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Abstract

In this thesis, we present an unsupervised technique for visual learning which is based
on density estimation in high-dimensional spaces using an eigenspace decomposition.
Two types of density estimates are derived for modeling the training data: a mul-
tivariate Gaussian (for unimodal distributions) and a Mixture-of-Gaussians model
(for multimodal distributions). These probability densities are then used to formu-
late a maximum-likelihood estimation framework for automatic target detection as
well as a novel Bayesian similarity measure for image matching for image databases.
This learning technique has been specifically applied to the problems of detection
and recognition of human faces. The resulting automatic face recognition system has
been extensively tested by the US Army Research Laboratory as part of ARPA’s
“FERET” Face Recognition Program, where it was most recently found to be the top
competitor.

Thesis Supervisor: Alex P. Pentland
Title: Toshiba Professor, Media Arts and Sciences



Acknowledgments

First of all I would like to thank my thesis advisor Alex Pentland for his help, en-
couragement and patience during the last 5 years and also my committee members,
Prof. Eric Grimson and Prof. Jacob White for their time and commitment.

I would like to thank all my friends in Vismod for their help and support through-
out the years. Special thanks go to the TRS-80 Gang: Lee Campbell, Ali Azarbaye-
jani, Christopher Wren, Andy Wilson, Dave Becker, Matt Krom, Claudio Pinhanez
and Stephen Intille.

I would especially like to thank my sister Marjan, for her constant encouragement
in my moments of despair.

Also great thanks to Wasiuddin Wahid for his help with the FERET tests as well
as kind help in being a typist for me. '

Finally, I'm greatly indebted to my friend and collaborator Chahab Nastar who

contributed his knowledge, expertise and code in the XYI warping method.



Contents

1 Introduction

1.1 TheProblem . .. .. .. .. . . . . e
12 TheApproach . . . . . . . . . . . i
1.3 TheResults . . . . . . . . . . . . i i
14 ThesisOutline. . . . . . . . . it

2 Background

2.1 Visual Object Detection . . . ... .. .................
2.2 Visual Object Recognition . . . . . ... ... ... ..........
23 RelatedWork . . ... .. ... ... . ... e
2.3.1 Recognition: Cootes, Taylor & Lanitis . .. ..........
2.3.2 Matching: Jones & Poggio . . . . ... ... ... ... ...
2.3.3 Synthesis: Beymer & Poggio . . . . .. ... .. ... ... ..
2.3.4 Detection: Sung & Poggio . . . . ... ... ... .o
235 Extensions. . . .. ... ...

3 Density Estimation in Eigenspace

3.1 Principal Component Imagery . . . ... ... ... ..........
3.2 Gaussian Densities . . . . . . . . . . .. e
3.3 Multimodal Densities . . . . . . . . .. ... .. o

4 Probabilistic Detection
4.1 Maximum Likelihood Detection . . .. .. ... ... ... ......

4.2 Applications . . . . . ... ... o

10
10
12
13
13

15
17
18
20
20

20
21

4

21
22

23
24
26
29



421 Faces. . . . . . . . e
422 Hands ... .. .. .. . ..

5 Probabilistic Recognition

5.1 Similarity Measures . . . . . .. . ... .. ... ... . ...
5.2 Representations for d(f1,12) . . .. . ... ... ... . ...
5.3 XYIImage Warping . .. .. ... ... ... ... ........
5.4 Analysis of Deformations . . . . ... ... .. .............
5.4.1 Statistical Modelingof Modes . . . . . ... ..........
5.5 Experiments . . . . . ... ... ... ... e
5.5.1 Matching with Eigenfaces . .. ... ... ... ........
5.50.2 Matching with XYI Deformations . . . . ... ... ... ...
5.5.3 Matching with Optical Flow and Intensity Differences . . . . .

