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Abstract—Traffic sign is an important part of traffic signals, as
well as an important element of high-precision navigation maps.
This article provides a low-cost and high-efficiency technical
solution for traffic sign drawing of high-precision navigation
maps. Based on a monocular camera and GPS receiver mounted
on a vehicle, this paper uses a series of mathematical methods
to get accurate geographic coordinates of traffic signs, including
selecting two images that are more suitable in space and time
interval, exacting and matching features, solving pose, triangula-
tion. The measurement results in this paper are compared with
the actual perimeter of the traffic signs, which shows that the
measurement method in this paper can meet the relative accuracy
requirement of 6% in most cases, the accuracy of our method is
the state-of-the-art.

Index Terms—Deep Learning; Reconstruction algorithms; Si-
multaneous localization and mapping; Image matching; Feature
extraction

I. INTRODUCTION

A traffic sign is an important part of traffic signals, and its

main functions are warnings, prohibitions, instructions, and

directions. Base on a monocular camera and GPS receiving

device, This article uses epipolar constraint to calculate the

relative pose of photos and then utilizes GPS position to get

the geographic coordinates of traffic signs. This provides a

technical route for producing high-precision navigation maps.

Most of the current approaches to building high-precision

maps use multiple sensors, including lidar, multi-cameras,

IMU, etc. By combining multi-sensors information, multiple

targets in the environment can be mapped at the same time

[1]. It is simple to build a map using lidar, 3D point clouds

of the surrounding environment can be directly obtained, but

it is difficult to distinguish objects in the environment. At the

same time, lidar is quite expensive [2]. Using multi-cameras

to build a map (structure from motion, SFM) can distinguish

objects in the environment, but this takes a very long time,

usually requires pre-processing, and high precision calibration

for cameras [3]. It is also possible to combine multiple sensors,

which requires system-level time and space synchronization.

However, such algorithms are usually complicated and the

equipment is very expensive [3].

This paper proposes a reconstruction method for traffic

signs. Compared with existing solutions, this one is concise,

low-cost, and quite stable. It needs only one monocular camera

and a GPS receiving device, even a smart mobile phone or

car driving recorder can satisfy its requirement. We install the
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driving recorder and fix its camera on the front windshield of

the vehicle. Then take photos and record the timestamp of each

frame while the vehicle is moving. At the same time, record

its GPS position and the corresponding time. With these data,

using deep learning to recognize traffic signs, feature points

extracting and matching, epipolar geometry, and triangulation,

traffic signs can be measured.

The contributions of this paper are summarized as follows:

• Based on the real-world requirements, we identify and

address a more challenging but practical problem in traffic

sign measurement.

• To deal with the traffic sign measurement problem, we

propose a new method based on GPS and epipolar

geometry.

• To the best of our knowledge, there is no work doing the

same based on the actual engineering needs. Moreover,

extensive experiments verified the effectiveness of the

proposed method.

The remainder of the paper is organized as follows: Section

2 presents the proposed method. Section 3 conducts the exper-

imental evaluation on the comparison between the proposed

method and other methods. Section 4 concludes the paper and

identifies the future work.

II. METHOD

In this section, we introduce the details of the proposed

method.

A. Camera Parameter Calibration

The calibration of distortion parameters and intrinsic pa-

rameters in this paper use the pinhole camera model, which

is the same as OpenCV[6]. The intrinsic parameters have four

parameters, namely the focal length in the x and y directions

(fx, fy), and the relative offset between the center of the lens

and the center of the imaging unit (cx, cy). They are placed

in a 3x3 matrix, denoted as K:

K =





fx 0 cx
0 fy cy
0 0 0



 (1)

The distortion parameter describes radial distortion and

tangential distortion, with them we can remove the influence

of lens distortion, and restore the picture to a pinhole camera

model [4] [5].



Fig. 1: Technological process of our method

The calibration of the above intrinsic parameters and distor-

tion parameters can use mature tools such as MATBAL camera

calibration toolbox or OpenCV calibration function.

The extrinsic parameters calibration uses the data of par-

allel lane lines and the distance between each lane line [5].

The calibration result includes a rotation matrix between the

camera and the vehicle coordinate system, and the installation

height of the camera (h). We define the transformed relation-

ship between the camera coordinate system and the vehicle

coordinate system as:

Pcar =car Rcam × Pcam (2)

Where Pcar and Pcam are the coordinates position (ex-

pressed by a three-dimensional vector) of a certain point

in space in the vehicle coordinate system and the camera

coordinate system, respectively.

