
HAL Id: hal-01330493
https://hal.science/hal-01330493

Submitted on 6 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

A Symmetric Compositional Approach for Adaptive
Ubiquitous Systems

Sana Fathallah Ben Abdenneji, Stéphane Lavirotte, Jean-Yves Tigli, Gaëtan
Rey, Michel Riveill

To cite this version:
Sana Fathallah Ben Abdenneji, Stéphane Lavirotte, Jean-Yves Tigli, Gaëtan Rey, Michel Riveill. A
Symmetric Compositional Approach for Adaptive Ubiquitous Systems. The 15th IEEE International
Conference on Computational Science and Engineering, IEEE Computer Society, Dec 2012, Pharos,
Cyprus. �hal-01330493�

https://hal.science/hal-01330493
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


A Symmetric Compositional Approach for Adaptive
Ubiquitous Systems

Sana Fathallah Ben Abdenneji, Stéphane Lavirotte, Jean-Yves Tigli, Gaëtan Rey and Michel Riveill
Laboratory I3S (University of Nice-Sophia Antipolis / CNRS)

B.P. 145 06903 Sophia-Antipolis Cedex - France
{fathalla, stephane.lavirotte, tigli, gaetan.rey, riveill}@unice.fr

Abstract—In ubiquitous computing, systems evolve surrounded
by a heterogeneous smart-devices and software services, offering
functionalities that enable new applications to be created. In
such system, we need to consider the unpredictability of software
infrastructure changes. To tackle the issue of the dynamic
variation of the software infrastructure, compositional adaptation
is now often used. The problem is that adaptation entities are
independent-written. In such case, they may interfere when they
are composed. In this paper, we propose a formal approach that
allows composing applications at run time and managing these
interferences. The formal model of the system and adaptations
are defined in term of graphs. In particular, we demonstrate the
symmetry property of our composition process.

Index Terms—adaptations composition, adaptive software, in-
terference management, graph transformation

I. INTRODUCTION

A ubiquitous system offers a new opportunity to augment
people’s lives with new technologies that facilitate their every-
day tasks. It relies on heterogeneous, variable and communi-
cating devices that are scattered in our physical environments.
The software infrastructure on which is based a ubiquitous
system appears dynamically populated by functionalities of
these devices. Due to the mobility of devices which may ap-
pear or disappear at any time, ubiquitous applications have to
be adapted in order to consider these changes. Compositional
adaptation [1] allows adding or removing software elements
into the applications at runtime and is well suited to handle
infrastructural changes [2]. As a consequence, adaptations can
be designed and integrated later during execution. By nature,
compositional adaptation requires applications based on a
modular architecture with a loose coupling between software
entities composing it.

In order to manage all these constraints, various paradigms
are used in middleware for ubiquitous computing. Component-
oriented middleware and service-oriented middleware[3] pro-
vide new ways of designing dynamic and heterogeneous
applications. The loose coupling between components and
their execution environment control facilitates the dynamic
reconfiguration of components assemblies. Accordingly CBSE
is well suited for compositional adaptation [4]. Moreover,
services-oriented approaches provide solutions to manage the
heterogeneous devices involved in the system. Services have
also the characteristic of an autonomous existence without
predefined information on their use in applications, which
seems appropriate with devices blackbox property. Recently,

new approaches combine components and services and use
components assembly to compose preexisting services such
as Service Component Architecture (SCA) [5] or SLCA [6].
In this paper, we will present an adaptation mechanism that
can be applied on such approaches.

A. Requirements and constraints

All the previous challenges lead to the emergence of new
requirements in software adaptation. First, the adaptation
must be done at run time (without stopping the application)
in order to consider infrastructure changes. Moreover, these
adaptation must tolerate the unpredictability of these changes.
Second, different designers with various skills may deploy
new adaptations. Accordingly, a designer cannot predict all
possible adaptation of a system and adaptation entities may
be developed independently. As a consequence, they must
respect the separation of concern principle. Such independent
adaptation entities have to be composed together and with the
base application.