6 FERET Test Results
6.1 The FERET Program ... .......................
6.2 MIT Algorithm Performance . . . . . . . . . .o v v v,

7 Conclusions & Future Work

7.1 Estimation & Detection . . . . . . . ... .. . ... . ... .....
7.2 Recognition . . .. .. .. ... . . ... ...
73 FutureWork . . . . . . . . . . . . . .

46
47
47
49
52
53
54
3d
56
60

62
62
63

71
71
72
73

75



List of Figures

1-1

3-1

3-2

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8
4-9

(a) input image, (b) face detection, (c) input image, (d) hand detection 11

(a) Decomposition into the principal subspace F' and its orthogonal
complement F for a Gaussian density, (b) a typical eigenvalue spectrum
obtained from PCA. . . . .. . .. ... .. ... o
Decomposition into the principal subspace F' and its orthogonal com-

plement F for an arbitrary density. . . . ... ... ... ... .. ..

Target saliency map S(i,j) showing the probability of a left eye pattern
over theinput image. . . . . . . . . .. . ...
(a) Examples of facial feature training templates and (b) the resulting
typical detections. . . . . . ... ...
(a) Detection performance of an SSD, DFFS and a ML detector, (b)
geometric interpretativu of the detectors. . . . . . . .. ..... ...
Multiscale Face Detection . . . . . ... ... ... ..........
The face processing system. . . .. .. .................
(a) original image, (b) position and scale estimate, (c) normalized head
image, (d) position of facial features. . . ... ... ... ... ....
(a) aligned face, (b) eigenspace reconstruction (85 bytes) (c) JPEG
reconstruction (530 bytes). . . . . . ... ... oL
The first 8 eigenfaces. . . . . . . . . ... .o oo
Photobook: FERET face database. . . . . ... ... .........

4-10 Examples of hand gestures and their diffused edge representation. . .

25



4-11 (a) a random assortment of hand gestures (b) images ordered by simi-
larity (left-to-right, top-to-bottom) to the image at the upper left. .
4-12 (a) Distribution of training hand shapes (shown in the 1st two dimen-
sions of the principal subspace) (b) Mixture-of-Gaussians fit using 10
components. . . . . . ...l e e e
4-13 (a) Original grayscale image, (b) negative log-likelihood map (at most
likely scale) and (c) ML estimate of position and scale superimposed
onedge-map. . . . . . .. ... e
4-14 (a) Example of test frame containing a hand gesture amidst severe
background clutter and (b) ROC curve performance contrasting SSD
and ML detectors. . . .. ... ... ... ... ..........

5-1 An image and its XYI surface representation . . . . ... ... .. ..
5-2 A cross-section of the intensity surface S being pulled towards S’ by
imageforces . . . . ... ... .. L

5-3 Example of XYI warping two images. . . . . . ... ... ... ....

5-4 Examples of FERET frontal-view image pairs used for (a) the Gallery
set (training) and (b) the Probe set (testing). . ... .........

5-5 The face alignmentsystem . . . . ... ... ..............

5-6 The first 8 normalized eigenfaces. . . . .. .. ... ..........

5-7 Examples of (a) intrapersonal and (b) extrapersonal facial warps.

5-8 (a) distribution of the two classes in the first 3 principal components
(circles for ©, dots for ) and (b) schematic representation of the two
distributions showing orientation difference between the corresponding
principal eigenvectors. . . . .. .. .. ... ... ... ...

5-9 Total number of misclassified extrapersonal matches (with P(Q;|U) >

0.5) as a function of the principal subspace dimensionalities M; and Mg. 58

6-1 Dual Eigenfaces: (a) Intrapersonal, (b) Extrapersonal . . . . ... ..

6-2 Comparison of nearest-neighbor (MIT95) vs. Bayesian similarity (MIT96)

methods on FA/FBFERET data. . . . .. ... ... .........



6-4
6-5

Comparison of nearest-neighbor (MIT95) vs. Bayesian similarity (MIT96)
methods on Duplicate FERET data. . . . ... ... .........

Results of FERET’96 Competition on FA/FB data. . . . ... .. ..
Results of FERET’96 Competition on Duplicate data. . . . . . .. ..