B. Extracting and Matching Feature Points

Firstly, extract the feature points from the two selected

pictures [6]. The extraction standard is to generate feature

points in multiple different areas of each picture, and the

number of feature points in the symmetrical direction (left

and right/up and down) should be as equal as possible.

At present, there are many algorithms for extracting and

describing feature points in images, including brisk [7], surf

[8], orb [1], BRIEF, and so on. In this article, we choose the

brisk algorithm as the feature point extraction algorithm. Brisk

can detect corner points in a picture, then describe it with

a 512-bit descriptor. The higher similarity between the two

points, the smaller hamming distance of the two descriptors

will be. So this algorithm can be used to match the feature

points in the two pictures. In this way, we can find feature

point A in the first picture, which is corresponding to feature

point B in another picture. In order to ensure that the number

of feature points in each region is similar, the picture is first

symmetrically divided into 16 regions, then feature points

are extracted in these regions separately, and the number of

feature points in each region is constrained to n. Because

the vehicle’s movement is at a regular speed, which usually

won’t turn suddenly in a short time (within 1s), so the content

in two images is mostly the same, and the position of the

same feature point on them is usually near, we can remove



Fig. 2: From left to right, from top to bottom, the picture represent in turn: a)Deeplab V3 detect result of traffic signs. b)Features

extracted with brisk of two consecutive images. Features are marked with a yellow circle. c)Feature matching result of two

images. d)Data with vehicles and pedestrians. e)The result of direct matching without removing the moving target. f)Matching

result after removing moving target. g)Only keep moving objects matches. h)Actually used feature points exacting strategy.

some mismatched features according to this. Finally, matched

feature points are restored to their original positions (pixel

coordinates) using distortion parameters. Fig. 2 is the matched

result of two images, and they are undistorted.

C. Using epipolar to Determine the Relative Photos

By establishing epipolar constraint, the relative motion (ro-

tation matrix R and translation vector t) between two frames

can be derived, which is quite common in SFM and monocular

vision SLAM. [2] [3] [1] [9]. After matching all the feature

points, the relative motion between two frames (denoted as R

and tunit) is further solved by epipolar constraint.

Denote the two pictures as Ft and Fq respectively and set

the pixel coordinate of the feature point on Ft as xt, which

matches the feature point on Fq with coordinate xq . According

to epipolar constraint, xt and xq satisfy the following formula:

xT
t ×K−T

× ttq ×Rtq ×K−1xq = 0 (3)

where ttq and Rtq are the relative rotation and translation

from Fq to Ft, that is, if the coordinates of a space point in

the Fq coordinate system is pq , in Ft coordinate system is pt
respectively, then we get their relationship:

pt = Rtq × pq + ttq (4)

Denote the Essential Matrix as E, which is calculated by

E = ttq ×Rtq , the above formula can be written as:

xT
t ×K−T

× Etq ×K−1xq = 0 (5)

where xt and xq are the homogeneous pixel coordinates

of the feature point that have been successfully matched, K

is the intrinsic parameter matrix which is obtained through

calibration and only Eqt is unknown. Through the eight-point

method [10] and least-squares optimization, this function can

be solved. By SVD decomposition and the geometric model

of the camera, we can finally get Rtq and ttq .

Record the ttq at this time as ttq unit. This is because we

can not get the true length by the monocular system, and

the solution ttq unit is actually a unit vector that can only

indicate a direction, which means you can multiply ttq unit

by an arbitrary constant number. So it’s impossible to describe

in real length units, such as meters and feet. GPS information

will solve this.

D. Using GPS Information

1) Calculate Real Distance: Assuming that within the

period of tsfirst tslast, the GPS coordinates of the vehicle

are recorded at a fixed frequency(N Hz), then for each time

point tsaim ∈ [tsfirst, tslast], two GPS coordinates Gprev

and Gnext can be found, whose time is tsprev and tsnext,



which are the closest previous and next GPS coordinates to

tsaim, respectively.

