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Abstract

We describe our implementation of a parallel depth recovery
scheme for a four-camera multibaseline stereo in a conver-
gent configuration. Our system is capable of image capture
at video rate. This is critical in applications that require
three-dimensional tracking. We obtain dense stereo depth
data by projecting a light pattern of frequency modulated
sinusoidally varying intensity onto the scene, thus increasing
the local discriminability at each pixel and facilitating
matches. In addition, we make most of the camera view areas
by converging them at a volume of interest. Results show that
we are able to extract stereo depth data that are, on the aver-
age, less than 1 mm in error at distances between 1.5 to 3.5
m away from the cameras.

1    Introduction
Binocular stereo vision is a simple and flexible method by
which three-dimensional (range) information of a scene can
be obtained. Therefore, it is not surprising to find that stereo
is a very active area of research [2]. The geometrical issues
in stereo have also been well explored [6]. The primary
drawback of stereo is the problem with image point corre-
spondence (for a survey of correspondence techniques, see
[5]). The trade-off between accuracy (which is aided by a
wide baseline, or separation between the cameras) and ease
of correspondence (which is simpler with a narrow baseline)
has been mitigated using multiple cameras or camera loca-
tions. Such an approach has been termedmultibaseline ste-
reo [13].

Stereo vision is computationally intensive. Fortunately, the
spatially repetitive nature of depth recovery lends itself to
parallelization. A number of researchers have worked on fast
implementation of stereo (e.g., [12], [14], [15]).

In this paper, we describe our implementation of a depth
recovery scheme implemented in iWarp for a four-camera
multibaseline stereo in a convergent configuration. Our sys-
tem is capable of image capture at video rate. This is critical
in applications that require tracking in three dimensions (an
example is [10]). One method to obtain dense stereo depth
data is to interpolate between reliable pixel matches [8].
However, the interpolated values may not be accurate. We

obtain accurate dense depth data by projecting a light pattern
of sinusoidally varying intensity onto the scene, thus increas-
ing the local discriminability at each pixel. In addition, we
make the most of the camera view areas by converging them
at a volume of interest. Experiments have indicated that we
are able to extract stereo depth data that are, on the average,
less than 1 mm in error at distances between 1.5 to 3.5 m
away from the cameras.

2    The 4-camera system with active
illumination

Our multibaseline camera system is shown in Fig. 1. It com-
prises four cameras mounted on a metal bar, which in turn is
mounted on a sturdy tripod stand; each camera can be rotated
about a vertical axis and fixed at discrete positions along the
bar. The four camera video signals are all synchronized by
ganging the genlock signals.

In addition to the camera, we use a projector to cast a pattern
of sinusoidal varying intensity (active lighting) onto the
scene. This notion of amultibaseline stereo with active illu-
minationallows a denser depth map as a result of improved
local scene discrimination and hence correspondence.

2.1 Why use a verged camera configuration?

The primary problem associated with a stereo arrangement
of parallel camera locations is the limited overlap between
the fields of views of all the cameras. The percentage of
overlap increases with depth. The primary advantage is the
simple and direct formula in extracting depth.

Fig. 1 The 4-camera system



Verging the cameras at a specific volume in space is optimal
in an indoor application where maximum utility of the cam-
era visual range is desired and the workspace size is con-
strained and knowna priori . One such application is the
tracking of objects in the Assembly Plan from Observation
project [9][10].

2.2 Video-rate image acquisition system

Our image acquisition system consists of the physical cam-
era setup described earlier in this section, the video interface
board, and the 8×8 matrix of iWarp cells (Fig. 2). Each
iWarp component contains a 20 MFLOPS computation
engine and low-latency (100-150 ns) communication engine
for interfacing with other iWarp cells [3]. The existing iWarp
system is an 8×8 torus of iWarp cells, half of which have 16
MB DRAMS per cell. The video interface, which is
described in detail elsewhere [18], is connected directly to
the iWarp cell through the memory interface; the digitized
video data is routed and distributed at video rate to the
DRAMs by taking advantage of iWarp’s systolic design [4].

