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Abstract

The joint invariants of a pair of coplanar conics has been widely used in recent vision literature.
In this paper, the algebraic invariant of a pair of non-coplanar conics in space is concerned.

The algebraic invariant of a pair of non-coplanar conics is first derived from the invariant algebra
of a pair of quaternary quadratic forms by using the dual representation of space conics. Then,
this algebraic invariant is geometrically interpreted in terms of cross-ratios. Finally, an analytical
procedure for projective reconstruction of a space conic from two uncalibrated images is developed
and the correspondence conditions of the conics between two views are also explicited.

Experimentations for the discriminality of the correspondence conditions and the accuracy and
stability of the projective reconstruction and of the computation of the invariant are conducted
both for simulated and real images.

Key words: Invariant, Geometry, Object recognition.



1 Introduction

The study of invariants has recently provoked much interest in the computer vision community, since
it is crucial for the development of eflicient recognition systems for model based vision. A great deal
of work on recognition and shape description using invariants has already been reported, for instance
cf. the collection book [26]. Most of the invariants [10, 35, 36, 3, 29, 25] are derived for planar objects
using geometric entities such as points, lines and conics from one single image. One of the most used
planar invariants is the joint invariants of a pair of planar conics [10]. Some of the algebraic and
geometric properties of these invariants are further clarified in [24, 29].

Following the important results of Faugeras [6] and Hartley et al. [15] concerning the projective
reconstruction of point sets from the epipolar geometry of the two uncalibrated images, the invariants
for the configurations of points and lines in space from two uncalibrated images have been investigated
in [1, 14, 12, 13]. The invariants from three or more uncalibrated images have also been studied in

[28] and [23].

In this paper, we propose to study the invariants of a pair of non-coplanar conics in space from
two uncalibrated images. The key idea for computing invariants from two images is the use of the
epipolar geometry of the two uncalibrated images. This assumption is still maintained in this paper.

The geometric invariant of a pair of non-coplanar conics has first been mentioned in [13] as il-
lustrated in Figure 1. This geometric invariant is very simply, but unfortunately is not directly
computable. In this paper, an algebraic invariant of a pair of non-coplanar conics in space will be
defined from the algebra of invariants of quaternary quadratic forms, then its relationship with the
geometric invariant will also be established, i.e. the algebraic invariant is geometrically interpreted in
terms of cross-ratios which define the geometric invariant. This study is inspired by the last century’s
mathematical developement on invariants of the quadratic forms [5, 4, 33, 34, 16]. As the algebraic
structure of absolute invariants is much more complicated than that of relative invariants, the math-
ematicians have mainly been concerned with the relative invariants and have paid little attention for
the absolute invariants which are the most useful for computer vision.

After the definition of the algebraic invariant, it remains to compute it effectively from two uncali-
brated images. At this stage, the key operation is the projective reconstruction of the space conic from
two uncalibrated images. Once the projective reconstruction is done, the invariant can be computed
in a straightforward way. A very simple analytical method for projective reconstruction of conics in
space will be developed in this paper. The reconstruction procedure is essentially linear in that the
two solutions of reconstruction are solved together with only linear computation. Only the extraction
of the two different solutions needs to solve a quadratic equation. It is also clarified that the solu-
tions to conic reconstruction are generally ambiguous up to two solutions and is unique only for non
transparent objects.

The contributions of this paper are mainly three-fold:

e Definition of an algebraic invariant for a pair of non-coplanar conics in space;
e Geometric interpretation of the algebraic invariant in terms of cross-ratios;

e Algorithm for computing this invariant from two uncalibrated images of the pair of conics.

The remaining sections are organized as follows. In Section 2, the algebraic invariant is derived
from the associated quadratic forms using the dual representation of space conics. Then in Section 3,
the relationship between the algebraic invariant and the known geometric invariant is established. In
Section 4, the projective reconstruction problem is first formulated in Section 4.2. Section 4.3 gives the
correspondence conditions. Next, Section 4.4 gives the analytical method which allows to extract two



solutions in closed form. Experimental results are presented in Section 5. Finally, some concluding
comments are given in Section 6.

Most of algebraic projective geometry terms and results used in the paper can be found in [33].
For a more gentle introduction of invariants for computer vision, one can refer to [26].

2 Invariants of a pair of non-coplanar conics in space

2.1 Number of invariants

Given a geometric configuration, the number of invariants is roughly speaking the difference of the
dimension of the configuration group and the dimension of the transformation group [12, 25] (if the
dimension of the isotropy group of the configuration is null). For a pair of non-coplanar conics in P?,
thereis 1 = 2x (3+45) — (16 — 1) absolute invariant under the action of the general linear group G'L(3)
in P?. Since each space conic has 8 = 3 + 5 degrees of freedom (5 for a conic in a given plane and
3 for the plane in which the conic lies), the dimension of a pair of space conics is 2 X 8 = 16. The
transformation group GL(3) is represented by a 4 X 4 matrix up to a scaling factor, its dimension is
4x4-1=15.

2.2 Geometric invariant

The unique invariant can be geometrically constructed as illustrated in Figure 1. This has been
mentioned in [12]. If the 4 intersection points of the conics with the common line of the conic planes
are respectively P, P,, P; and P, whose projective parameters are 6;, 8-, ¥, and ¥,. The cross-ratio

(01 — 1)/ (6> — ¥1)
(01 — 2)/ (6> — ¥2)

P:(P17P2§P37P4):(91702§¢17¢2):

is the geometric invariant.

