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Abstract 

In this paper W E  present a method for  robustly and 
accurately estimating the rotation and translation be- 
tween a camera and a 3-D object f r o m  point and line 
correspondences. First we devise an error function 
and second we show how to minimize this error func- 
tion. The quadratic nature of this function is made 
possible by representing rotation and translation with 
a dual number quaternion. W e  provide a detailed ac- 
count of the computational aspecis of a trust-region op- 
timization method. This method compares favourably 
with Newton’s method which has extensively been used 
t o  solve the problem at hand, with Faugeras-Toscani’s 
linear method [3] for calibrating a camera. Finally we 
present some experimental results which demonstrate 
the robustness of our method with respect to image 
noise and matching errors. 

1 Introduction 

The problem of determining the position and ori- 
entation of an object with respect to  a camera has 
many relevant applications in computer vision: object 
positioning, camera calibration, hand-eye calibration, 
docking for land and space mobile robots, and cartog- 
raphy. This problem is also known as the perspective 
n-point problem, ezterior (or extrinsic) camera cali- 
bration problem, or camera location and orientation 
problem and can be stated more formally as follows: 
Given a set of points that are described in an object 
centered frame, given the projections of these points 
onto an image, and given a projection model and the 
parameters of this model, determine the rigid transfor- 
mation (rotation and translation) between the object 
centered frame and the camera centered frame. 

Previous approaches attempting to  solve this prob- 
lem fall into two categories: (i) Closed-form solutions 

and (ii) Numerical solutions. In this paper we concen- 
trate on numerical solutions. 

Since the object pose from a single view problem 
is nonlinear, choices for (i) the mathematical repre- 
sentation of the problem, (ii) the error function to  be 
minimized, and for (iii) the optimization method are 
crucial. 

Yuan [14] proposed to  separate the rotational com- 
ponent of the problem from the translational one and 
he concentrated on the estimation of the rotation pa- 
rameters. The rotation is represented by an orthonor- 
mal matrix and the solution is given by the com- 
mon root(s) of six quadratic equations. The common 
root(s) is then found using Newton’s iterative gradi- 
ent method. However the author noticed that local 
optima occur when gradient techniques are used. Sev- 
eral loc,al minima correspond to the nonlinear nature 
of the problem. The global minimum can be reached 
only by properly initializing the iterative algorithm. 

Lowe [8] used Newton’s method as well for esti- 
mating the orientation and location of an object with 
respect to  a camera. As with Yuan’s method, Lowe 
noticed some problems with Newton’s method and in 
a subsequent paper he suggested how to deal with the 
initialisation and stability problems [9]. 

[7] examined alternative iterative ap- 
proaches to  solving for the viewing parameters. The 
rotation is represented by the Euler angles. The au- 
thors linearize the error function. They noticed that 
their method worked well only when the three Euler 
angles are less than 30’. 

Using the mat hematical formulation suggested by 
Liu & al. [7], Kumar & Hanson [6] examined two 
minimization methods: an iterative technique that lin- 
earizes the error function and which requires a good 
initial estimate and a least median of squares tech- 
nique which is combinatorial in complexity. 

In the light of the above discussion a robust and ac- 
curate method is still to  be proposed. In this paper we 

Liu & al. 
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devise a method for solving the object pose problem. 
The method is tailored as follows: 

a Section 2 - each line correspondence (or equiv- 
alently each pair of point correspondences) pro- 
vides two constraints which express that the ob- 
ject line, its corresponding image projection, and 

a 

a 

2 

the center of projection of the camera are copla- 
nar. This approach has already been used by Ho- 
raud & al. [5], Dhome & al. [2], Liu & al. [7] and 
Kumar & Hanson [6]. 
The rigid transformation whose parameters are 
the unknowns of the problem is represented by 
a dual number quaternion. With this represen- 
tation the constraints mentioned above become 
quadratic equations. The advantage of using a 
dual number quaternion representation is that ro- 
tation and translation are estimated simultane- 
ously rather than sequentially. Walker & al. [13] 
introduced dual number quaternions in computer 
vision and they solved for the 3-D/3-D pose prob- 
lem. At our knowledge there is no attempt to use 
dual number quaternions in conjunction with the 
exterior camera calibration (2-D/3-D pose) prob- 
lem. 

Section 3 - a non linear numerical optimization 
method is described and used for estimating the 
best rigid transformation. The error function to 
be minimized over the pose parameters is the sum 
of squares of the quadratic constraints just de- 
scribed. Unlike most of previous approaches in 
computer vision, we use a second order approxi- 
mation of the error function. More specifically we 
use a trust region optimization method. The idea 
of using a trust region goes back to Soresen [ll] 
and Mor6 [lo] (See also Clermont & al.[l], Pham 
D.T.  & al.[12]). We provide a complete descrip- 
tion of the algorithm that we implemented. 