3    Camera calibration
Before data images can be taken and the scene depth recov-
ered, we must first calibrate the camera configuration. Cali-
brating the camera configuration refers to the determination
of the extrinsic (relative pose) and intrinsic (optic center off-
set, focal length and aspect ratio) camera parameters. The
pinhole camera model is assumed in the calibration process.
The origin of the verged camera configuration coincides with
that of the leftmost camera.

Calibration is done by detecting dot patterns at several
known depths and using the non-linear least-squares tech-
nique described by Szeliski and Kang [17]. An alternative

would be to use the pairwise-stereo calibration approach pro-
posed by Faugeras and Toscani [7].

4    Image rectification and depth recovery
If two camera axes are not parallel, their associated epipolar
lines are not parallel to the scan lines. To simplify and reduce
the amount of depth-from-stereo computation,rectification
can be carried out first. The process of rectification for a pair
of images transforms the original pair of image planes to
another pair such that the resulting epipolar lines are parallel
and equal along the new scan lines. Rectification is depicted
in Fig. 3. Herec1 andc2 are the camera optical centers,Π1
andΠ2 the original image planes, andΩ1 andΩ2 the recti-
fied image planes. The condition of parallel and equal epipo-
lar lines necessitates planesΩ1 andΩ2 to lie in the same
plane, indicated asΩ12. A point q is projected to image
pointsv1 andv2 on the same scan line in the rectified planes.

A simple rectification method is described in [1]. However,
the rectification process described there is a direct function
of the locations of the camera optical centers. We have mod-
ified their formalism to simplify the rectification mapping
and adapt it to our situation. We choose the common recti-
fied camera axis direction to be midway between those of the
unrectified camera axes. Details of our image rectification
scheme can be found in [11].

There are two schemes which allows us to recover depth.
The first uses all the homographies (or linear projective cor-
respondences) between the unrectified images and rectified
images (namely H11, H12, H13, H21, H32, and H43 in Fig. 4).

4.1 Direct approach for depth recovery

Subsequent to rectification, to recover depth, we first deter-
mine the corresponding location in the rectified image plane
for the three pairs of cameras (Fig. 4). We wish to recover
the 3D locationq of the image point corresponding tou0. q
can be specified in the following form:

8×8 iWarp

Camera

video
signals

matrix

Fig. 2 Block diagram of the image acquisition system.
The shaded boxes indicate the 16M DRAMs
connected to local iWarp cells while the black
box refers to the video interface connected to
one of the iWarp cells.

setup
c1 c2

q

Π1 Π2
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Fig. 3 Image rectification
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wherec1 is the optical center of the first (“reference”) cam-
era, is the unit vector in the direction fromc1 to q, andλ
is the depth ofq from the reference camera optical center. If

where , and follow the notation in Fig. 4 with the ~
indicating homogeneous representation, then the disparity∆j
can be found to be ([11])

where

By varyingλ within a specified interval and resolution, we
can calculate∆j’s for the pairs of rectified images, and hence
calculate the sum of matching errors (as in [13] with multi-
ple parallel cameras). The depth is recovered by picking the
value ofλ associated with the least matching error.

4.2 A computationally more efficient approach
for depth recovery

The method described above implies that we must calculate,
at each point and for each depth, the corresponding points in
all images. This requires projective transformations of all
images to be performed for each depth value. There is a
more computationally efficient way to recover depth. This
stems from the following properties:

1. The two rectified planes fall on the same plane.

2. The line joining the two projection centers is parallel to
this common plane.

Properties 1 & 2 (which are the necessary conditions for rec-
tification) give rise to

3. The homography between the two rectified planes cannot
be projective (since the scan lines on the rectified images
are parallel, i.e., the corresponding rows at both rectified
images are equal). This is true since the “projection”
lines (the corresponding scan lines) meet at infinity.

From 3, the homography between rectified planes must then
be at most a 2D affine transform, i.e., the last row of the
homography matrix must be (0 0 1). This dispenses with the
additional division by the z-component in calculating the
corresponding matched point for a particular depth.