As in all of algebraic geometry, we need to count these 4 intersection points properly, i.e. each of
them might be multiple, complex or at infinity.

Figure 1: Geometric invariant of a pair of non-coplanar conics: the cross-ratio of the 4 intersection
points of the conics with the common line of the conic planes.

2.3 Space conic as a quadric envelope
The principle of duality is a fundamental concept in projective geometry. In P>, points and planes

are dual to each other. The space dual of a plane curve is a cone. The conic is a quadric envelope of
rank 3 which is called a disk quadric [33]



The plane equation (in plane coordinates instead of usual point coordinates) of the conic, repre-
sented as the complete intersection of a proper cone z7Qx = 0 where () is a symmetric 4 x 4 matrix
and a plane 7 = p’z = 0 in point coordinates, is

0 0 u”
00 p” |=0 (1)
u p Q

where u = (uy, uy, uz, us)” represents a variable plane.

2.4 Review of invariants of quaternary quadratic forms

Since a space conic is a quadric envelope, we first review invariants of a pair of quaternary quadratic
forms following Semple and Kneebone [33], Todd [34] and Johnson [16]. Given two quaternary
quadratic forms, @, = 27Az and Q, = 27 Bz in 2 where A and B are both symmetric 4 x 4
matrices, consider the one dimensional family of quadratic forms, ¢.e. linear combination of @; and

Qs, Q(A, 1) = AQ1 + 1Q,. The vanishing of the determinant of Q(A, i) is given by

[AA+ pB| =0,
that is,
LA+ LN u 4 LN p? 4 L + Lp* =0,
where
I = 4],

I, = Z?,j:l bijAij,

I3 = |b1 by az aa] + |b1 as bs as| + b1 as az bs| + [aq by by as| + |aq by az ba| + |a1 as bs by,
I, = Zij:l aijBij,

15 = |B|7

a;; and b;; are entries of A and B, A;; and B;; cofactors of a;; and b;; in A and B. A = (a; a5 a3 a4)
and B = (by by b3b4) are the column partition of A and B.

When z transforms into ' = T’z by any non singular space collineation 7', I; are transformed into
I = |TPL. I; (j =1,...,5) are relative invariants of weight 2 of the two quaternary quadratic forms

Q; and Q,.

2.5 Algebraic invariant of a pair of space conics

Let C; and C, be two space conics, represented by their dual quadric envelopes C; = u? Au = 0 and
C, = u" Bu = 0. Consider the invariant algebra of quadratic forms C; and C; in u. As C; = 0 and
C, = 0 represent conics, so their associated quadric envelopes are of rank 3, therefore

We are left with I, I, and I5 non vanishing. Two absolute invariants I, : I3 : I, can be defined
for their associated quadratic forms, however they are not yet the invariants of the conics, since each
conic C; = 0 is associated with a family of quadratic forms A;C; for any scalar A; # 0.

To obtain the absolute invariants of two conics, the power degrees of A and g in the family of
quadratic forms should also taken into account. When this is done,



the unique and simplest absolute invariant is

JR

“ L (2)

Note that the development of this part is formally similar to our previous work on invariants of
planar conics.

3 Geometric interpretation of the algebraic invariant

As we mentioned earlier, the geometric invariant p of two non-planar conics is easily defined as the
cross ratio of two pairs of points, each pair of which is the intersection of a conic with the common line
of the two conic planes. In this section, we want to interpret geometrically the algebraic invariant I in
terms of this geometric invariant p. The basic idea is to choose particular coordinate representations
for quadrics in order to bring them into the simplest forms. The choice is inspired by Semple and
Kneebone [33] and Johnson [16].

Without loss of generality, the planes of the two space conics may be taken (up to a space
collineation) respectively as #4, = 0 and z; = 0 in point coordinates, or (0,0,0,1)” and (1,0,0,0)” in
plane coordinates.

The plane equations of the conics reduce to

~ ul
ul Au = u¥ ( 13 8 ) w= (uy,ug,uz)A| uy | =0
Uz

and

u
u’ Bu = u” 00 w = (uz, us, us) B u2 =0
— 0 B — 2y W3y W4 3 — %

where A and B are assumed to be symmetric.

The non vanishing relative invariants can be explicited as follows.

hewdd
I3 = A223i33 + As3Boy — 2A53 B3,
1, = a11|B|,

where /Lj and Bij are the cofactors of a;; and b;; in A and B.

Now, we require to find two point equations which represent surfaces whose complete intersection
is the conic. A convenient pair of surface is the plane of the conic and the cone which joins it to a
vertex of the tetrahedron of reference, say the point (0,0,0,1)”. The point equation of the cone is

z

A* 0 A *
z! ( 00 ) = (x1,29,23)A xy | =0,

I3

where A* is the adjoint matrix of A.



Similarly, taking (1,0,0,0)” as the vertex of the cone associated to the second conic, the point
equation of the cone is

T3
0 0 -
zT ( 0 B ) = (xs,23,24)B x3 | =0,
Tq

where B* is the adjoint matrix of B.

The common line of the two conic planes is

x1:0
.’E4:O

Therefore the intersection points of the space conics with the common line are the roots of the
following binary quadratic equations obtained by respectively setting z; = 0 and z, = 0 in the two

cones:
_ /122 1‘123 T3 i T T2 o
Bl = (.IQ, .fg) ( 12123 1433 ) ( s ) = (.TQ, .T3)A ( s ) = 0,

B,, B _
By = (x4, ©3) ( Bzz B: ) ( iz ) = (24, 23)B ( zz ) =0.