There are also some constraints to consider during the
adaptation process. It will compose n adaptation entities in
order to obtain the final application. In such case, they may
interfere when they are composed. Interference is defined
as ”a conflicting situation where one adaptation that works
correctly in isolation does not work correctly anymore when
it is composed with other adaptation” [7]. These interferences
should be managed in order to ensure the consistency of the
application after the adaptation process.

Classical approaches to manage interferences consist either
in defining explicitly dependencies between adaptation entities
or either in calculating all possible combinations between the
adaptations in order to choose the most appropriate [8]. Since
the result of the composition may depend on the order in
which adaptations are made, the number of combinations to
be calculated from n adaptations may be n!. However, inter-
ferences must be detected and managed automatically because
the number of adaptation entities that may be deployed is finite
but not bounded (we can add adaptations entities at any time).
Another reason is that it’s hard for a human to integrate a new
adaptation entity with existing ones while verifying the good
behavior of the adaptation system. Moreover, since the changes
of the software infrastructure cannot be known in advance, the
order of application of adaptation entities in reaction to these
changes cannot be known either. The application resulting



from adaptations should always be the same, regardless of
the order in which service have appeared.

B. Our proposal

In this paper, we present an adaptation mechanism that
allows composing dynamically adaptations with the base appli-
cation. It embeds an automatic mechanism to manage interfer-
ences. Accordingly, there is no need for a designer to manage
explicitly these problems when deploying adaptation entities
or to stop the adaptation mechanism. Thus, our mechanism
can be used in self-adaptation control loops. Our adaptation
operation should be symmetric because we cannot know the
order in which adaptations will be applied and deployed. It
means that the order in which adaptations are composed is
not important. Thus the composition operation ensuring this
property is presented in this paper. Moreover, since adaptation
mechanism will modify only the structure of the application,
we model applications and adaptations entities by graphs.
The interference resolution step will operate on the graph by
applying a set of graph transformation rules.

The limitation of designer’s intervention makes the chal-
lenge of maintaining the consistency of adaptation’s results
even more difficult. However, it seems unavoidable consid-
ering the requirements and constraints previously presented.
In practice, in the proposed approach, a designer deploys its
adaptations on the fly and no longer manages the interferences
among adaptations. However, it may intervene in cases that are
not resolved by the adaptation mechanism. Accordingly, the
produced application will always be consistent.
The remainder of this paper is organized as follows: next
section introduces the model of our applications and details the
example that will be used all along the paper to illustrate our
approach. Then section III details formally our composition
process and how it addresses the issue of interference man-
agement. Particularly, we show in the section IV the symmetry
property that allows us to offer a deterministic solution when
we compose adaptation entities. Then, we briefly describe our
implementation (section V). Finally, we present some related
works (section VI) before concluding (section VII) on the
contribution of this work and its perspectives.

II. FORMALISING SOFTWARE APPLICATIONS AND THEIR
ADAPTATIONS

A. Motivating Example

As an example, we define a domestic application that
relies on variable and communicating devices which define
its software infrastructure. This software infrastructure appears
dynamically populated by the functionalities of these devices.
As a consequence, the application has to be adapted during
execution time in order to consider these changes.
As all young people, Bob listens to music all the time on his
Smartphone. At home, he has an adaptation that redirects
the sound from his phone to any available audio device
(Home cinema, speaker...). Bob lives alone. Today his mother
visits him. Bob’s mother had recently hearing problems; she
cannot withstand the high tones. For this reason, she has

Table I
THE DESCRIPTION OF PRIMITIVE CONNECTORS

Notation Description
PAR•[vi, vj ] The concurrent execution of vertices vi and vj
SEQ•[vi, vj ] The order of execution; vi before vj
IF•[vc, vi, vj ] Choose a path between vi and vj
CALL Rewriting an existing edge
DEL•[vi] The link must be unique

an adaptation that specifies the threshold of the sound level
for audio devices in her surrounding physical environment.
Bob doesn’t know that his mother had hearing problems.
He increases the level of music. This example shows an
interference problem. What is the resulting behavior when
both adaptations are relevant to be applied? In this case, the
system will respect the threshold defined by the mother? Or
will let Bob increases the level of sound independently of the
threshold. This scenario will be used throughout this paper to
present our approach.