69




List of Tables

5.1

6.1
6.2
6.3

Performance of Bayesian classifier with three different data represen-
tations: full XYI-warp, intensity differences (I-diff) and optical flow
(XY-flow). Results are mean/maximum values over nearly 2000 ex-

perimental trials with varying Myand Mg. . . . . ... ... ... ..

FA vs FB results on the FERET 1995/1996 tests . .. ..... ...
Duplicate Scores on the FERET 1995/1996 tests . . . . .. ... ...
Variations in performance over 5 different galleries of fixed size(200)
on duplicate probes. Algorithms are order by performance (1 to 7).
The order is by percentage of probes correctly identified (rank 1). Also
included in the table is average rank 1 performance for all algorithms

and number of probes scored . . . . ... ... ... L. L.



Chapter 1

Introduction

1.1 The Problem

The central problem tackled in this thesis is that of automatic detection and recog-
nition of objects represented by 2D image patterns (mainly frontal human faces)
using a probabilistic framework. Given an input image containing a human face,
for example, we would like to designate the most likely location of the face in the
image, compensate for sources of image variation (such as scale, translation, ro-
tation and lighting) and ultimately recognize the identity of the individual in the
image. This “face-finding/recognition” task constitutes a visual routine requiring a
detection/segmentation mechanism for visual attention followed by an identification
mechanism for visual recognition.

Visual attention is the process of restricting higher-level processing to a subset of
the visual field, referred to as the focus-of-attention (FOA). Palmer [31] haz suggested
that visual attention is the process of locating the object of interest and placing
it in a canonical (or object-centered) reference frame suitable for recognition (or
template matching). We have developed a computational technique for automatic
object recognition, which is in accordance with Palmer’s model of visual attention
(see section 4.2.1). The system uses a probabilistic formulation for the estimation
of the position and scale of the object in the visual field and remaps the FOA to

an object-centered reference frame, which is subsequently used for recognition and
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(d)

Figure 1-1: (a) input image, (b) face detection. (¢) input image, () hand detection

verilication.
At a stmple level the underlying mechanisim of attention during a visual scarch
task can be based on a spatiotopic deteclion map S(i,j) which is a function of the

image information in a local region 2

S )= fI{IG+rj+e):(r.c)€ R} (1.1)

Ior example detection maps have been constructed which employ spatio-temporal
changes as cues for foveation [1] or other low-level image features such as local sym-
metry for detection of interest points [10]. However bottom-up techniques based on
low-level features lack contert with respect to high-level visnal tasks such as object
recognition. In a recognition task, the selection of the FOA is driven by higher-level
soals and therefore requires internal representations ol an object’s appearance and a
means of comparing candidate objects in the FOA to the stored object models.
Spectfically, i an object-based visual search the detection map is a function of
the degree of match between a candidate object in a local image region and an inter-
nal model ol the object. In view-based recognition (as opposed to 31 geometric or
invariant-based recognition), the detection can be formulated in terms of visual simi-
larity using a variety of metrics ranging from simple template matcehing scores to more

sophisticated measures using, for example, robust statistics for image correlation [6].



1.2 The Approach

In this thesis, however, we are primarily interested in detection maps which have a
probabilistic interpretation as object-class membership functions or likelihoods. These
likelihood functions are learned by applying density estimation techniques in comple-
mentary subspaces obtained by an eigenvector decomposition. Qur approach to this
learning problem is view-based — i.e., the learning and modeling of the visual ap-
pearance of the object from a (suitably normalized and preprocessed) set of training
imagery. Figure 1-1 shows examples of the automatic selection of FOA for detec-
tion of faces and hands. In each case, the target object’s probability distribution
was learned from training views and then subsequently used in computing likelihoods
for detection. The face representation is based on appearance (norrﬁalized grayscale
image) whereas the hand’s representation is based on the shape of its contour. The
maximum likelihood (ML) estimates of position and scale are shown in the figure by
the cross-hairs and bounding box, respectively.