The scheme now follows that in Fig. 5. The matching is done
using the homographies betweenrectifiedimages K1, K2 and
K3 (which we termrectified homographies). The rectified
homographies can be readily determined as follows:

For a known depth plane (z = d), we can “contract” the 3×4
perspective matrix M (to the rectified plane) to a 3×3 homog-
raphy G. For cameral, we have

whereplj is thejth column of Ml and (ul, vl)
T is the projected

image point in cameral. Similarly, for cameram,

Since the rectified planes are coplanar,sl = sm; hence

Note that, due to rectification,vm = vl, and as explained ear-
lier in this subsection, the bottom row of Klm is (0 0 1). In
other words, the projective transformations are reduced to
affine transformations, reducing the amount of computation.

Depth recovery then proceeds in a similar manner as the
direct approach described in the previous subsection.
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Fig. 4 Recovering depth from multibaseline stereo
after rectification
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4.3 An approximate depth recovery approach

In both approaches described earlier, for each depth, each
pixel in the unrectified reference image has to be mapped
Ncameras–1 times to the respective rectified images (corre-
sponding to the homographies H11, H12, and H13 in Fig. 5).
We can work in the rectified image coordinates (say M1), but
this still requires mapping from M2 to M1 and M3 to M1 in
the collection of match errors for each depth value. This
means that we need to perform (Ncameras–2)Ndepthsets of
bilinear interpolations associated with image warping (where
Ndepthis the number of depth values andNcamerasis the num-
ber of cameras).

In order to avoid the warping operations, we use an approxi-
mate depth recovery method. The matching is done with
respect to the rectified image of the first pair. However, the
rectified images N2 and N3 will not be row preserved relative
to M1 (Fig. 6). We warp rectified images N2 and N3 so as to
preserve the rows as much as possible, resulting in N’2 and
N’3 (Fig. 6). The errors should be tolerably small as long as
the vergence angles are small. In addition, this effect should
not pose a significant problem as we are using a local win-
dowing technique in calculating the match error.

By comparing Fig. 6 with Fig. 5, we can see that the map-
ping from M1 to N2 is given by the homography L12 =
K13H12H11

-1. Similarly, the mapping from M1 to N3 is given
by L13 = K14H13H11

-1. The matrices A2 and A3 are con-
structed such that

i.e., the resulting overall mapping is row preserving (r andc
are the row and column respectively). In general, this would

not be possible, unless all the camera centers are colinear;
however, this is a good approximation for small vergence
angles and approximately aligned cameras. A2 and A3 are
calculated from the following overconstrained relation using
the pseudoinverse calculation:

where is associated with the minimum depth and
with the maximum depth,cmin andcmaxare the mini-

mum and maximum values of the image column, andrmin
andrmaxare the minimum and maximum values of the image
row, respectively.Xi (i=1,...,8) are don’t-care values. The
symbol | is used to represent matrix augmentation.

This algorithm has been implemented in parallel using the
Fx (parallel Fortran) language developed at Carnegie Mellon
[16]. Fx, a variant of High Performance Fortran with optimi-
zations for high-communication applications like signal and
image processing, runs on the Carnegie Mellon-Intel Corpo-
ration iWarp, the Paragon/XPS, the Cray T3D, and the IBM
SP2. The experiments reported in this paper were done on
the iWarp.

5    Experimental results
In this section, we present results of our active multibaseline
stereo system. As mentioned before, a pattern of sinusoidally
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varying intensity are projected onto the scenes to facilitate
image point correspondence.

An example (hand scene) is shown in Fig. 7 with the recov-
ered elevation map in Fig. 8. As can be seen from the eleva-
tion map, except at the edges of the objects on the scene, the
data looks very reasonable. The large peaks at the borders of

the depth map are outliers due to mismatches in the back-
ground outside the depth range of interest.

We have also performed some error analysis on some of the
range data that were extracted from another scene. Fig. 9
show the areas for planar fit; Table 1 shows the numerical
results of the planar fit. As can be seen, the average planar fit
error is smaller than 1 mm (the furthest planar patch is about
1.7m away from the camera system).

We have also obtained stereo range data of a cylinder of
known cross-sectional radius and calculated the fit error. In
both scenes (with different camera settings), the cylinder is
placed about 3.3 m away from the camera system.

As can be seen from Table 2, the mean absolute error of fit is
less than 1 mm.