B. Application design in ubiquitous environments

Software services are often used to encapsulate function-
alities provided in ubiquitous environments, whether they
are device-based or purely software services. The software
infrastructure that we consider is a dynamic set of services.
Our applications are created as an assembly of the available
services of the infrastructure. In particular, components are
instantiated when services appear and deleted when services
disappear. An appropriate structural model for our software
applications (which is a component assembly) are graphs.
Components are represented by vertices and their links by
edges in this model.

Definition 1. A component assembly graph G is a set of
vertices V and a set of directed edges E (G = (V,E)). A
vertex vi of V is defined by a tuple (Id(vi), T yp(vi)) where
Id(vi) is the identifier of vi and the attribute Typ(vi) is its
type. An edge ej of E is written as ej = (vi, vk, lj) where lj
is a label.

Each vertex has a type. We separate vertices into
two groups: (i) Black box vertices (Typ(v)=’Port’ and
id(v)=’ComponentName:PortName’), representing component
ports (event and method call); (ii) White box vertices (or
connectors) which determine the flow of the execution when
events are triggered. The attribute Typ(v) of a white box
vertex indicates the kind of connectors. The table I details
the set of our basic connectors.

The vertices CALL and DEL are special connectors that
will never be instantiated in the final application because
they are used only to modify some links. This latter must be
used carefully because if the developers are using it without
knowing the set of possible interferences, the correctness
of the resulting application can be compromised. In order
to facilitate the comprehensibility of this paper, we use a
lightweight representation. Each black box component will be
represented by a rectangle on which we add a label on the form
Component instance Name:Port Name. The white box vertex



will be represented by a rectangle on which we add a label on
the form Connector Name. Each directed edge represents the
execution direction between two vertices. For our motivating
example, we consider that the original application (called the
base assembly) was built from a physical audio device that is
represented by a Black box component AudioHome at software
level.

C. Adaptation entities as Graph Transformation rules

In this section, we define adaptation entities introduced
in our example as graph transformation rules [9]. In the
following, we use a visual notation to define rules. Each rule
is defined in a separate figure which consist of two parts: Left
(L) and Right (R). A graph transformation rule has the form
of p : L → R and is applicable to a graph GBase if there is
an occurrence of L in GBase. It will replace the subgraph L
of GBase by a subgraph R.

Figure 1. The graph of RedirSound describes the graph of the first adaptation

The SoundRedirect adaptation graph is depicted in the
Figure 1. The vertex mapping indicate that vertices of the
left side will be linked when the rule is applied. In order to
be applied, this adaptation requires that there are instances of
Phone* and Audio* components in the initial assembly (for
example, if no component with audio capability is found, this
adaptation will not be applied at all). A simple wildcard ’*’
is used in this example, but more complex regular expression
can be defined (Component instances’ types and component
ports’ names can both be wild-carded). This wildcard will be
replaced by the real device type of the infrastructure. It allows
these adaptations to be applied to real application although its
configuration is not completely known at design time. This
adaptation adds a new edge between the port RedirSound of
the component Phone* and the port Play of the component
Audio*. Through this link the Audio* device will receive the
music to play.

Figure 2. The graph of Threshold Level describes the graph of the second
adaptation

The Threshold Level adaptation is depicted in the Figure
2. The adaptation that is not relevant to the application at

the beginning, can become relevant only when its required
components appear in the application assembly (components
tagged in the figure by a ’*’). This adaptation specifies that
when an Audio device is detected, the user can define using
his phone the threshold for the sound level. The Min vertex
is a new connector which will be defined in the next section.
It is used to forward the minimal received values from its
input vertices. The CALL vertex allows rewriting existing
links.

We consider that adaptation process will integrate a set
of structural changes in the base component assembly.These
changes are expressed separately by different designers and
often introduce behaviors to be executed concurrently. The key
idea of this contribution is to provide the formal composition
of adaptation entities. This composition manages automatically
interferences in a symmetric way. In the next section we
show that these adaptations may interfere when they are
composed. In such case, we demonstrate how graphs and
graph transformations rules are used to detect and repair
interferences.