Once the object has been detected, it is normalized for scale, translation and in-
plane rotation, prior to visual recognition. The face recognition system developed
in this thesis makes use of two types of recognition strategies: the first consists of
projecting the normalized image into a face-space eigenspace and performing identity
matching using nearest neighbor rule. Whereas the second approach is a more so-
phisticated method which uses a probabilistic similarity measure based on two types
of learned image deformations: intra-personal variations corresponding to different
appearances of the same individual and extra-personal variations corresponding to
appearance changes between different individuals. Both these classes are represented
by their respective probability density functions which are derived from training data
using the same eigenvector decomposition method used for visual modeling for object

detection.
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1.3 The Results

The experimental results in this thesis test both the detection and recogniton aspects
of our system. For the detection stage, the visual density estimates are used to
formulate a mazimum likelthood (ML) framework for pattern detection which is used
as part of a detection and normalization system for automatic face recognition. This
ML detector is then compared in experiments over a standard matched filter type
detection scheme where it is shown to perform significantly better (by typically an
order of magnitude) for detection of facial features. Additionally, the face processing
system has been tested as part of the US Army’s FERET face recognition competition
where a 97% reliability in detection was obtained.

In addition, we have tested the recognition aspect of our systern with various face
databases. The nearest neighbor eigenspace matching technique has been tested on
the media lab database of 8000 faces where it was found to have a 95% recognition
accuracy. This simple matching rule was also tested on the FERET database where
it achieved a slightly lower recognition rate (87%). The second recognition strategy,
using a probabilistic similarity measure, however was found to give the best overall
performance. In September 1996, our system was found to be the top performer in

the FERET competition with recognition rates of 95% on a database of size 3000.

1.4 Thesis Outline

The organization of this thesis is as follows. In Chapter 2, we provide background
on related work on visual detection and recognition. In Chapter 3, we present a
subspace learning method for characterizing the density of high-dimensional visual
data. These density estimates are then used in visual detection examples presented in
Chapter 4 which includes examples of head detection, facial feature detection as well
as hands. This chapter also includes recognition examples using a nearest neighbor
matching technique. In Chapter 5, we propose a prooabilistic alternative to the

nearest neighbor matching and also use a novel representation for image differences
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based on a physically deformable XY1 surface. Next in Chapter 6, we present results
of the FERET face recognition tests in which our face recognition system participated.

Finally in Chapter 7, we conclude with a summary of the thesis and discuss future

directions for research.



Chapter 2

Background

In recent years, computer vision research has witnessed a growing interest in eigenvec-
tor analysis and subspace decomposition methods. In particular, eigenvector decom-
position has been shown to be an effective tool for solving problems which use high-
dimensional representations of phenomena which are intrinsically low-dimensional.
This general analysis framework lends itself to several closely related formulations in
object modeling and recognition which employ the principal modes or characteristic

degrees-of-freedom for description. The identification and parametric representation

‘of a system in terms of these principal modes is at the core of recent advances in
physically-based modeling [34], correspondence and matching [42], and parametric
‘deﬁcrip’tibns of shape [8].

‘Eigén\rector—based methods also form the basis for data analysis techniques in

, pa.tternmrecognition and statistics where they are used to extract low-dimensional

subs?aces comprised of statistically uncorrelated variables which tend to simplify

tasks such as classification. The Karhuner-Loeve Transform (KLT) [23] and Principal

'Components Ana.lyéis (PCA) [16] are examples of eigenvector-based techniques which
are commonly used for dimensionality reduction and feature extraction in pattern

recognition.

In computer vision, eigeavector analysis of imagery has been used for characteri-

s _ ?av.tibn‘ of human faces [20] and automatic face recognition using “eigenfaces” [44][32).

o : VMOre“ljecently, principal component analysis of imagery has also been applied for

15



robust object detection [32][7], nonlinear image interpolation [5], visual learning for
object recognition [25][47], as well as visual servoing for robotics [30].