Section 4 - in order to check the validity of the 
solution thus obtained we compare our results 
with the results obtained using the camera cal- 
ibration method proposed by Faugeras & Toscani 
[3]. We analyse the accuracy and robustness of 
our method with respect to the number of corre- 
spondences, the image noise, and matching errors. 

Object pose from line correspon- 
dences 

We consider a pin-hole camera model and we as- 
sume that the parameters of the projection (the in- 

Figure 1: The object line, its projection onto the im- 
age, and t,he center of projection F are coplanar and 
this plane is shown in grey. f i  is the unit vector normal 
to this plane. 

trinsic cainera parameters) are known. The origin of 
the camera frame is at F - the center of projection, the 
z-axis is parallel to the optical axis, and the zy-plane 
is parallel with the image plane. We assume that the 
optical axis is perpendicular onto the image plane. 

We consider now an object line. In the object frame 
this line is described parametrically by its direction v’ 
and by a point vector fi’ and it can be expressed in the 
camera fr,ame as well: 

where the 3 x 3 rotation matrix R and the transla- 
tion vector t‘ describe the rigid transformation from 
the object frame to  the camera frame and are pre- 
cisely the parametrs associated with the object pose 
problem. The correspondence constraints express the 
fact that an object line belongs to the plane defined 
by the center of projection and the image line, i.e.,: 

where n’ is the vector normal to this plane, Figure 1. 
Therefore, each line correspondence provides 2 con- 

straints. In the general case if N line correspondences 
are available, the pose problem becomes the problem 
of solving for a set of 2 N  non linear constraints, or 
equivalently, the problem of minimizing the following 
error function: 

N N 

f ( R , t )  := E(.’; i= 1 . (Rv’;))’ + C(n’, i=l . (Rfi’, + g)z (2) 
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2.1 Rotation, translation, and dual num- 
ber quaternions 

A rigid transformation may be represented by a 
dual number quaternion which has a real part and a 
dual part: 

q = r + c s  

where r and s are quaternions and c2 = 0, [13]. 
Let a rigid transfo5mation be represented by a vec- 

tor z, a point vector I ,  and two scalars, 8 and d.  Many 
will recognize her: a scrzw representation of rotation 
and translation: k and 1 define the screw's axis, 0 is 
the angle of rotation about, this axis and d is the length 
of the translation along the axis. 

Recall that a quaternion may also be viewed as a 
4-vector: 

Given q such that r . r = 1,  T . s = 0, the rotation 
matrix R and the translation vector ;can be easily 
derived from r and s using the following formulae: 

where W ( r )  and &( r )  are two 4 x 4 matrices associated 
with a quaternion: 

2.2 The error function 

If %vectors are treated as purely imaginary quater- 
nions, that is: U = (0 , i7) then the constraint ofeq. (1)  
can be written as: 

In other terms, each correspondence i provides two 
quadratic constraints: 

rTA,r = 0, rTBir + rTCis = 0 

with Ai, B;, and (7, being three 4 x 4  matrices. 

We can now write a new expression of the error 
function associated with our problem, i.e., eq. (2): 

f(r, s) = x ( ( r T A ; r ) z  + (rTBir  + rTCis)2) 
N 

i=l 

+X(rTr - 112 + X(rTsl2 (6) 

where the parameters to  be estimated are r and S. X 
is a positive number which must be taken very large 
in order to  guarantee that the penalization constraints 
(rTr = 1 and rTs  = 0) are satisfied (for our applica- 
tion we took X = 50). 

Notice that an alternative to this error function 
may be to  consider the estimation of r and s sepa- 
rately. One may estimate the rotation first using the 
following error function: 

N 
f(r) = x ( r T A i r ) 2  + X(rTr - 1)2 (7) 

i= l  

Once the optimal value of r is found, the computation 
of the optimal value of s is trivial. 

3 The trust-region method 

I t  is clear that the minimization of the error func- 
tions described by equation (6) '  equation (7) equiva- 
lent to  the following non linear least squares problem: 

m 
1 - - -  

0 = min{f(z) = E 'Pi(") : z E R"} (8) 
- j = 1  

with 'P j  (x) being twice continuously differentiable 
from R" to  R. 