III. COMPOSITION PROCESS INCLUDING INTERFERENCE
MANAGEMENT

A. Adaptation as Graph transformation rule execution

Previously, we have presented the adaptation entities as
graph transformation rules. During the step of rule matching,
The abstract description of the Left graph will be transformed
to a concrete one (replacing ’*’ wildcard by the type of real
components in the base assembly). If various components
match the L graph of an adaptation rule, then it can be applied
as many times as there are combinations of components
instances. Each rule of adaptation is applied on the graph of
the base assembly. Subsequently, all computed graphs need
to be composed. The composition mechanism considers then
these graphs, in order to generate a single graph representing
the adapted assembly. Despite the order of graphs composition
the final graph will be the same due to the commutativity
and the associativity properties. There are two steps in the
composition process: the first step superimposes all graphs
and also identifies potential interferences. The superimposition
operation builds a unique graph GT = (VT , ET ) from the set
of graph representing the initial assembly Ginitial and several
graphs resulting from the graph transformation rules applying.
When two graphs g1 and g2 share a vertex (vg1 and vg2 have
the same Typ and Id) the superimposition operation: (1) keeps
one vertex vg1 in the resulting graph (2) copies the incoming
edges (respectively the outgoing edges) of the vg2 to vg1 (by
modifying their target vertex and their source vertex to be
vg1). Starting from this point, interferences may appear in the
GT graph.

The second phase is accomplished by the Merging engine
which resolves these problems using other kind of graph
transformation rules. The final graph that represents the new
configuration of the system, will be exported to the adaptive
execution platform.



B. Interference detection Step

The definition of interferences types is given in a graph
representation depicted in Figure 3. Interference will occur
only when adaptations share at least one port. We defined two
types of interferences: (1) Control flow interference occurs
when adaptation entities share an output port of the same
component (2) Concurrent method call occurs when adaptation
entities share a method call of a component. In our previous

Figure 3. the two patterns of interference used by the superposition step. It
adds ⊗ vertex to mark problems

work [10], we have considered only output port to detect
interferences (type 1). In this paper, we introduce new White
box vertices and we focus on a new type of interference
that occurs when several adaptations try to access a shared
component’s ports (type 2) Therefore, we obtain a general
approach that considers two interference cases: Output port
and Input port.
As mentioned before, the SoundRedirect adaptation and the
Threshold Level adaptation cause an interference problem
when they are composed. Their superimposition illustrates an
example of interference of type (2) presented above. They
share the port Play of the component AudioHome. Each
adaptation sends a different value to this device. To tag this
point in the graph GT , a ⊗ vertex has been added in the Figure
4 (step a).In the next section we detail the resolution process
of this problem.

C. Concurrent method call interference resolution

To resolve concurrent method call interference, we have
defined new connectors (which have two predecessors vertex
and one successor vertex). The first connector is [v1, v2]•FW .
When a data comes from v1 and/or v2, this connector for-
ward it to its successor vertex (the method call). In other
cases, it would be necessary to add an [v1, v2]•AND or
[v1, v2]•XCHoice connectors (the Select connector can be
instantiated according to several strategies such as Min,
Max, XOR,.. It allows to choose one data from its input
vertices). Similarly to the Control flow interference resolution,
adaptations entities should specify connectors that should be
added for each method call. Otherwise, the merging engine
will apply its default solution (FW connector).
In order to merge interfering vertices, we first need to get
the list of ⊗ vertices from GT graph. Each ⊗ vertex has
exactly two predecessor’ vertices. Then, we set v1 to the first
predecessor vertex and v2 to the second predecessor vertex.
Given two vertices v1 and v2, the merging engine starts by
searching the correspondent graph transformation rule. If there
is no graph transformation rule able to solve this problem,

then the default solution will be applied. For example, if a
designer has defined a permissive policy, all adaptations will
be met at the same time (parallel composition). This is similar
to applying a Forward FW connector to each adaptation graph.
The default solution will replace the ⊗ vertex (which cannot
be resolved) by a FW vertex (this rule is called DefautRule).
Using our case study, we will show the merging operation
steps.