Assuming that the vehicle is at a constant speed during

this period, we can get the GPS location of tsaim(linear

interpolation):

Gaim = Gprev + E (6)

E = (tsnext − tsprev)× (tsaim − tsprev)× (Gnext −Gprev)
(7)

Denote the shooting time of Fq as tq and Ft as tt. Gq and

Gt can be obtained separately. Then the distance between Fq

and Ft can be obtained as:

d = GPSDistance(Gq, Gt) (8)

where GPSDistance is the function for calculating two GPS

points, and we will not describe it further. Then the actual

relative translation of the two photos can be calculated by the

following formula:

ttq real = d ∗ ttq unit (9)

2) Calculate Heading Angle: We only consider the situa-

tion that the vehicle is traveling along a straight line, and the

heading of the vehicle is consistent with its traveling direction.

According to this feature, we can use GPS information to

calculate the direction of the vehicle (usually called heading

angle).

For the previously mentioned taim, we can simply use the

direction of the vector < Gprev, Gnext > as the heading at

this point. Define the heading angle toward north as 0°, east

as 90°, south as 180°, and west as 270°. Denote the heading

angle at taim time as Aaim.

In fact, this is a little rough when GPS frequency is

low, and the error becomes large when the trajectory of the

vehicle is slightly curved (the vehicle is turning). Usually,

we will do cubic polynomial interpolation. That is, collecting

some nearby coordinates before and after taim, then do cubic

polynomial fitting to them, and then calculate the heading

angle at taim according to the fitting results.

3) Geographic Coordinate System Location: By the defi-

nition of extrinsic parameter calibration [5], we set the origin

of the vehicle coordinate system the same as the origin of the

camera coordinate system, the front of the vehicle is z-axis, the

vertical upward is the y-axis, and the right side is the x-axis.

Generally, in the geographic coordinate system, the x-axis

point to the east, the y-axis point to the north, and the z-axis

point to the sky. According to the definition of the coordinate

system, the rotation relationship between the point P in the

vehicle coordinate system and the geodetic coordinate system

is:

Pworld =





cos a 0 sin a
− sin a 0 cos a

0 1 0



Pcar (10)

where α is the heading angle calculated above. Pcar is the

coordinate position of point P in the vehicle coordinate system.

It expresses the positional relationship between point P and

the vehicle in this way: Point P is located at Pcar.x meters

to the right of the vehicle, Pcar.y meters above the vehicle,

and Pcar.z meters ahead of the vehicle. Pworld is the relative

relationship between point P and the vehicle in the north-east-

sky coordinate system, which can be described as: Point P is

located at Pworld.x meters to the east of the vehicle, Pworld.y

meters to the north of the vehicle, and Pworld.z meters above

the vehicle.

It should be noted that there is an assumption, that the z-

axis of the vehicle coordinate system is parallel to the z-axis

of the world coordinate system. There must be an error in this

assumption, but because the angle between them is usually

very small (within 5 degrees), and the distance between the

target space point and the car is not very far (usually around

20 meters), the position error is within 1.7m (20× sin 5).
4) Triangulation to Solve the Point Coordinates in Cam-

era Coordinate System [11]: In trigonometry and geometry,

triangulation is the process of determining the location of a

point by forming triangles with two known points, instead of

directly measuring the distance to a specific location (trilateral

measurement method). When baseline length and two obser-

vation angles are known, the observation target point can be

calibrated as the third point of a triangle.

According to the imaging model of the camera, the pixel

coordinates xq and xt (homogeneous coordinates) of any

spatial point P on Fq and Ft satisfy the following formula:

stxt = Kpt (11)

sqxq = Kpq = K(Rqt × pt + tqt) (12)

where pt and pq are the coordinates of P in Ft and Fq

coordinate systems. respectively, st and sq are the depths of

P in Fq and Ft, respectively, which is the z coordinates of pt
and pq .

In these two formulas, only pt and pq is unknown (st
and sq can be calculated by pt, which can be regarded as a

known variable), so we can find pt(pq) by solving the equation.

But due to noise and other inaccurate factors, such as the

inaccuracy of Rtq and ttq , the inaccuracy of the matching

same feature points taken by xt and xq , and so on, we choose

to determine pt (and pq) through the least square solution.

In the procedure of measuring traffic signs, the correspond-

ing image points of the traffic sign on Fq and Ft are identified

manually. For polygonal traffic signs, we choose their vertices.

On one hand, all the vertices can accurately describe the

position, size, shape, and other essential factors of a traffic

sign. On the other hand, not like the center point, vertices can

be clearly marked in different photos. The matching error will

be greatly reduced.

