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Abstract
A system has been developed to acquire, extend and

re�ne 3D geometric site models from aerial imagery.
This system hypothesize potential building roofs in an
image, automatically locates supporting geometric ev-
idence in other images, and determines the precise
shape and position of the new buildings via multi-
image triangulation. Model-to-image registration tech-
niques are applied to align new, incoming images
against the site model. Model extension and re�ne-
ment procedures are then performed to add previously
unseen buildings and to improve the geometric accu-
racy of the existing 3D building models.

1 Introduction
Acquisition of 3D geometric site models from aerial

imagery is currently the subject of an intense research
e�ort, sparked in part by the ARPA/ORD RADIUS
project [3, 4, 5, 8]. We have developed a set of im-
age understanding modules to acquire, extend and re-
�ne 3D volumetric building models, and to provide a
digital elevation map of the surrounding terrain. Sys-
tem features include model-directed processing, rigor-
ous camera geometry, and fusion of information across
multiple images for increased accuracy and reliability.

Site model acquisition involves processing a set of
images to detect buildings and to determine their 3D
shape and placement in the scene. The site models
produced have obvious applications in areas such as
surveying, surveillance and automated cartography.
For example, acquired site models can be used for
model-to-image registration of incoming images, thus
allowing the model to be automatically overlaid on
each image as an aid to visual change detection and
veri�cation of expected scene features. Two other im-
portant site modeling tasks are model extension { up-
dating the geometric site model by adding or removing
buildings based on the results of change detection {
and model re�nement { iteratively re�ning the shape,
placement and surface structure of building models as
more views become available. Model extension and
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re�nement are ongoing processes that are repeated
whenever new images become available, each updated
model becoming the current site model for the next
iteration. Thus, over time, the site model is steadily
improved to become more complete and more accu-
rate.

This paper focuses on algorithms for automated
building model acquisition and extension. To main-
tain a tractable goal for our research e�orts, we have
chosen initially to focus on a single generic class of
building models, namely 
at-roofed, rectilinear struc-
tures. The simplest example of this class is a rectan-
gular box-shape; however other examples include L-
shapes, U-shapes, and indeed any arbitrary building
shape such that pairs of adjacent roof edges are per-
pendicular and lie in a horizontal plane. Acquisition
of an initial site model is treated in Section 2, followed
by model extension in Section 3. This paper concludes
with a brief summary and a statement of future work.

2 Site Model Acquisition
The building model acquisition process involves

several subtasks: 1) line segment extraction, 2) build-
ing detection, 3) multi-image epipolar matching, 4)
constrained, multi-image triangulation, and 5) projec-
tive intensity mapping. These algorithms will be pre-
sented by way of an experimental case study using
images J1{J8 of the RADIUS model board 1 data set.
Figure 1 shows a sample image from the data set. Each
image contains approximately 1320�1035 pixels, with
about 11 bits of gray level information per pixel. Un-
modeled geometric and photometric distortions have
been added to each image to simulate actual operating
conditions. The scene is a 1:500 inch scale model of an
industrial site. Ground truth measurements are avail-
able for roughly 110 points scattered throughout the
model, which were used to determine the exterior ori-
entation for each image. The residual resection error
for each image is in the 2{3 pixel range, representing
the level of unmodeled geometric distortion present in
each image. This corresponds to a backprojection er-
ror of roughly 3{4.5 feet in (simulated) object space.
This is a signi�cant amount of error that presents a
good test of system robustness.



Figure 1: A sample image from Model Board 1

2.1 Line Segment Extraction
To help bridge the huge representational gap be-

tween pixels and site models, feature extraction rou-
tines are applied to produce symbolic, geometric rep-
resentations of potentially important image features.
The algorithms for acquiring building models rely on
extracted straight line segments [2]. At the heart of
the Boldt algorithm is a hierarchical grouping system
inspired by the Gestalt laws of perceptual organiza-
tion. Zero-crossings of the Laplacian of the intensity
image provide an initial set of local intensity edges. Hi-
erarchical grouping then proceeds iteratively; at each
iteration edge pairs are linked and replaced by a sin-
gle longer edge if their end points are close and their
orientation and contrast values are similar. Filtering
to keep line segments with a length of at least 10 pix-
els and a contrast of at least 15 gray levels produced
roughly 2800 line segments per image. Figure 2 shows
a representative set of lines extracted from the image
shown in Figure 1.