Figure 4. The Graph transformation rule (R1) and interference detection and
resolution steps

In our example, interference has been detected on the port
Play of the component AudioHome. Thus, we will apply our
merging process to resolve this problem. The ⊗ vertex has two
predecessors vertices v1 = Min and v2 = PhoneBobLG :
RedirSound. The rule r that will be applied is given in the
Figure 4.Throughout this rule the designer has defined that he
wants rewrite an existent link (due to the CALL use). The
trivial way to do this, is achieved by propagating v2 into the
second branch of the Min connector. The rule will reconnect
these vertices using a new ⊗ vertex. The rule R1 depicted in
the Figure 4 can be applied because there is an occurrence
of the left graph L on GT . The matching step will unified
the L graph variables as following: A:a is PhoneBobLG :
RedirSound ; B:b is PhoneMotherSony : SetV alue port.
The Figure 4 (step b) shows the result of R1 execution (Step1).
First, ⊗ vertex is propagated in Min branch. Since there
are still ⊗ vertices, the merging algorithm will continue the
resolution process. In this example, there is a CALL connector
and a port. In that case, the merging will apply a graph
transformation rules that will connect the port to the output
vertex of the CALL connector. It was previously mentioned that
this connector allows rewriting an existent link. The graph of
components assembly of the final application is depicted in
the Figure 4 Step 2. We note that CALL connector will not
be instantiated in the final assembly because it is used only for
the interference resolution. When we define adaptation entities,
this connector should be used carefully.



IV. THE SYMMETRY PROPERTY DEMONSTRATION

More than a simple mechanism for compositional adapta-
tion, our merging process guarantees the property of symmetry
of the composition mechanism. This property provides a good
independence between adaptation entities, that is to say that
there is no need to define some explicit dependency between
them since the composition process ensures the consistency of
the result. Let C be the set of connectors defined in the section
II. The symmetry is defined via three sub-properties:

• Idempotency: ∀c1 ∈ C and c1⊗c1=c1. Merging a con-
nector with it self should return the same connector.
This property is achieved by construction. We have
specified a graph transformation rule that keep only one
connector when we compose the same connector (ie.,
PAR•[a,b]⊗PAR•[a,b]=PAR•[a,b] when a6=b ).

• Commutativity : ∀c1, c2 ∈ C; c1⊗c2=c2⊗c1. It should
not matter in which order connectors are merged.

• Associativity: ∀c1, c2, c3 ∈ C; ((c1⊗c2)⊗c3)
=(c1⊗(c2⊗c3)). If the merge operation is associative,
then generalization to more than two connectors can be
achieved merely by repeated merges, in any order.

Without these properties, the merging process must compute
all possible combinations between adaptation, and then choose
the more suitable combination. In ubiquitous computing since
we cannot know the order in which components will appear
or disappear from the assembly, we need a non-ordered
composition mechanism. This is guaranteed by the symmetric
property. Consequently, the result of adaptations weaving will
be the same independently of their order. Particularly, we
need to prove the associativity property to conclude that our
composition is symmetric. In this section, we focus on the
proof of this property. We will use the previous example. In
order to resolve interferences at input port, we have extended
the set of White Box vertices to support new semantic. Thus,
for each new connector, we must prove the associativity
property of its merging rules. Let NewC be the new connector.
NewC do not necessarily need to be symmetric, but its
composition with itself and other connector is symmetric (for
example SEQ connector is not symmetric because: when a6=b,
SEQ•[a,b]6= SEQ•[b,a]). In order to prove that the merging
of NewC is symmetric, we need to demonstrate that:

1) The merging of Newc with itself is associative.
2) The merging of Newc with all the existent connectors

is also associative.
In this paper we will demonstrate this property for the rule R1
presented previously. This rule shows the merging of a port
with a Min connector. Let G1 = [a,CALL]•Min,G2 =
c,G3 = d be the set of input graphs of the composition
operation where a, b, c and d are ports’ components. We
will compose theses graphs as fellows (Figure 5): Comb1 =
(G1⊗G2)⊗G3 and Comb2 = G1⊗ (G2⊗G3) and we will
show that the resulting graph is the same. There are several
configuration to consider during composition:

• case1: c = a and d 6= a and d 6= c
• case2: c = d and c 6= a

• case3: c 6= a and d 6= a and d 6= c

The Figure 5 shows the merging result according to different
order of composition for all defined cases.

