − 𝒎𝜼 ‖2

2 + 𝜇‖ C 𝒇 ‖1. (11)

Here, the regularization parameter 𝜇 > 0 balances between the
data mismatch over the time steps and the ℓ1-sparsity of the
solution in the 4D dual-tree complex wavelet domain.

A robust minimization method is the primal-dual fixed point
(PDFP) algorithm [8]. Similarly to the well-known iterative
soft-tresholding algorithm (ISTA), the wavelet coefficients of
the iterates are soft-thresholded depending on the parameter
𝜇. Compared to ISTA, PDFP allows for additional constraints
(namely the non-negativity of 𝒇 ) and ensures convergence
even when the spasifying system does not form an orthonormal
basis but a frame, as it is the case with dual-tree complex



wavelets. By using PDFP, equation (11) can be minimized by
iterating the following steps:

𝒅 (𝑖+1) = proj+
(
𝒇 (𝑖) − 𝛾(R𝑇 R 𝒇 (𝑖) −R

𝑇 𝒎𝜼) − 𝜆 C∗ 𝒗 (𝑖)
)
,

𝒗 (𝑖+1) =
(
I − 𝑆𝜇 𝛾

𝜆

) (
C 𝒅 (𝑖+1) + 𝒗 (𝑖)

)
,

𝒇 (𝑖+1) = proj+
(
𝒇 (𝑖) − 𝛾(R𝑇

R 𝒇 (𝑖) −R
𝑇 𝒎𝜼) − 𝜆 C∗ 𝒗 (𝑖+1) )

(12)

𝑆𝜇 𝛾

𝜆
denotes the soft-thresholding operator and proj+ is the

projection onto the non-negative orthant. The parameters 𝛾 and
𝜆 are bounded by properties of the functional 𝐽, which set a
clear range for their values, while the optimal choice of 𝜇 is a
notoriously difficult task. Here, we utilize an automated tuning
of 𝜇 based on the a priori given desired sparsity level of the
wavelet coefficients. This method was first introduced in [22]
using Haar wavelet regularization in traditional 2D tomogra-
phy regularization and contains a detailed explanation of the
automated sparsity control. Recently we applied the method
to 2D+time dynamic tomography setting using shearlets [3],
where we also motivated the choice of this model further.

Since the DT-CWT coefficients are complex-valued it is
worth noting that the soft-thresholding function in equa-
tion (12) acts radially:

𝑆𝜇′ (𝑣) := max{0, |𝑣 | − 𝜇′}𝑒𝑖 arg(𝑣) ,

and component-wise when 𝑣 is a vector. Here, arg(𝑣) denotes
the argument of 𝑣 ∈ C.

For comparison purposes, we implemented also 4D DWT:
the regularized model with 4D DWT is obtained by replacing
C with a DWT (denoted in the following by W) in equa-
tion (12) and changing the values of 𝜆 and 𝜇 accordingly. The
4D DWT is implemented by extending the 3D DWT from the
Wavelet Toolbox and is available on GitHub [13].

Finally, the matrices R𝑡 (and therefore R) simulating the
geometry of cone-beam CT machine are generated using
ASTRA Toolbox [24].

B. Test cases

To assess the viability of 4D DT-CWT regularization in
sparse dynamic tomography we use two data sets which are
governed by two different types of motion.

• Dynamic Shepp-Logan data is simulated by deforming
a 3D version of the famous Shepp-Logan phantom [16].
The deformations happen at two scales: 15 small changes
evenly distributed during the simulation of each sinogram
and a larger change (equivalent to 15 small changes at
once) between each full measurement. This reproduces
a scenario where the object is changing during a full
rotation of the measurement device and there is an
equally long break before the next set of measurements
begins. The overall motion is periodic over the whole
time interval and consists of simultaneous squeezing and
stretching of the whole phantom in each direction.
To avoid inverse crimes the projection images are gener-
ated at twice the required resolution, down-sampled and

𝑡 = 2 𝑡 = 4

𝑡 = 6 𝑡 = 8
Fig. 5. Central horizontal slice (𝑧 = 32) of the dynamic Shepp-Logan phantom
illustrating part of the periodic deformation.

contaminated with additive Gaussian noise with 0 mean
and 5% variance. Some interior slices (at 𝑧 = 32 and
different time steps 𝑡) of the simulated 64 × 64 × 64 × 16
object are shown in figure 5. The selected time steps
correspond roughly to half a period of the motion.

• Gel phantom data is from real 𝜇CT measurements of
a test tube filled with agarose gel and perfused with
potassium iodide contrast agent using vertical cavities in
the gel body. Detailed documentation of the same setup
but containing only the central slice of each projection
image (for 2D + time fan-beam measurements) can be
found in arXiv and the data files in Zenodo [14]. Full
dynamic cone-beam data used here will be made openly
available in the future.
The motion inside the gel phantom is only caused by
the perfusing iodine and the remaining of the structure is
static. However, the total intensity of the object changes
at an unknown rate. To slightly increase the ill-posedness,
Gaussian noise with 0 mean and 1% variance was added
to the already noisy data.