6    Observations on accuracy
We have achieved better than 1mm accuracy. The sources of
error in our system and in stereo generally include:

1. The use of multibaseline stereo with active illumination
reduces the chance of false matches, but they can still
occur.

2. The fundamental assumptions of stereo are that the tex-
ture being viewed is unique over the search window, and
that the surface is visible to and lies at the same angle to
all camera optical axes. The former assumption is
addressed by the active component of our system, but the
latter is not and cannot be, except by placing the cameras
as close together as possible (which reduces accuracy).
The failure of this assumption is particularly evident at
the boundaries of objects, where it is the cause of signifi-
cant error.

3. Calibration errors occur due to uncertainty in position-
ing our calibration plate and locating the dot pattern
positions.

4. We use a pinhole camera model, which is not exact.

5. We make the approximation discussed in Section 4.3,
which will result in errors when the camera optical cen-
ters are not colinear.

Of these, the first seems to be a cause of significant error. All
of the large errors (> 1 mm) are observed to be in regions
where the projected pattern does not provide sufficient tex-
ture for a correct match.

(b)(a) (c) (d)

Fig. 7 Views of hand scene

Fig. 8 Elevation map of hand scene

Patch 1

Patch 2

Patch 3

Patch 4

Fig. 9 Sampled areas for planar fit.

Patch
#

Patch
size

(pix.)

plane equation: Avg.
|error|
(µm)

Max.
|error|
(mm)

Std.
dev.
(µm)d (mm)

1 20925 (0.01, 0.08, 0.99) 1746.8 550 2.24 400

2 12405 (0.01, 0.99, -0.00) 1119.6 420 1.91 310

3 993 (0.03, 0.99, 0.02) 1023.8 520 2.97 420

4 1340 (-0.03, 0.02, 0.99) 1449.5 370 1.75 320

p n̂⋅ d=

n̂

Table 1 Results of fitting planes

(b)(a) (c) (d)

Fig. 10 Four camera views of the first cylinder scene

Table 2 Results of fitting cylinders

Cyl.
scene #

Patch size
(pixels)

Ave.
|error|
(µm)

Max.
|error|
(mm)

Std.
dev.
(µm)

1 25200 640 4.35 540

2 35150 640 3.17 500



We have attempted to reduce these errors by analysis and
experimentation. Analysis shows that a frequency-modu-
lated sine wave pattern, as used there, is a good choice since
it does not require large dynamic range. Also, arandomly
frequency-modulated sine wave gives the best possible
result, since the same pattern occurs twice in the search area
with vanishingly small probability, theoretically eliminating
the possibility of false matches. Experiments with randomly
modulated patterns have shown that

* The lowest observed frequency of the sine wave must be
higher than the width of the correlation match window.

* The highest frequency usable is constrained by the resolu-
tion of the camera and the focus control of the projector.
Using a higher frequency than the maximum results in a
gray blur and many false matches.

The trade-off between these two constraints involves opti-
mizing the projector placement and focus, the camera resolu-
tion, the number of cameras, and the camera dynamic range.

In addition, many of the problems of false matches occur
where the limited dynamic range of our video interface plays
a role, particularly with dark surfaces or sufaces which lie
almost parallel to the projection, or surfaces with speculari-
ties. The use of multiple projectors/patterns, either time-
sequenced or color-sequenced (using color cameras) may
serve to reduce these effects.

7    Summary
We have briefly described a 4-camera system that is capable
of video rate image acquisition. It uses a software distribu-
tion approach which takes advantage of iWarp’s systolic
design. The four cameras are used in a converging configura-
tion for more effective use of the camera view spaces. In
addition, to recover dense stereo range data from each set of
images, we project a sinusoidally varying pattern onto the
scene to enhance local intensity discriminability. This results
in a multibaseline stereo system with active illumination.

We have also described in detail our implementation of the
depth recovery algorithm which involves the preprocessing
stage of image rectification. Our approximate depth recovery
implementation was designed for reduced computation.

The results that we have obtained from this system indicated
that the mean errors (discounting object border areas) are
less than a millimeter at distances varying from 1.5 m to 3.5
m from the camera system. The performance of the system is
thus comparable to a good structured light system, while
allowing data to be captured at full video rate.
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