We recall that the gradient Vf(z) and the Hessian 
V2 f(z) can be calculated as follows: 

m 

Vf(z) = coj(z)voj(z) = J(z)To(.), (9) 

V"(.) = J ( z ) T J ( z )  + 'Pj(z)V2'Pj(2)(10) 

j = 1  
m 

j=1 

where 'P(z) = ( @ I ( " ) , .  . .,@,,,(z))~ and J ( z )  = 
(V'Pl(z), . . . , V @ , ( Z ) ) ~  is the m x n Jacobian matrix 
of (m(z). In practice the Gauss-Newton approximation 
of the Hessian is used, i.e.,H(z) = J ( z ) ~ J ( z )  . This 
is based on the premise that the first-order term will 
eventually dominate the second-order term. 

denote the current estimate of the solution; 
a quantity subscripted by k will denote that quan- 
tity evaluated at  the k*h iteration of the algorithm. 

Let 
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Tlhe basic idea of the trust-region optimization method 
consists of successively approximating the error func- 
tion by a local quadratic form in a neighbourhood of 
the current solution X k :  

f ( z k  -k d )  f ( z k )  + qk(d) ,  l)dll 5 6 k  

where: 

(11) 
1 
2 q k ( d )  = g ( z k ) T d +  - # H ( z k ) d  

The error function will be reduced via the direction 
dl:, i.e., X k + l  = X k  + d k ,  where dk is the value of d 
which minimizes the local quadratic form over a re- 
stricted spherical region centered around z k :  the trust 
rcgion: 

The parameter 6 k  is called the trust radius and is de- 
termined dynamically using a measure of the quality 
of' the approximation; this is measured by a quality 
coefficient r k  : 

min(qk(4 : lldll 5 b k )  (12) 

If rk is too small it  means that the approximation is 
not good and the trust region should be decreased. 
Otherwise the trust region should be increased. The 
lccal quadratic form depends on the gradient and the 
Hessian of the error function. Hence, the minimum 
thus found has "good" second-order properties. In 
a trust-region method the main difficulty resides in 
the minimization of the local quadratic form. Various 
trust region algorithms differ upon the method being 
used to minimize the local quadratic form inside the 
trust region. 

3.1 Local quadratic problem 

Local quadratic problem is the problem of minimiz- 
ing a quadrat,ic form inside a sphere: 

1 
2 min{ -d*Hd + g T d  : lldll 5 6)  ( L Q P )  

where g E R", H is a symmetric matrix and 6 is a 
positive number. All existing methods for solving this 
problem are based on the following theorem: 

Theorem 1 d' i s  a solution t o  ( L Q P )  if and only if 
there exists p 2 0 such that: 

( i )  H + p l  is positive semidefinite, 

( 2 2 )  ( H  + pl)d' = -9 ,  

(iii) Ild'll 5 6 and p(lld*ll - 6 )  = 0. 

Such a p is unique. 

For p > 0 the (LQP)  problem has a solution on the 
boundary of its constraint set, i.e, lld'll = 6 and the 
problem is reduced to the problem of finding p such 
that: +(p)  = Ild(p)ll = 6 where d ( p )  is a solution of 
( H  + p l ) d  I= -9.  In this case, p and d' (the optimal 
solution) can by found efficiently by the method by 
Hebden [4]. In fact, Hebden's algorithm can be viewed 
as Newton's method for the zero-finding problem: 

The most important feature of Hebden's algorithm is 
that usually the number of iterations required to pro- 
duce an acceptable approximation of solution p* is 
very small since II, is convex, almost linear, and strictly 
decreasing on ] - AI, +oo[ . 

3.2 Practical trust-region algorithm 

We propose to apply the following practical trust- 
region algorithm to our problem (see also Clermont & 
al. [l] and :Pham & al. [12]). 

Initialization : Let x,, b o ,  c , c g , ~ f  be given. k=O. 

Iteration k : = O , l , .  . . 

k.1 CbmpUte fk = f ( Z k ) , g f  = v f ( x k )  and 
H k  = J ( z k ) T J ( Z k ) .  

k.2 If l l g k l l  5 €g or 6 k  5 €6 Or  f k  5 €f then Stop: 
z,t is a solution. 

k.3 Let d be a solution of the system Hkd = -gk 
If lldll < 6 k  - 6  then d k  = d .  Otherwise, using 
Hebden's algorithm to find a p > 0 so that 
the solution of ( H k  + p l ) d  = -gk  satisfies 
llldll - 6 k l  < c ,  then dk = d .  

k.4 Compute T k  using eq. (13) 

k . 5  If T k  2 S then Z k + l  := 2 k  + d k .  If T k  2 t 
then 6 k + l  := 2 6 k .  Otherwise 6k+l := 6k Set 
k := k + 1 and return to k.1  

k.6 If rk < s then b k  := 6k/2 and return to k.3.  

The parameter s must belong to the interval [0.1, 0.31 
and the parameter t must belong to the interval [0.5, 
0.81. For our application, these parameters were set 
at: s = 0.25 and t = 0.75. 
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4 Experimental results 

error in 
transl. 