Figure 5. Proof of associativity propriety for the defined example

We conclude that the rule R1 is associative. The proofs
of the associativity property is the same for all other graph
transformation rules. The proof of other rules is out of the
scope of this paper. In order to facilitate this task, we have
implemented a tool for associativity automatic proof. The input
of this tool is the definition of the Newc connector and its
graph transformations rules. As output, it will show in which
case this property is failed (if it exists). Thus, the designer can
modify the set of rules that cause problems to guarantees the
property.

V. PRACTICAL ISSUES

The example given in this paper show that the dynamic
interferences management is crucial for the adaptation in the
field of ubiquitous environment. The implementation of the
compositional adaptation mechanism presented in this paper
is an extension of the Aspect of Assembly [11] weaver of
our WComp framework, which is based on the dynamic and
lightweight component model SLCA (Service Lightweight
Component Architecture)[6]. Components allow the manage-
ment of the black box properties of devices. The interaction



is limited to the use of their required and provided ports (the
direct access to implementation is forbidden). The merging en-
gine implementation has been presented in [10]. The merging
engine uses graph transformation mechanism in order to merge
vertices where interferences have been detected. Currently, the
framework use AGG (Attributed Graph Grammar) [12].
Performance is a decisive factor in self adaptive systems
(ubiquitous systems need to be quickly adapted to consider
their infrastructure changes). For that reason, we measured
the execution time of the composition operation. Then we
can conclude in which case our solution can be used. The
ruling that the response time is acceptable or not depends
on application’s domains. The results of our experiments are
briefly presented in [13].

VI. RELATED WORK

Many studies propose to use AOP Aspect Oriented Pro-
gramming), with the aim of achieving dynamic adaptations.
In this area, the problem of interference was well defined and
several solutions were proposed. David et al [14] consider that
software adaptation is a crosscutting concern of the application
and use aspects to encapsulate adaptations code. Greenwood
et al. [4] define several strategies to resolve interferences such
as priority, precedence and logical operators. The strategies
specifications are made by the developer who should include
all dependent relationships between the adaptations. It is a
complex task because we consider multi designers approach.
Moreover, the strategy of interference resolution may depend
on the runtime state of application. Dinkelaker et al. [15]
propose to dynamically change the resolution strategies ac-
cording to the application context. They define an extensible
ordering mechanism which can be modified at runtime. Such
approach still suffers limitation in term of software adaptation
because interference management at runtime needs to be
anticipated. In that direction, Cheung et al.[16] propose a
composition mechanism that repairs interference problem in
an anticipate manner. Since interference can occur at input
and/or output of components, they propose two composition
mechanisms, based on two different languages for adaptations
(ISL4WComp and BSL), to handle these problems separately.
But we have shown previously that these problems need to
be resolved together and not separately. Their solution can
resolve interference either for the output of component or for
the input of component but not for both interferences types.
Graph are not only intuitive representation of software archi-
tecture but are also used to identify errors on the analysis level.
The integration of the paradigm of graph with the aspect-
oriented paradigm has been proposed by Cirarci et al[17].
They use graph formalism to identify interference. Graphs
represent the several states of a program according to different
order of aspect weaving. Interference is detected if the final
state changes according to the selected order.

VII. CONCLUSION

The aim of this paper is to address the problem of in-
terferences that may occur when we compose independently

developed adaptations (but jointly deployed). In order to
ensure the consistency of the final application, we propose
an automatic composition process, which is able to manage
interferences at run time. In this paper, we have shown that
the order in which adaptations entities are composed is not
important and the final result will be the same. This property
allows facing the unpredictability of adaptations and the order
of their deployment. As future works, we will focus on others
properties for the composition operation in order to address
the semantic of adaptations entities when they are composed.