2.2 Building Detection
The goal of automated building detection is to

roughly delineate building boundaries that will later
be veri�ed in other images by epipolar feature match-
ing and triangulated to create 3D geometric build-
ing models. The building detection algorithm is
based on �nding image polygons corresponding to
the boundaries of 
at, rectilinear rooftops in the
scene [6]. Brie
y, possible roof corners are identi�ed
by line intersections. Perceptually compatible cor-
ner pairs are linked with surrounding line data, en-
tered into a feature-relation graph, and weighted ac-
cording to the amount of support they receive from
the low-level image data. Potential building roof
polygons appear as cycles in the graph; virtual cor-
ner features may be hypothesized to complete a cy-
cle, if necessary. Rooftops are �nally extracted by
partitioning the feature-relation graph into a set of
maximally weighted, independent cycles representing
closed, high-con�dence building roofs.

Figure 3 shows the results of building detection on
image J3 of the model board 1 data set. The roof

Figure 2: Line segments extracted from Figure 1

detector generated 40 polygonal rooftop hypotheses.
Most of the hypothesized roofs are rectangular, but
six are L-shaped. Note that the overall performance
is quite good for buildings entirely in view. Most of
the major roof boundaries in the scene have been ex-
tracted, and in the central cluster of buildings (see
area A in Fig. 3) the segmentation is nearly perfect.

There were some false positives, i.e. polygons ex-
tracted that do not in fact delineate the boundaries of
a roof. The most obvious example is the set of overlap-
ping polygonal rooftops detected over the large build-
ing with many parallel roof vents (area B) Note that
the correct outer outline of this building roof is de-
tected, however. There are also some false negatives,
which are buildings that should have been detected,
but weren't. The most prevalent example of this is
a set of buildings (area C) that are only partially in
view at the edge of the image. Label D marks a false
negative that is in full view. Two adjacent corners in
the rooftop polygon were missed by the corner extrac-
tion algorithm. It should be stressed that even though
a single image was used here for bottom-up hypothe-
ses, buildings that are not extracted in one image will
often be found easily in other images with di�erent
viewpoints and sun angles.

There are several cases that cannot be strictly clas-
si�ed as false positives or false negatives. Several
split-level buildings appearing along the right edge of
the image (area E) are outlined with single polygons
rather than with one polygon per roof level. Some
peaked roof buildings were also outlined, even though
they do not conform to the generic assumptions un-
derlying the system.

2.3 Multi-image Epipolar Matching
After detecting a potential rooftop in one image,

corroborating geometric evidence is sought in other
images (often taken from widely di�erent viewpoints)
via epipolar feature matching. Rooftop polygons are
matched by searching for each component line seg-
ment separately and then fusing the results. For each
polygon segment from one image, an epipolar search
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Figure 3: Roof hypotheses extracted from image J3. Alphabetic labels are referred to in the text.

area is formed in each of the other images, based on
the known camera transformations and the assump-
tion that the roof is 
at. This quadrilateral search
area is scanned for possible matching line segments,
each potential match implying a di�erent roof height
in the scene. Results from each line search are com-
bined in a 1-dimensional histogram, each match voting
for a particular roof height, weighted by compatibil-
ity of the match in terms of expected line segment
orientation and length. A single global histogram ac-
cumulates height votes from multiple images, and for
multiple edges in a rooftop polygon. After all votes
have been tallied, the histogram bucket containing the
most votes yields an estimate of the roof height in the
scene and a set of correspondences between rooftop
edges and image line segments from multiple views.

Epipolar matching of a rooftop hypothesis is con-
sidered to have failed when, for any edge in the rooftop
polygon, no line segment correspondences are found in
any image. Based on this criterion, epipolar match-
ing failed on eight rooftop polygons. Six were either
peaked or multi-layer roofs that did not �t the generic

at-roofed building assumption, and the other two
were building fragments with some sides shorter than
the minimum length threshold on the line segment
data. At this stage, six incorrect building hypotheses
were removed by hand; detecting and removing such
mistakes automatically is being actively investigated.