At the same time, we can consider the invariant algebra of the two binary quadratic forms B; and
Bs, according to [5, 4], there are three relative invariants of weight 2 which are

1 = |A|7 iy = /122333 + 1‘133322 - 2121233237 and i3 = |B|

For the invariants of two quadratic equations B; = 0 and B, = 0, the unique absolute invariant is

;2

2

2
T = —

e
It is easily verified that i, = I, 7, = a11|/~1| and i3 = b44|B|. Thus,

=i kg

T LI g
The geometric interpretation of the algebraic invariant I is now equivalent to establish the rela-

tionship between the algebraic invariant Z of two binary quadratic equations and two pairs of the
roots of the quadratic equations. This can be easily achieved as follows.

On the one hand, it is known (cf. [5]) that two binary quadratic forms can be simultaneously
reduced to canonical binary forms by a suitable non singular homography:

Iy /o2
{ arzy + g =0

! al2 /o2
ayzy + ey =0

thus ,
1 1 I/
(a102 + a201)

ah 15y

I=7T=T7 =



On the other hand, let (6;,6,) and (¢4, ¢5) be the roots of the binary quadratic equations, given
by

67 = (2} : 2)? = —c} : @} and ¥* = (2} : 25)* = —¢}, : .

The geometric invariant is the cross ratio p = (6, 02; 11, ¥2). There exists the following relationship
between p and I

pt+1.,
I =4(—— 3
) 3
Obviously, p = —1 turns out to be the geometric interpretation of the vanishing of I3.

4 Projective reconstruction of the conics in space

The algebraic invariant of a pair of non-coplanar conics is defined in space, that is in P3. It remains
to reconstruct the space conic from image conics which are in P2. This section will give an algorithm
for projective reconstruction of a space conic from its two uncalibrated images.

At first, some basic concepts related to camera geometry are briefly presented in Section 4.1. For
more details, one can refer to [7].

4.1 Preliminaries

Projection matrix of a camera If we assume a perspective projection for camera model, then the
object space R® may be considered as embedded in P? (projective space of dimension 3) and the image
space R? embedded in P2. The camera performs the projection between P3 and P2, and this projection
is represented by a 3 x 4 matrix P of rank 3 whose kernel is the projection center, P is called the
projection matrix of the camera. The relation between an image point in its homogeneous coordinates
Z = (u,v,w)” in P? and a space point in its homogeneous coordinates as well = (z, x4, 73, 24)7 in
P3 are linearly related by A\z7 = Pz, or

Alu, v, w)T = P(zy, xq, x3, x4)T.

Uncalibrated images When P is totally unknown for a given image, we say that this image is
uncalibrated. For a pair of images, P may be unkown for each image, however the epipolar geometry
of a pair of uncalibrated images can be estimated from only the point correspondences of the two
images. It is therefore more appropriate to call the pair of uncalibrated images with known epipolar
geometry as the weakly, as suggested in [31] or the projectively calibrated pair of images.

In this paper, we assume that the epipolar geometry is always given for the pair of uncalibrated im-
ages. In fact, the epipolar geometry is the key for the projective reconstruction from two uncalibrated
images as demonstrated in [6, 15].

The epipolar geometry can be nicely coded by a 3 x 3 rank 2 matrix F, called fundamental matrix
[19, 8] or essential matrix [15]. According to Hartley [15], one possible choice of projection matrices
for two cameras consistent with a decomposition of F' = M[t], is given by

P=(I05) and P =(M* — M) (4)

-~



where M is a non singular 3 x 3 matrix, t = (¢, s, £3)7. M* is the adjoint matrix of M, and [t],
is the antisymmetric 3 x 3 matrix associated to the vector {. For more details, see [15].

The reconstruction in P? is therefore defined up to the projective transformation of the placement
of the first camera.

4.2 Formulation of projective reconstruction

In the following, without explicit mention, the pair of projection matrices P and P’ are defined up to
projective transformations. We are therefore working in projective spaces which allow to reveal more
intrinsic properties of the conic reconstruction. The Euclidean case can be proceeded in exactly the
same way by taking the suitable projection matrices, this will be discussed in Section 4.5.

Given a corresponding pair of conics in two distinct images,
C=i"Ci=0C=3"C"d' =0,

we require to find a conic in space which has been projected respectively into C and C’. A conic
in space is generally represented as the complete intersection of a quadric surface and a plane. The
reconstruction is therefore equivalent to find the plane in which the conic lies, as we can take any one
of the two cones associated to two conics in images as the quadric surface.

The cone equation associated to a given conic and a given camera is obtained as follows.

Given a projection matriz P of a camera, the equalion of the cone which joins the conic #7C% =0
in the image plane to the projection center of the camera is ¥ Qz = 2T PTC Pz = 0.

This can be easily proved by substituting AZ7 = Pz into the conic equation z7CZ = 0. 27Qz =0
is effectively a proper cone, for' rank(Q) = rank(P) = rank(C) = 3 and Ker(()) = Ker(P) which is
meant that the vertex of the cone is the projection center of the camera. O

The cones corresponding to the pair of conics are respectively

Q=2TAz =2"PTCPz =0 and Q =z"Bz=zTP7TC'P'z =0

in P3.