REFERENCES

[1] P. McKinley, S. Sadjadi, E. Kasten, and B. Cheng, “A taxonomy of
compositional adaptation,” Rapport Technique numéroMSU-CSE-04-17,
juillet, 2004.

[2] A. Bouzeghoub, C. Taconet, A. Jarraya, N. Do, and D. Conan, “Com-
plementarity of Process-oriented and Ontology-based Context Managers
to Identify Situations,” in Int. Workshop on Context Modeling and
Management for Smart Environments (CMMSE), July 2010.

[3] V. Issarny, M. Caporuscio, and N. Georgantas, “A perspective on the
future of middleware-based software engineering,” in 2007 Future of
Software Engineering. IEEE Computer Society, 2007, pp. 244–258.

[4] P. Greenwood, B. Lagaisse, F. Sanen, G. Coulson, A. Rashid, and
E. Truyen, “Interactions in ao middleware,” in Proc. Workshop on ADI,
ECOOP, 2007.

[5] D. Chappell, “Introducing sca,” Avalaible at http://www. davidchappell.
com/articles/Introducing SCA. pdf, 2007.

[6] V. Hourdin, J. Tigli, S. Lavirotte, G. Rey, and M. Riveill, “Slca, com-
posite services for ubiquitous computing,” in Proc. of the International
Conference on Mobile Technology, Applications, and Systems. ACM,
2008, p. 11.

[7] F. Sanen, E. Truyen, and W. Joosen, “Modeling context-dependent aspect
interference using default logics,” in Fifth workshop on Reflection, AOP
and Meta-data for Software Evolution, no. 5, 2008, pp. 1–5.

[8] F. Munoz and B. Baudry, “Validation challenges in model composition:
The case of adaptive systems,” ChaMDE 2008, p. 51.

[9] H. Ehrig and G. Engels, Handbook of graph grammars and computing
by graph transformation: Applications, Languages and Tools. World
Scientific Publishing Company Incorporated, 1999, vol. 2.

[10] S. Fathallah, S. Lavirotte, J.-Y. Tigli, G. Rey, and M. Riveill,
“MergeIA: A Service for Dynamic Merging of Interfering Adaptations
in Ubiquitous System,” in Proc. of the Fifth International Conference
on Mobile Ubiquitous Computing, Systems, Services and Technolo-
gies(UBICOMM), ser. , Lisbon, Portugal, Nov. 2011.

[11] J.-Y. Tigli, S. Lavirotte, G. Rey, V. Hourdin, D. Cheung-Foo-Wo,
E. Callegari, and M. Riveill, “WComp Middleware for Ubiquitous
Computing: Aspects and Composite Event-based Web Services,” Annals
of Telecommunications (AoT), vol. 64, Apr 2009.

[12] G. Taentzer, “Agg: A graph transformation environment for modeling
and validation of software,” Applications of Graph Transformations with
Industrial Relevance, pp. 446–453, 2004.

[13] S. Fathallah, S. Lavirotte, J.-Y. Tigli, G. Rey, and M. Riveill, “Adap-
tations interferences detection and resolution with graph-transformation
approach,” in the 6th International Conference Sciences of Electronic,
Technologies of Information and Telecommunications(SETIT), ser. ,
Sousse, Tunisia, Nov.

[14] P. David and T. Ledoux, “An aspect-oriented approach for developing
self-adaptive fractal components,” in Software Composition. Springer,
2006.

[15] T. Dinkelaker, M. Mezini, and C. Bockisch, “The art of the meta-aspect
protocol,” in Proc. of the 8th ACM international conference on Aspect-
oriented software development. ACM, 2009, pp. 51–62.

[16] D. Cheung, J. Tigli, S. Lavirotte, and M. Riveill, “Wcomp: a multi-
design approach for prototyping applications using heterogeneous re-
sources,” in Rapid System Prototyping. Seventeenth IEEE International
Workshop on, 2006, pp. 119–125.

[17] S. Ciraci, W. Havinga, M. Aksit, C. Bockisch, and P. van den Broek,
“A graph-based aspect interference detection approach for uml-based
aspect-oriented models,” Trans. on aspect-oriented software development
VII, pp. 321–374, 2010.