2.4 Multi-image Line Triangulation

Multi-image triangulation is performed to deter-
mine the precise size, shape, and position of a building
in the local 3D site coordinate system. A nonlinear
estimation algorithm has been developed for simul-
taneous multi-image, multi-line triangulation of 3D
line structures. Object-space constraints are imposed
for more reliable results. This algorithm is used for
triangulating 3D rooftop polygons from the line seg-
ment correspondences determined by epipolar feature
matching. Outlines of the �nal set of triangulated
rooftops are shown in Figure 4.

The parameters estimated for each rooftop edge are
the Pl�ucker coordinates of the algebraic 3D line coin-
ciding with the edge - speci�c points of interest, like
vertices of the rooftop polygon, are computed as the
intersections of these in�nite algebraic lines. Pl�ucker
coordinates are a way of embedding the 4-dimensional
manifold of 3D lines into R6. Although the Pl�ucker
representation requires 6 parameters to be estimated
for each line rather than 4, it simpli�es the represen-
tation of geometric constraints between lines. For the
generic 
at-roofed rectilinear building class being con-
sidered here, we specify a set of constraints to ensure
that pairs of adjacent lines in a traversal around the
polygon are perpendicular, that all lines are coplanar,
and that all lines are perpendicular to the Z-axis of
the local site coordinate system. An iterative, non-
linear least-squares procedure determines the Pl�ucker
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Figure 4: Reprojection of 3D triangulated rooftops back into image J3 (compare with Figure 3).

coordinates for all lines simultaneously such that all
the object-level constraints are satis�ed and an ob-
jective \�t" function is minimized that measures how
well each projected algebraic line aligns with the 2D
image segments that correspond to it.

After triangulation, each 3D rooftop polygon is
extruded down to the ground to form a volumetric
model. For the Model Board 1 site, the ground was
represented as a horizontal plane with Z-coordinate
value determined from the ground truth measure-
ments. More generally, the system will soon be using
digital terrain maps produced by the UMass Terrain
Reconstruction System[9].

To evaluate the 3D accuracy of the triangulated
building polygons, 21 roof vertices were identi�ed
where ground truth measurements are known (num-
bered vertices in Figure 4). The average Euclidean
distance between triangulated polygon vertices and
their ground truth locations is 4.31 feet, which is rea-
sonable given the level of geometric distortion present
in the images. The average horizontal distance error
is 3.76 feet, while the average vertical error is only
1.61 feet. This is understandable, since all observed
rooftop lines are considered simultaneously when esti-
mating the building height (vertical position), whereas
the horizontal position of a rooftop vertex is primarily
a�ected only by its two adjacent edges.

2.5 Projective Intensity Mapping
Backprojection of image intensities onto polygo-

nal building model faces enhances their visual real-
ism and provides a convenient storage mechanism for
later symbolic extraction of detailed surface structure.
Planar projective transformations provide a locally
valid mathematical description of how surface struc-
ture from a planar building facet maps into an image.
By inverting this transformation using known building
position and camera transformations, intensity infor-
mation from each image is backprojected to \paint"
the walls and roof of the building model. Since mul-
tiple images are used, intensity information from all
faces is available, even though they are not all visi-
ble from any single view (see Figure 5). The resulting
intensity mapped site model can then be rendered to
predict how the scene will appear from a new view,
and on high-end workstations realistic real-time \
y-
throughs" are achievable.

3 Site Model Extension
The goal of site model extension is to �nd unmod-

eled buildings in new images and add them into the
site model database. The main di�erence between
model extension and model acquisition is that now
the camera pose for each image can be determined via
model-to-image registration. Our approach to model-
to-image registration involves two components: model
matching and pose determination.



Figure 5: Intensity map information is stored with the
planar facets of a building model.

The goal of model matching is to �nd the corre-
spondence between 3D features in a site model and
2D features that have been extracted from an im-
age; in this case determining correspondences between
edges in a 3D building wireframe and 2D extracted
line segments from the image. The model matching
algorithm described in [1] is being used. Based on a
local search approach to combinatorial optimization,
this algorithm searches the discrete space of correspon-
dence mappings between model and image features for
one that minimizes a match error function. The match
error depends upon how well the projected model ge-
ometrically aligns with the data, as well as how much
of the model is accounted for by the data. The result
of model matching is a set of correspondences between
model edges and image line segments, and an estimate
of the transformation that brings the projected model
into the best possible geometric alignment with the
underlying image data.