Consider the pencil of quadric surfaces Q@+ AQ’ = 0, for every value of A the equation @+ AQ' =0
represents a quadric surface which passes through all the common points of @ and Q'. The points
common to all quadric surfaces of the pencil are simply the points which make up the curve of
intersection of @ and Q’, and this curve is the base curve of the pencil. The base curve of two quadric
surfaces is generally a quartic curve. In our context, the reconstruction constraints impose that the
corresponding cones intersect in a conic in space. As this conic in space should be part of the base
curve, thus the base curve of the pencil should break up and one of the components is a conic in space.
Even more, if one of the components of the base curve is a conic, the residual component should also
be a conic. As a pair of planes can be considered as a degenerate quadric surface of rank 2, according
to the results of projective geometry (cf. [33]) on pencils of quadric surfaces, the degenerate quadric
surface composed of the pair of planes belongs to the pencil of quadric surfaces in consideration. We
are therefore led to examine a special pencil of quadric surfaces which contains a degenerated member
of rank 2. Based on this, we can reformulate the problem of conic reconstruction as follows:

'For a quadric surface T Az = 0, the projective classification of quadric surfaces (cf. [33]) based on the rank of A is
given as: a proper quadric surface has full rank 4, a proper quadric cone rank 3, a pair of distinct planes rank 2 and a
repeated plane rank 1.



The reconstruction of a conic in space from two images is equivalent to find a A such that the
A-matriz C(\) = A+ AB has rank 2. 27 Az = 0 and ¥ Bz = 0 are the proper cones corresponding to
the two images of the conic in space.

We can also think that we may have the case where the pair of planes coincident, becoming a
repeated plane which is a degenerate quadric surface of rank 1. If this was possible, the reconstruction
would be unique. However, in the following, we show that it is impossible.

If the conics in images are proper, there is no A such that C(\) = A+ AB can have rank 1.

This will be proved in the next section after other results will have been introduced.

4.3 Correspondence conditions

Unlike points and lines, two images of a conic in space contain sufficient information to impose corre-
spondence conditions. The number of the independent conditions which can be derived is established
as follows:

There exist two independent polynomial conditions for a corresponding pair of conics.

To prove it, we need only to count the degrees of freedom of the rank 2 matrix and those of the
matrix pencil. A 4 x 4 symmetric matrix up to a scaling factor counts for 10 — 1 = 9 degrees of
freedom, thus a general matrix pencil counts for 9 — 1 = 8 degrees of freedom. A rank 2 symmetric
matrix C of order 4 counts for 6 degrees of freedom, so there remain 2 = 8 — 6 independent conditions.
O

We will now derive these two polynomial conditions.

Consider the characteristic polynomial of A—matrix C'(A\) = A + AB,

[C(A) = pI] = p* + ar(A)p® + az(A)p® + az (M) + as(A) = 0.

C'(A) is a real symmetric 4 X 4 matrix. For it to have rank 2, it must have two distinct nonzero
eigenvalues and a double zero eigenvalue. The conditions we are looking for are equivalent to have?

alg(A) = O,
{ as(N) = 0. (5)
By definition, a4(A) is the determinant of C'()), therefore, it is the characteristic polynomial of the
matrix pencil A + AB, i.e.

a4(/\) = |C(A)| = |A+ AB| = 11A4 + IQAS + IgAz + I4A + 15,

where the coefficients I; are polynomials in the entries of A and B.

Since A and B both have rank 3, I, = |A| = 0 and I5 = |B| = 0. The characteristic polynomial of
the pencil is factorized as

a4(/\) = A(12A2 + IgA + 14) =0.

There are generally four singular matrices of the pencil, each corresponds to one of the four
generalized eigenvalues of the pencil, the roots of a4(A) = 0. Two generalized eigenvalues of the pencil

?To be complete, we should also have az # 0 and a — 4as # 0 to guarantee two distinct nonzero eigenvalues.



are easily read out as A = 0 and A = oo which corresponds respectively to A and B. The two others
are the solutions of the quadratic equation

12A2+13A+I4:O. (6)

Before going ahead, let us recall the following:

Lemma 1 Given symmelric maltrices A and B of order n. If A; is a generalized eigenvalue of A+ AB
of multiplicity k;, then k; is at least n — m for C'(X;) = A+ \; B to have rank m.

Proof. This is a direct consequence of the fact that the dimension of nullspace of A 4+ A;B can not
exceed k;. O

In order to have a rank 2 matrix in the pencil, we should at least have a generalized eigenvalue of
multiplicity 2, hence the above quadratic equation (6) must have two equal roots. The condition for
this is

AEISQ —41214 :O,

that is the first condition for correspondence.

It is now straightforward that we can not have a rank 1 matrix in this matrix pencil. If so, we
should at least have a triple generalized eigenvalue which is obviously impossible for we have already
two distinct ones 0 and oco. This proves the Proposition 4.2.

After aq(X) = 0 of (5) is examined, we can now examine az(A) = 0. az(A) is a cubic polynomial in
A, it can be written as

ag(A) = JlAS + J2A2 + JgA + J4,

where J; are polynomials in the entries of A and B.

The second condition is derived by computing the resultant of az(A) and a4(A) with respect to A.
The explicit form of this resultant, further simplified by using A = 0, gives the second polynomial
condition

= I3+ 2J5120, — AJsI5IZ + 8,05 = 0.