To apply the automated choice for the regularization param-
eter, we need to determine the a priori level of sparsity [22].
The desired sparsity level for the dynamic Shepp-Logan data
was calculated from the known 4D object and was chosen to
be 𝑑C = 0.6 for the DT-CWT and 𝑑W = 0.5 for the DWT. For
the gel phantom data we used as “ground truth” a high quality
reconstruction obtained with the FDK-algorithm [10] using
360 projection angles and no additional noise. The desired
sparsity levels were chosen to be 𝑑C = 0.6 for the DT-CWT



and 𝑑W = 0.6 for the DWT.
Notice that these were also the reference objects used for

the numerical error estimates reported in table II.

C. Results

Reconstructions from the dynamic Shepp-Logan data can
be seen in figure 6 (using DWT and DT-CWT). Similarly to
figure 5, we show the horizontal (𝑥𝑦-plane) slice at height
𝑧 = 32 of selected time steps.

Reconstructions from the gel phantom data are reported in
figures 7 (using DWT) and 8 (using DT-CWT). In each column
we show 2D slices from selected time steps: on the top row
there is the horizontal (𝑥𝑦-plane) slice at height 𝑧 = 64 and
on the bottom row there is the vertical (𝑥𝑧-plane) slice at 𝑦 =

64. Both reconstructions use 30 projection angles and were
originally of size 128× 128× 128× 16 but have been cropped
vertically (along 𝑧-axis) to size 128×128×96×16. This is done
to avoid artifacts caused by the phantom extending vertically
outside the measured X-ray cone.

In addition to the visual comparisons some numerical error
estimates for both data are provided. Relative ℓ2-norm error
and peak signal-to-noise (PSNR) ratios of the 4D reconstruc-
tion are listen in table II. We also consider the Haar-wavelet
perceptual similarity index (HPSI) [23] of the horizontal slices
of the dynamic Shepp-Logan (seen in figure 6) and the vertical
slices (bottom row in figures 7 and 8) of the gel phantom. We
then calculate the mean value over all 16 time steps. For all
numerical error estimates the gel phantom reconstructions are
cropped vertically to more fairly evaluate the regularization
without the cone-beam geometry artifacts.

Comparing the quality of reconstructions in figures 6, 7
and 8 we notice that overall the dual-tree complex wavelets
perform better at preserving details whilst also denoising the
reconstructions. For example, in figure 6 it can be seen that
reconstructions with Dauchechies 2 wavelet regularization (top
row) are clearly noisier and the outer boundary is not nearly
as well preserved as with DT-CWT regularization (especially
at 𝑡 = 8). This can be taken as evidence that complex-valued
wavelets are better at preserving these features thanks to their
shift-invariance and directional sensitivity.

The differences with the gel phantom reconstructions are not
as remarkable but, again, the DT-CWT regularized solution has
noticeably less noise and especially the edges of the vertical
cavities (dark blue circles in the 𝑥𝑦-plane images) are better
preserved. The bright iodine (in yellow) is well reconstructed
by both methods.

The numerical error estimates in table II provide less
insights but seem to favour the DT-CWT reconstructions with
the exception of the mean HPSI of the dynamic Shepp-Logan
data where DWT obtains slightly better values. Notice also
that based on table III the computational cost of the DT-CWT
regularization is “only” about 10-times larger than the DWT
regularization compared to the roughly 16-fold increase in
computations of the wavelet transform itself.

Finally, we incidentally mention that the inclusion of the
third spatial direction seems to improve the quality of robust-

TABLE II
NUMERICAL ERROR ESTIMATES OF THE DIFFERENT RECONSTRUCTIONS.

Relative
error PSNR Mean

HPSI
Dynamic
Shepp-Logan

DT-CWT 40.3% 22.66 0.603
DWT 44.8% 21.73 0.643

Gel phantom DT-CWT 9.30% 30.86 0.637
DWT 10.83% 29.54 0.621

TABLE III
NUMBER OF ITERATIONS AND COMPUTATIONAL TIMES OF THE DIFFERENT

RECONSTRUCTIONS.

Iterations Time (𝑠)
total per iter.

Dynamic
Shepp-Logan

DT-CWT 70 1531 21.9
DWT 63 137 2.2

Gel phantom DT-CWT 61 11357 186.2
DWT 54 902 16.7

ness of the reconstructions compared to the similar 2D + time
setup in [3]. While the angular sampling is definitely sparse
(just 30 projections), this does not affect the 𝑧-direction which
provides additional robustness and seems to decrease to some
extent the ill-posedness of the problem.

V. CONCLUSIONS

In this paper we introduced the 4D DT-CWT and explored
its use to address the inverse problem of reconstructing a
volume evolving over time from dynamic tomographic data.
Our analysis speaks in favor of this type of representation
to address space-time problems thanks to its simple imple-
mentations and strong theoretical properties. Our results show
a potential for 4D complex wavelets to be competitive in a
numerical framework even when compared to other (more)
refined multidimensional systems.
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