The trust region algorithm is particularly well- 
suited for solving the object pose from a single view 
problem because the error function is a sum of squares 
of quadratic constraints. Indeed, the trust region al- 
gorithm - generally applicable for any non linear con- 
straints - is more robust and more efficient when these 
constraints are quadratic. The robutness and efi- 
ciency of the algorithm are du to the quadratic nature 
of the constaints. The experiments that we performed 
can be paraphrased as follows: 

0 A calibrating object with 500 calibrating points 
is viewed by a camera and point-to-point corre- 
spondences are established; 

nb of CPU added 
iter. time noise 

0 The intrinsic and extrinsic camera parameters are 
determined using these 500 point correspondences 
and the method of Faugeras & Toscani [3]; 

0 Subsets of point correspondences and hence line 
correspondences are randomly selected from the 
initial set of 500 points. 

0 The trust region algorithm is applied to these 
sets of line correspondences. The parameters thus 
found are compared with the extrinsic parameters 
previously found using the following by Faugeras- 
Toscani’s method; 

10 
50 
50 
50 
50 
50 
50 
150 

0 Noise is sometimes added to  the positions of the 
image points; 

0.0044 0.0545 16 0.1 
0.0008 0.0320 12 0.4 
0.0003 0.0269 11 
0.0009 0.0218 11 
0.0040 0.0098 11 
0.0080 0.0291 12 
0.0158 0.0647 11 
0.0001 0.0118 8 1.6 

i: 
2.0 

Table 1:  The experimental results obtained when the 
rotation and translation are estimated sequentially. 
The CPU time is measured in seconds on a SPARC-2 
processor. The noise is in pixels, is random with max- 
imum amplitude as indicated, and is added to the 2-D 
point positions. 

0 In a separate experiment we artificially mismatch 
some of the correspondences but this mismatch 
is done locally: a mismatch is defined as a set 
of two point correspondences that are inverted. 
This experiment validates the robustness of our 
method with respect to  matching errors. 

Table 1 summarizes the results obtained with our 
method when applied to eq. (7). Once the optimal ro- 
tation is thus found, we determine the optimal trans- 
lation using linear optimization. 

Table 2 summarizes the results obtained with our 
method when applied to  eq. (6), that is, the optimal 
rotation and translation are estimated simultaneously. 

nb of 
lines 
10 
50 
50 
50 
50 
50 
50 
150 
200 

error in 
rotation 
0.0024 
0.0001 
0.0004 
0.0003 
0.0009 
0.0021 
0.0044 
0.0001 
0.0005 

error in 
transl. 
0.0498 
0.0069 
0.0354 
0.0345 
0.0315 
0.0302 
0.0353 
0.0093 
0.0157 

nb of 
iter. 
125 
39 
38 
38 
38 
39 
39 
20 
19 

CPU 
time 
1.9 
2.1 

3.0 
4.0 

added 
noise 

0.01 
0.1 
0.5 
1.0 
2.0 

Table 2: The experimental results obtained when the 
rotation and translation are estimated simultaneously. 

We noticed that the rotation is relatively robust 
with respect to matching errors. The translation is 
robust too but to a least extent. The rotation and 
translation experiment allows up to  5% of “locally’’ 
mismatched points. The rotation then translation ex- 
periment is more sensitive to  matching errors. 

5 Discussion 

The method that we presented in this paper for 
estimating the exterior parameters of a camera from 
line and point correspondences may be evaluated with 
respect to the following items: 

e Initialisation - the final result is independent of 
the initialisation. This is a dramatic improvement 
with respect to  other approaches using Newton’s 
met hod. 

e Number of correspondences - the results are also 
robust with respect to the number of matchings. 
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a Accuracy - The algorithm nicely resists when 
noise is injected in the image. 

0 Eficiency - The rotation then translation imple- 
mentation is more efficient than the rotation and 
translation implementation. In fact there is a 
compromise between efficiency and accuracy. One 
may be interested in a fast algorithm which will 
provide a less accurate result. Ideally, with 30 
line correspondences, the algorithm converges in 
less than 1 second. 

0 Matching errors - The algorithm allows for 
matching errors. In this case we noticed that the 
rotation and translation implementation is more 
robust with respect to matching errors. We are 
not aware of many experiments testing robustness 
and accuracy in the presence of matching errors 

To conclude, we believe that the method that we 
presented in the paper has those properties that make 
it suitable to be used whenever robustness, accuracy, 
and efficiency are needed. We also believe that the 
trust-region method could beneficially be used to solve 
for other non-linear minimization problems in com- 
puter vision such as handjeye calibration and struc- 
ture from motion. 
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