The results can then be summarized in

The two polynomial correspondence conditions for a pair of corresponding conics are respectively

A=0 and © =0.

Remark The second correspondence condition is a polynomial of higher degrees than the first one.
The experiments conducted in Section 5 will show that the first condition is much more discriminant
than the first one. In practice, only the first condition will be used to establish the correspondences
of conics between two images. Interestingly, the first condition A = 0 admits a nice invariant inter-
pretation.

Let us first consider the invariant algebra of the pair of the quadratic forms 27 Az and z% Bz
as in the previous Section 2. They have 5 relative invariants /;,7 = 1,...,5 of weight 2 of the two
quaternary quadratic forms #¥ Az and 27 Bz.

10



Now let take the quaternary quadratic forms of a pair of cones 27 Az = 0 and 27Bz = 0, so
I, =I5 = |A| = |B| = 0. We are left with nonzero I,, I, and I5. While taking into account the power
degrees of A and pu, the unique absolute invariant of a pair of the cones is

I3

j—
L1

As A = I? — 41,1,, therefore
A=0&1=4.0

4.4 Closed-form solutions of reconstruction

The degenerate quadric surface Since we must have two equal roots for the quadratic equa-
tion (6), the double generalized eigenvalue is directly obtained by

I3
21,

Then we obtain the matrix C' = A + AB of the degenerate quadric surface.

The remaining effort for conic reconstruction requires only to extract the two planes from this rank
2 matrix C.

Extraction of the plane pair The extraction of the plane pair from C' consists of the eigen analysis
of C', which can be directly solved as follows.

Going back to the characteristic polynomial of the matrix C'(}), it is simplified by the second
condition @ = 0 as

11+ ar(Ap+ az(N) = 0.
The remaining two nonzero eigenvalues p; and p, are the roots of the quadratic equation:

pt a (A)p+ax(A) = 0. (7)

As (' is a real symmetric matrix, there exists a non singular transformation 7" such that C is
diagonalized:

TTCT = diag(us, s, 0,0).
The quadric surface 27 Cz = 0 is therefore transformed by z = Tz’ into 2'" diag(u1, is,0,0)z’ = 0,

ie.
12 12
w1z + poxy” = 0.

The pair of planes 7/ = p/T2’ = 0,7 = 1,2 in the transformed reference frame is

(Vi1, £V —pt2,0,0)" 2" = /e, £/ —ppzh, = 0.

It is obvious that to obtain real planes, we must have?

®This inequality condition does not affect the degree of freedom of the matrix pencil, so it does not affect the
Proposition 4.3.

11



G,Q(A) = H1l2 < 0.

Let v; and v, be the eigenvectors corresponding to the eigenvalues p; and ps of C. The plane pair
m; = plaz = 0,i=1,2 in the original reference frame are obtained by

(Tp) e = (Vv £ v/ —pavs) "2 = 0.

Then the conic in space is defined as the intersection of one of the two cones with the plane
recovered above.

Determination of the unique plane from the plane pair At this stage, the reconstruction
of conics in space is ambiguous up to two solutions, defined by any plane of the plane pair. This
ambibuity cannot be removed in the pure projective 3 space P? except that if we further suppose that
conics contain no real points at infinity (i.e. only ellipses). In Euclidean case, this ambiguity can be
removed for non-transparent objects, this point will be discussed in Section 4.5.

Summary of the computation From a pair of stereo images, after the conic features from two
images have been extracted, the correspondence between two images and the reconstruction are solved
by the following procedure.

1. Selection of a corresponding pair of conics
(a) For each pair of conics C; and (7, form the cones A = PTC;P and B = P’TC'J’»P’, compute
I, I3 and I,, then A; ;.

b) A potential corresponding pair of conics is selected as the pair that has the smallest absolute
g
value of A;; among all possible pairs of conics between two images.

(c) If |A; ;] < €, it is considered as a pair of corresponding pair, else no correspondence for the
given C;.

2. Projective reconstruction

(a) Take A = —I3/215, compute C'= A+ AB,
(b) Extract the two planes

i. If as > 0, solve the quadratic equation (7) for p; and ps, else no real solution possible.

ii. Compute the eigenvectors vy and v, associated to y; and ps by solving linear equation

(C - luzl)vz — 07
iii. Plane pair is given as (\/p 01 & /—pzvs) 2 = 0

3. Computation of the invariant

(a) Form the plane equation of each possible space conic according to the formule (1);

(b) Computation of the relative invariants of any pair of space conics expressed in plane equa-
tion.

(c) Form the absolute invariant using the formule (2).

12



4.5 Related work on conic reconstruction

It is also important to note that several authors have remarked the importance of conics as basic image
features and developed some procedures for pose estimation, stereo and motion based on conics, for
instance [18, 2, 20, 32, 26, 37, 9, 22]. The conic reconstruction algorithm proposed in this paper is
related to but different from those of Ma et. al [21, 20] and Safaee-Rad et. al [32]. They both have
been interested in the Euclidean reconstruction of space conic and proposed different solutions to the
problem.

Ma et al. in [21, 20] developed a different analytical method which reconstructs directly the position
and orientation of the conic in space, and proposed a criterion for correspondence verification. The
approach was developed and heavily limited to Euclidean framework, hence some properties regarding
projective quadrics cannot be revealed in this framework. The matching criterion is more a a posteriori
verification procedure, mixed up with the reconstruction procedure.