Specifically, Murase & Nayar [25] used a low-dimensional parametric eigenspace for
recovering object identity and pose by matching views to a spline-based hypersurface.
Nayar et al. [30] have extended this technique to visual feedback control and servoing
for a robotic arm in “peg-in-the-hole” insertion tasks. Pentland et al. [32] proposed a
view-based multiple-eigenspace technique for face recognition under varying pose as
well as for the detection and description of facial features. Similarly, Burl et al. [7]
used Bayesian classification for object detection using a feature vector derived from
principal component images. Weng [47] has proposed a visual learning framework
based on the KLT in conjunction with an optimal linear discriminant transform for
learning and recognition of objects from 2D views.

However, these authors (with the exception of [32]) have used eigenvector a.na.lysis
primarily as a dimensionality reduction technique for subsequent modeling, interpo-
lation, or classification. In contrast, our method uses an eigenspace decomposition as
an integral part of an efficient technique for probability density estimation of high-
dimensional data.

Our learning method estimates the complete probability distribution of the ob-
ject using an efgenvector decomposition of the sample covariance matrix of a set
of training views. The desired object density is hence decomposed into two com-
ponents: the density in the principal subspace (containing the traditionally-defined
principal components) and its orthogonal complement (which is usually discarded in
PCA). We formulate an optimal density estimate for the case of Gaussian data and a
near-optimal estimator for arbitrarily complex distributions in terms of a Mixture-of-
Gaussians. These density estimates are then used for maximum likelihood detection
of faces and articulated hands in natural images.

Furthermore, our learning method differs from supervised visual learning with
function approximation networks [38] in which a hypersurface representation of an
input/output map is automatically learned from a set of examples. instez.i, we use a

probabilistic formulation which combines the two standard paradigms of unsupervised
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learning — PCA and density estimation — to arrive at a computationally feasible
estimate of the class conditional density function P(x|Q) for an object based on its

(high-dimensional) visual appearance — its image x.

2.1 Visual Object Detection

The standard detection paradigm in image processing is that of normalized correlation
or template matching. However this approach is only optimal in the simplistic case
of a deterministic signal embedded in additive white Gaussian noise. When we begin
to consider a object class detection problem — e.g, finding a generic human face or a
human hand in a scene — we must incorporate the underlying probability distribution
of the object. Subspace methods and eigenspace decompositions are particularly well-
suited to such a task since they provide a compact and parametric description of
the object’s appearance and also automatically identify the degrees-of-freedom of the
underlying statistical variability. ‘

In particular, the eigenspace formulation leads to a powerful alternative to stan-
dard detection techniques such as template matching or normalized correlation. The
reconstruction error (or residual) of the eigenspace decomposition (referred to as the
“distance-from-face-space” in the context of the work with “eigenfaces” [44]) is an
effective indicator of similarity [44, 32]. The residual error is easily computed using
the projection coefficients and the original signal energy. This detection strategy is
equivalent to matching with a linear combination of eigentemplates and allows for a
greater range of distortions in the input signal (including lighting, and moderate rota-
tion and scale). In a statistical signal detection framework, the use of eigentemplates
has been shown to yield superior performance in comparison with standard matched
filtering [21][32].

In [32] we used this formulation for 2 modular eigenspace representation of facial
features where the corresponding residual — referred to as “distance-from-feature-
space” or DFFS — was used for localization and detection. Given an input image, a

saliency map was constructed by computing the DFFS at each pixel. When using M

v
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eigenvectors, this requires M convolutions (which can be efficiently computed using
an FFT) plus an additional local energy computation. The global minimum of this
distance map was then selected as the best estimate of the location of the object.