III. EVALUATION

In this section, we introduce the service dataset, implemen-

tary details, evaluation metrics, and the evaluation results of



Fig. 3: From left to right, from top to bottom, the picture represent in turn: a)Feature exacting result of different divide method.

b)Test traffic signs appearance. c)number of Uniform region with different feature exact method. d)Relative error distribution

(inside less than 10%).

our method, which includes the comparison results with other

traditional methods.

A. Data Description

The data includes the three parts:

1) Picture: Pictures were taken during driving and their

shooting time.

2) Camera: Camera calibration data, which includes intrin-

sic parameters, extrinsic parameters, and distortion parameters.

Distortion parameters are used to restore the distortion in

pictures. Intrinsic parameters are used to establish the camera

shooting model, and it contains the focal length of the lens,

the offset between the lens center and the image center, the

size of the imaging unit, etc. [4]. The extrinsic parameter

here is the relative spatial relationship between the camera

and the vehicle. Since these two devices are always relatively

stationary, we just need relative rotation between them and the

installation height of the camera [5].

3) GPS: GPS position of the driving recorder during driv-

ing and the corresponding accurate time.

B. Implementation details

In this paper, the image size we use is 1920x1080 and

extract about 2000 feature points from the whole image. Then

observe the distribution of the extracted feature points on the

image. In order to describe whether its distribution is uniform,

the image is divided into 25 (5x5) areas, and the number of

feature points falling in each area is counted. If the distribution

is absolutely uniform, each area should contain 80 feature

points. Considering that some regions are indeed complex, and

some are monotonous, the number should fluctuate. Therefore,

if there are 40-120 feature points in a certain region, we

classify this region to be uniform and count the number of

uniform regions.

First of all, we divide the picture with m*n regions, and

each region’s area is equal. Then, try to exact N=2500/(m*n)

feature from each region. If there are more potential features,

just choose those whose scores are higher. If the number of

features in this region is less than N, finish the exacting of this

region with the current result. Because our images are taken

from the vehicle moving on the road, it is quite normal to meet

not a uniform distribution, because sky and road are usually

hard to exact or match features however, buildings are full of

pattern. In this chapter, we try to find the best way to divide

pictures, which can make feature distribution more uniform.

Choose the case of n * n for comparison. With each picture,

we tested different exact strategies. Fig. 5 is a statistical

distribution curve based on the evaluation method we set.

Since the evaluation method we chose is 5x5, correspondingly,

5x5 division has the best effect. Remove this special case,

it can be seen that the distribution of feature points is more

uniform as the number of segmentation increases. In general,

the more partitions, the more even the distribution of feature



points. But, among them, 3x3 and 4x4 are abnormally inverted,

which should be related to our test sample: there is a large area

of the car at the bottom of the picture, a large area of sky and

a digital watermark at the top, and you can see that the 3x3

data is a little unstable, the 7-th and 10-th images are quite

bad than others, that is to say the difference between different

samples is large. In this respect, 4x4 is more stable, and the

uniformity level of each sample is not much different.

C. Evaluation Metrics

For fair experiment we choose the root-mean-square er-

ror(RMSE) to evaluate our method. The root-mean-square

error (RMSE) is commonly used to measure the accuracy of

predictive scoring systems, where a smaller RMSE value in-

dicates higher accuracy. More precisely, the RMSE represents

the sum of the squares of the deviation between the observation

value and the true (or best) value. The best value then refers

to the reference trajectory results, and the observation value

refers to the predicted trajectory during RTK outages.

D. Experimental Results and Discussion

1) Results of Extracting Feature Points : The following

figure shows the extraction of feature points in different ways

of segmenting regions. It can be clearly seen that in the case

of 1x1, the feature points will be more concentrated in certain

areas, and relatively few in other areas. However, if the image

is divided into different regions to extract feature points, the

distribution situation is greatly improved. This feature will

facilitate our subsequent feature point matching and pose

calculation. We list 1x1, 3x3, and 5x5 conditions in Fig. 3.a.