In [32], Safaee-Rad et al. observed the projective property of a pencil of quadrics, then proposed
a procedure to reconstruct the plane on which the conic in space lies. However, the solution proposed
by Safaee-Rad et al. needs to solve a high (fourth) degree polynomial, this is due to lack of further
investigation of the problem. The important properties related to the special pencil of matrices are
not exploited. The independency of derived equations was not analysed, therefore the correspondence
conditions could not be explicited. The uniqueness issue of reconstruction has also been discussed in

[32].

The projective reconstruction of space conic can be easily extended to Euclidean reconstruction
when the stereo system is strongly calibrated. In the Euclidean geometry framework, it is meant
that we are given the 5 intrinsic parameters for each camera, coded respectively as the entries of an

o, S U
upper triangular 3 X 3 matrix A and A’ of form | 0 «, vy | and a rigid displacement between

0 0 1
two cameras, represented by a rotation matrix R and a translation vector . The following pair of

projection matrices can be assigned to the two cameras

P= A(Ig 03) and Pl = Al(Ig 03) (R i) s

03
where I3 is the 3 x 3 identity matrix.

The 3D reconstruction in R? is therefore defined up to the rigid transformation of the placement
of the first camera.

In fact, whether we are given a strongly calibrated stereo system or a weakly calibrated one, it
is equivalent to be given a pair of projection matrices P and P’. The difference resides in that P
and P’ are defined up to a rigid transformation of the placement of the first camera in the case of
the strong calibration case and up to a projective transformation in the case of the weak calibration.
The resulting reconstruction will be Euclidean or projective according to that the pair of projection
matrices is defined up to a Euclidean or projective transformation.

As we have mentioned that in case of Euclidean reconstruction, the ambiguity of double solution
can be removed if we suppose that the conic in space is a non transparent object (a wired conic in space
is a typical example of transparency). The visibility constraint may be used to get rid of the surplus
solution. To be visible for a non transparent plane from two different viewpoints, it is necessary to
have the two viewpoints located on the same side of the plane. Look at Figure 2 in which one plane
of the reconstructed pair of planes is always between the two camera centers, therefore this plane is
not the solution of the problem.

This can be easily checked as follows. The projection centers of cameras, given their projection
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Figure 2: This figure illustrates that one of the pair of planes is always between two camera centers,
therefore it is not the solution of the problem if we are considering non transparent objects. One side
of the plane pl'z = 0 is visible for both cameras, however each side of the plane p’z = 0 is visible by
a different camera.

matrices P = (Psx3 p) and P’ = (P4, 5 p') are

O <—P3i‘x13p) and O — <— él;ép’)

If (Op;)(O"p;) > 0 then O and O’ lie both on the same side of the plane p]z = 0, else they lie
on different sides of the plane. Thus this allows us to remove the reconstruction ambiguity.

It is also important to note that this test can also be extended to the projective case if we further
suppose that conics contain no real points at infinity (i.e. only ellipses) because the visibility is still
valid for objects containing no points at infinity in the weak calibration case [31].

5 Experimental results

The theoretical results presented above for corresponding conditions and reconstruction of conics
have been implemented. In Section 5.1 and 5.2, the discriminality of correspondence conditions and
Euclidean reconstruction of conics are studied both for simulated and real images. In Section 5.3, the
experimental results on projective reconstruction and the computation of the invariants are presented.

5.1 The experiments with simulated images

5.1.1 Simulation set-up

e We use the calibration matrices from a real stereo system. They are given by

1.393757 —0.244708 —14.170794 368.0
P = 10.624195  2.396275  —0.433595 202.0 |,
0.002859  0.011811  —0.003481 1.0

(1.374060 —0.612998 —14.189693 371.0)
Pl

10.979978 —1.621189 —0.469463 207.0
0.007648  0.010572  —0.003449 1.0
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e We are viewing with these two cameras two conics in space described respectively by the inter-
section of the quadric surface 7@,z = 0 and the plane pTz = 0 for the first conic in space and
the intersection of 27 Q.2 = 0 and pl'z = 0 for the second. The plane pIz = 0 is taken as being
parallel to the first image plane and goes through the center of 27 Q,z = 0.

—0.0013  0.47107°% —0.00023 0.0058

[ 0471075 —0.000078 —0.00034 0.0033
@ = —0.00023 -0.00034 —-0.0014 0.011
0.0058 0.0033 0.011 —0.038

and p; = (-0.021,-0.16,-0.092,1.0)"

1.0 00 00 —9.0
{00 10 00 —20
@=1 00 o0 1.0 —10.0
—9.0 —2.0 -10.0 85.0

and py = (—0.196589, —0.812143,0.239359, 1.0)7

e The conic in space is analytically projected into image planes by the two calibration matrices.

e The projected conics in images are resampled as a list of points. Each location of resampled
points is perturbed by varying levels of pixel noise of a uniform distribution.

e Each list of perturbed points is then fitted to a conic of form

aw2+bwy+cy2+dx+ey—|—f20.

With the normalization f = 1, least squares fitting can be easily implemented as a linear
minimization procedure. Note that using directly this normalization fails for all conics through
the origin (as in this case f = 0), this can be easily overcome by shifting the data away from the
origin if necessary. In practice, very good results are obtained using this normalization. More
sophisticated fitting algorithms are only necessary when a small part of curve data is visible
and/or the curve data is very scattered. A more detailed description on conic fitting can be
found in [2, 17].