The second aspect of model-to-image registration is
precise pose determination. It is important to note
that since model-to-image correspondences are being
found automatically, the pose determination routine
needs to take into account the possibility of mistakes
or outliers in the set of correspondences found. The
robust pose estimation procedure described in [7] is
being used. At the heart of this code is an iterative,
weighted least-squares algorithm for computing pose
from a set of correspondences that are assumed to be
free from outliers. The pose parameters are found by
minimizing an objective function that measures how
closely projected model features fall to their corre-
sponding image features. Since it is well known that
least squares optimization techniques can fail catas-
trophically when outliers are present in the data, this
basic pose algorithm is embedded inside a least me-
dian squares (LMS) procedure that repeatedly sam-
ples subsets of correspondences to �nd one devoid of
outliers. LMS is robust over data sets containing up to
50% outliers. The �nal results of pose determination
are a set of camera pose parameters and a covariance
matrix that estimates the accuracy of the solution.

3.1 Model Extension Example
The model extension process involves registering a

current geometric site model with a new image, and
then focusing on unmodeled areas to recover previ-
ously unmodeled buildings. This process is illustrated
using the partial site model constructed in Section 2,
and image J8 from the Radius Model Board 1 dataset.

Results of model-to-image registration of image J8
with the partial site model can be seen in Figure 6,
which shows projected building rooftops from the site
model (thin) overlaid on the image. Image areas
containing buildings already in the site model were
masked o�, and the building rooftop detector was run
on the unmodeled areas. The multi-image epipolar
matching and constrained multi-image triangulation
procedures from Section 2 were then applied to verify
the hypotheses and construct 3D volumetric building
models. These were added to the site model database,
to produce the extended model shown in Figure 6
(thick lines). The main reason for failure among build-
ing hypotheses that were not veri�ed was that they
represented buildings located at the periphery of the
site, in an area which is not visible in very many of
the eight views. If more images were used with greater
site coverage, more of these buildings would have been
included in the site model.

4 Summary and Future Work
A set of IU algorithms for automated site model

acquisition and extension have been presented. The
algorithms currently assume a generic class of 
at
roofed, rectilinear buildings. To acquire a new site
model, an automated building detector is run on one
image to hypothesize potential building rooftops. Sup-
porting evidence is located in other images via epipo-
lar line segment matching, and the precise 3D shape
and location of each building is determine by multi-
image triangulation. Projective mapping of image
intensity information onto these polyhedral building
models results in a realistic site model that can be
rendered using virtual \
y-through" graphics. To per-
form model extension, the acquired site model is reg-
istered to a new image, and model acquisition pro-
cedures are focused on previously unmodeled areas.
In an operational scenario, this process would be re-
peated as new images become available, gradually ac-
cumulating evidence over time to make the site model
database more complete and more accurate.

Several avenues for system improvement are open.
One high priority is to add capabilities for detecting
and triangulating peaked roof buildings. Another sig-
ni�cant improvement would be extending the epipo-
lar matching and triangulation portions of the system
to analyze why a particular building roof hypothesis
failed to be veri�ed. There are many cases where the
rooftop detector has outlined split-level buildings with
a single roof polygon; automatic detection of these sit-
uations, followed by splitting of the rooftop hypothesis
into two separate hypotheses, would result in an im-
provement in system performance.

These symbolic building extraction procedures will
soon be combined with a correlation-based terrain ex-
traction system [9]. The two techniques clearly com-



Figure 6: Updated site model projected onto image J8.

plement each other: the terrain extraction system can
determine a digital elevation map upon which the vol-
umetric building models rest, and the symbolic build-
ing extraction procedures can identify building occlu-
sion boundaries where correlation-based terrain recov-
ery is expected to behave poorly. A tighter coupling of
the two systems, where an initial digital elevation map
is used to focus attention on distinctive humps that
may be buildings, or where correlation-based recon-
struction techniques are applied to building rooftop
regions to identify �ne surface structure like roof vents
and air conditioner units, may also be investigated.
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