TABLE I: Different Matching Calculation Result

Item Side Length Perimeter Relative Error

Actual side length 1.5 3 1.5 3 9 0

Full image matching 1.42333 2.67799 1.36256 2.82706 8.29094 0.078784

Remove moving objects 1.6742 2.85601 1.66523 3.01844 9.21388 0.023764

Only match moving objects 1.22058 2.48729 1.15694 2.63275 7.49756 0.166938

Based on the above experimental results, considering the

running time and complexity of the program, as well as

the uniformity of feature points distribution, we use the 4x4

division to exact feature points. At the same time, because the

upper and lower parts of the picture contain a lot of invalid

information (time watermark and car body), the surrounding

parts of the image are severely distorted, we choose to extract

the feature points inside the center area. As Fig.2.h shows.

2) Results of Removing Moving Objects: As a result of the

objects in photos are relatively static, and moving objects will

lead to great error. Fig 8 are two pictures that contain a lot of

vehicles and pedestrians, along with them is a traffic sign that

we want to measure. As show in Fig. 2.d and Fig. 2.e.

The actual size of the traffic sign in this picture is 1.5mx3m.

If use these two pictures directly, then these moving objects

will also be matched during feature point matching. The

following process, calculating pose, will be affected by this.

After calculation, we got the size of the traffic sign as shown

in the third row of Table I. Afterward, we add a mask to

the vehicles in it. The matching result is shown in Fig. 2.f.

The traffic sign size obtained is shown in the fourth row of

Table I. It can be seen that the calculation accuracy has been

significantly improved.

TABLE II: Overall Error Statistics

Total Mean Error Maximum Error Maximum Error More than 20% 10%–20% 6%–10% Less than 6%

227 0.050804 58.58% 0.02% 10 16 12 189

TABLE III: Statistics of Different Size Traffic Signs

Ground truth (m) 12 14 9 8.4 5.2 15.2

Sample number 89 33 17 44 5 39

Average absolute error(m) 0.57358 0.166664 0.422942 0.805462273 0.873254 0.4006

Average relative error 0.047798 0.011905 0.046994 0.095888366 0.167933 0.026355

It should be noted that although there was the influence of

vehicles in the first test, the calculation error is just 7.9%, this

is because there are a lot of ”good” matches in the whole

picture, at the same time, the movement of moving objects

is not violent, so ”good” matches make those “bad” matches’

influence reduced. If the number of ”good” matches in the

picture decreases, the situation will be reversed. In order to

illustrate this situation, we remove most of the good matches

and keep most of the bad matches, as shown in Fig.2.g. After

calculation, the results are shown in row fifth in the Table I

and the error is greatly increased.

3) Result of Overall Accuracy: In order to evaluate the ac-

curacy of the method in this article, we select 6 traffic signs of

different sizes for measurement. Their specific specifications

are shown in Fig. 3.b. According to the characteristics of traffic

signs, as long as the lengths of the sides are right, the shape

and size are correct. Therefore, we choose the perimeter to

evaluate the measurement error. Table II is the measurement

error analysis. We selected 227 pairs of images, and this

dataset contains all the six kinds of traffic signs above. From

this table, we can see that most of the data’s (about 88.5%)

errors are ¡10%. We list all those errors inside 10%, and their

distribution is shown in Fig. 3.b and Fig. 3.d.

For traffic signs of different sizes, we count their error

separately, and the result is shown in Table III. It can be seen

that with the measurement method proposed in this article,

more than 83.26 samples’ error was less than 6%, and only 4%

samples’ error was greater than 20%. We sort out the largest

error data in this test and then analyze the reasons for their

larger errors. For larger traffic signs, the main error is wrong



matching, and the main reason for wrong matching is that the

distance between the shooting positions of the two pictures is

too far, and the road surface and road measurement patterns are

relatively monotonous, which will cause the feature matching

algorithm to easily match the wrong position, resulting in a

large relative pose error.

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed an easy, low-cost method to

measure traffic signs, all we need is a camera and GPS

receiving device. At the same time, we can get its geographical

coordinates, so we can put it on an electronic map. In our

test, 88.5% of sample data’s relative error is less than 10%,

and only 4% of sample data’s relative error is more than 20%.

To make the result more accurate, we remove those moving

objects inside the picture so that most matching features

are static, select two pictures more close in spatial (also in

time), so it improves the accuracy of matching. To sum up,

this article proposes an innovative solution to the geographic

coordinates of traffic signs, which provides a low-cost and

high-efficiency solution for high-precision map production and

automatic driving. We believe that our work shall be valuable

to the related experts working in the fields by providing with

promising direction for future research.
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