5.1.2 Reconstruction stability w.r.t. pixel errors

Conic reconstruction with respect to different pixel errors of image points is performed to demonstrate
its stability. Table 1 and 2 show the numerical results for the two conics in space. As conic reconstruc-
tion is ambiguous, the solution for the plane which is closer to the known space plane of the conic is
marked in bold font. Numerically, we can never have a perfect rank 2 matrix C. It is well known that
numerical rank is nicely characterised in terms of SVD [11]. In the tables of results, we also computed
the ratio o3/, of the second largest o, and the third largest singular values o3, which indicates how
near C' is to a rank 2 matrix. The closer to zero of o3/0,, the nearer C is to rank 2.

We notice that for both space conics, the degradation with the increasing pixel noise is extremely
graceful. This is greatly due to that conics are global primitives, small pixel errors are very well
corrected by the fitting process.

5.1.3 Discriminality of correspondence condition

To demonstrate the discriminality of correspondence conditions, a set of very similar conics is gener-
ated by deforming the initial one. The deformation is performed by adding different levels of pixel
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Noise A © o3/09 Plane pair (nT, —d) O dq
) R e i I vt e
+2.5 || —0.3107* | 0.13107*° | 0.26 102 (-0‘(1—03%%3%558:32122?(’5,-096);3?(?613(?’2.52‘5881;?79) 0.36 | 0.002
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et [ori0 [osw | oo | COTEIL DTS hevtans bam® | Laz | oo

Table 1: Reconstruction results for the first simulated conic in space with different pixel errors for
image points before fitting. o, and o3 are the second and the third largest singular values of the plane
pair matrix. 4, is the difference of normal direction n” of the plane and 4§, is the difference of distance
d of the plane with that of the known plane.

Noise A €] 03/09 Plane pair (nT, —d) o 04
T BT R RO T i & i 3 AR
s | o | w0 LT |y
£35 | 01610 | 05010 | 05110-0 | O o, —ootssoat srgay | 049 | 007
£45 | 09100 | 010100 Josaa0-t | O e voimiis,assto) | 052 | 009

Table 2: Reconstruction results for the second simulated conic in space with different pixel errors for
image points before fitting.

perturbation for the discreted conic points, then fit the disturbed points to get the new conic. The
closeness of the set of the conics generated in the second image can be deduced from Figure 3 in which
four of them are displayed.

Table 3 shows the computed A for each pair of conics. The absolute value of A increases with the
increasing discrepancy of conic pairs. Note that as C] is a slightly deformed version of Cy and C7 of
(', it is quite reasonable that C) is as close to Cf as to (', as suggested in the table.

A cr C’ 7 7 c o Cl
Co | 0.20107° 12 | —0.621075 | —0.8210-* | —0.4710"% | 0.2410-3 | 0.5010-2 | 0.26 10~ "
O, | -0.4610 | 0.6610™° | —0.4210~* | —0.8110=* | 0.1810=3 | 0.5110°2 | 0.26 10~*

Table 3: The computed A for each pair of conics C; and C}, C; is a conic of the first image and C a
conic of the second image.

5.2 The experiments with real images

5.2.1 Wooden house images

We first used a wooden house image sequence that we have been frequently used for self-calibration.
Each camera position is calibrated with respect to a coordinate frame associated to the objects in
view. Figure 4 illustrates one of the images in which we can see the calibration coordinate frame

associated to the scene and the three conics we used for experimentation. The stereo pair of images
appear in Figure 5 in which their contour images are displayed.
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l§0 200 ZéD ZZO ZéO ZéO 300 320 330 330

Figure 3: The four conics of the set of generated similar conics. If we look at conics from right to left
in the down-left part of the conics, they correspond to Cy, Cy, Cs and C.

Figure 4: One of the two original images in which the coordinate system for calibration and the conics
used in the experimentation are marked. To have an idea of the real size of the object, OA and BC
are measured as 13.75¢m and 2.5¢m.

Figure 5: The contour images of the stereo pair of images.
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The pair of images is treated by a Canny-like edge detector, then linked into contour chains. The
contour chains of the three conics, the paper conic, the conic of the cup and the conic of the plastic
cup are selected by hand from the contour chains. For automatic selection of contour chains of conics,
one may refer to [30]. The selected contour chains are then fitted by the procedure described above.
Figure 6 illustrates the contour chains and the fitting results of the three conics.

(a). (b). (c).

Figure 6: The contour chains to be fitted are displayed in line segments and the fitted conics are
dotted. (a): the paper conic. (b): the conic of the cup. (c): the conic of the plastic cup.

The correspondences of conics through two images are unambiguously established by comparing
the computed A of Table 4.

A paper | cup | plastic
paper | -0.02 | 358. —-0.9
cup 2595. | -0.1 1034.
plastic | —28. | 5214. | -0.6

Table 4: Results of the computation of A in order to establish the correspondences of the conics. The
raw entries correspond to the conics of the first image and the column entries to those of the second
image.

The reconstruction results are illustrated in Table 5. To have an idea of the reconstruction results,
each plane equation is put under the form (n”, —d) where n” is the unit normal direction vector of
the plane and d is the distance of the origin to the plane. The plane which corresponds to the real
solution, checked by applying the visibility test, is marked in bold font in the plane pair. Recall that
the coordinate frame for calibration is illustrated in Figure 4, the paper conic lies in the vertical plane
y = 0; The conics of the cup and the plastic cup lie almost in the planes parallel to the horizontal plane,
and the plastic cup is little higher than the cup. All these facts are confirmed by the reconstruction
results.

A S o3/09 Plane pair (nT, —d)
paper | 002 | 0510~ | ozz | TR TN ey s
v | o1 | o o | PSS s o557 o5
i ov | o | | 08 St s o

Table 5: The reconstruction results of the three conics of the wooden house images.
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5.2.2 Breakfast images

We then used a real stereo system coupled to a robot, the stereo system is off-line calibrated with a
special calibration objet. The image pair of Figure 7 is taken by this stereo system. The process from
edge detection to conic fitting is the same as in the above example. The fitted conics are shown in
Figure 8.

Figure 7: The initial stereo pair of breakfast images.

00T
002
00€
007
005

Figure 8: Fitting of three conics in one of the breakfast images.

The correspondences are unambiguously established based on the pairwise A, shown in Table 6.

bowl dish inside | dish outside
bowl -0.001 —15.0 -3.7
dish inside —6.0 -0.0001 0.54
dish outside —-9.4 3.8 -0.0005

Table 6: The computation of A for each pair of conics of two images. The raw entries correspond to
the conics of the first image and the column entries to those of the second image.

Table 7 shows the reconstruction results. To have a rough idea of the reconstruction quality, the
heights of the conics from the ground, measured with a ruler, are respectively 8.5¢m for bowl, 3.0cm
for dish outside and 2.3¢m dish inside. That makes a difference of 5.5¢m between bowl and dish
outside border and 0.7¢m between dish inside and outside. Obviously the planes on which conics
lie should be all parallel to the ground. The computed difference of the heights are 5em for 5.5e¢m
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and 0.8¢m for 0.7¢m. The difference of plane orientations are 2.6° between bowl and inside and 1.7°
between inside and outside border.

Quantitative conclusions can not be drawn from this due to inaccuracy of camera calibration and
irregularity of objects. Another important factor is that the porcelain objects have smoothed borders,
their image contours have the effect of a moving tangential contour.

A S o3/09 Plane pair (nT, —d)
bowl | o001 || 485 | 0ous | O O, a2y
dish inside | —0.0001 || 274.2 | 0.05 (0‘(9_201.(1%;‘0_%?’90472’5"85’170%?’7?‘702(“)’3)
dish outside | —0.0005 || 230.2 | 0.03 (0‘(g_lo?f};13:(?"0_?;1?;)’1"8";(?0?’7.‘;‘787?0)

Table 7: The reconstruction results of the three conics of the breakfast images.

Notice that in this experiment the computed © in Table 7 are much higher than in the previous
examples. However the ratios of singular values are small enough to indicate the numerical rank of
the matrix C. O is related to the scale of the problems.

5.3 Computation of the invariants

We have experimented the computation of invariants with the breakfast images.

In this experimentation, the fundamental matrix is first extracted from the two projection matrices
provided by the stereo calibration. Then, the two projection matrices up to a collineation are realised
by the formule 4. The conics are then projectively reconstructed. It follows the invariants are computed
from this projective reconstruction.

bowl and dish outside | bowl and dish inside | dish inside and dish outside
1 -17.9643 13.6358 11.1248
2 2.1267 0.6532 4.42365
3 2.1136 0.676919 4.42377
4 4.0192 4.01421 4.0008167

Table 8: The results of the computed invariants from the projective reconstruction of the conics.

As we know that three conics are three circles all parallel to the ground, for a pair of parallel

circles, the invariant equals 4 according to the formule (3).

As we have the full calibration of the stereo, we have also performed first the Euclidean recon-

struction, then compute the invariants from the Euclidean space conics.

bowl and dish outside | bowl and dish inside | dish inside and dish outside
1 4.0065789 0.645893 4.42348
2 2.08307 4.011819 4.454254
3 2.121461 0.3099998 4.055114
4 1.641428 0.64579351 4.4232326

Table 9: The results of the computed invariants from Euclidean reconstruction of the conics.

The computed invariants are very accurate and stable in both cases.
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6 Discussion

This paper proposed an algebraic invariant for a pair of non-coplanar conics in space with the help of
projective geometry and classical invariant theory. The relationship between the geometric invariant
(in terms of cross ratios) and the algebraic invariant is also established. Algebraic invariants of other
configuration composed of conics can be developed in a similar way. Instead of considering the system
of a pair of quadratic forms, we can consider the simultaneous invariants of linear forms and quadratic
forms.

It is also interesting to consider the special case where one of the conic is the absolute conic [22].
The invariant properties associated to a pair of conics are converted into the metric properties of one
conic with respect to the absolute conic.

In order to compute this invariant from two uncalibrated images of the conics, we have proposed
a solution to conic reconstruction from two images and conic correspondence between two images
within a unified framework for both projective and Euclidean case. We derived two polynomial
conditions A = 0 and © = 0 to establish the correspondences of conics. It is also shown that the
conic reconstruction is generally ambiguous up to two solutions, and only unique for non transparent
objects in Euclidean case.

The conic reconstruction method shown is simpler and more stable in comparison with existing
methods, as the intrinsic properties of the problem are fully exploited. The experimental results based
on both simulated and real images confirm that A is a discriminative correspondence criterion and
the reconstruction method is accurate and numerically stable.
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