In this thesis we will show that the DFFS can be interpreted as an estimate of
a marginal component of the probability density of the object and that a complete
estimate must also incorporate a second marginal density based on a complementary
“distance-in-feature-space” (DIFS). Using our estimates of the object densities, we
formulate the problem of object detection from the point of view of a maximum
likelihood (ML) estimation problem. Specifically, given the visual field, we estimate
the position (and scale) of the image region which is most representative of the object
of interest. Computationally this is achieved by sliding an m-by-n observation window
throughout the image and at each location computing the likelihood that the local
subimage X is an instance of the object class 2 — i.e., P(x|(2). After this probability
map is computed, we select the location corresponding to the highest likelihood as our
ML estimate of the object location. Note that the likelihood map can be evaluated
over the entire parameter space affecting the object’s appearance which can include

transformations such as scale and rotation.

2.2 Visual Object Recognition

Current work in the area of image-based object modeling and visual recognition treats
the shape and texture components of an object in a separate and often indepen-
dent manner. The technique of extracting shape and forming a shape-normalized
or “shape-free” grayscale component was suggested by Craw & Cameron [10], which
used an eigenface technique on shape-free faces for matching and recognition. Re-
cently Craw et al. [11] have done a study which combines these two independently
derived components (a manually-extracted shape component plus a shape-free tex-
ture) for enhanced recognition performance. Similarly, Lanitis et al. [22] have devel-
oped an automatic face-processing system which is capable of combining the shape

and texture components for recognition, albeit independently. Their system detects
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canonical points on the face and uses these landmarks to warp faces to a shape-
free representation prior to implementing an eigenface technique for characterizing
grayscale variations (face texture).

Similarly, the face vectorizer system of Beymer & Poggio [3] uses optical flow to
obtain a shape representation decoupled from that of texture (in the form of a 2D
correspondence field between a given face and a canonical model). However, one of
the difficulties with using optical flow for correspondance between two different indi-
viduals is that the technique is inherently failure-prone when there are large grayscale
variations between the images (e.g., presence/absence of facial hair). A pixel corre-
spondence technique must be able to deal with intensity variations as well as spatial
deformations, preferably in a unified framework. |

In this thesis, we use a novel image representation which combines both the spatial
(XY) and grayscale (I) components of the image into a 3D surface (or manifold)
and then efficiently solves for a dense correspondence field in the XYI space. These
image manifolds are modeled as physically-based deformable surfaces which undergo
deformations in accordance with a specified force field. The physical dynamics of the
system are efficiently solved for using a formulation in terms of the analytic modes
of vibration [26]. This manifold matching technique can be viewed as a more general
formulation for iinage correspondence which, unlike optical flow, does not require
a constant brightness assumption. In fact, by simply disabling the I component
of our deformations we can obtain a standard 2D deformable mesh which yields
correspondences similar to an optical flow technique with thin-plate regularizers.

This novel image correspondence method is used to match two facial images by
deforming the XYI surface of one image into the another (under “physical forces”
exerted by nearby mesh nodes). The resulting vector of displacements yields a pixel-
dense set of correspondences which can be used for image warping. In addition the
vector of modal amplitudes is then used to classify the deformation into one of two
categories: interpersonal vs. eztrapersonel. This final classification is performed using
the a posteriori probabilities computed from the two class-conditional likelihoods

which are themselves estimated from training data using an efficient subspace method
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for density estimation of high-dimensional Gaussian data.

2.3 Related Work

In this section we review some of the related work on face processing and extensions

of the eigenspace visual learning techniques to other domains.

2.3.1 Recognition: Cootes, Taylor & Lanitis

Lanitis et al. [22] have developed a system which uses an iterative gradient descent
process with an Active Shape Model which consists of an eigenspace representation
of the XY coordinates of a set of fiducial 2-D points plus local grayscale informa-
tion. Although impressive face fitting performances have been demonstrated with
this technique, it is not clear whether this system can funciion as a general face spot-
ter. Other applications that have been demonstrated using this system are recovering

pose, facial identification, gender recognition, as well as expression recognition.

2.3.2 Matching: Jones & Poggio

A similar approach to the XYI technique presented in this thesis is work by Jones
and Poggio [17] which uses a linear combination of shape and texture components
of an image for matching. Shape is represented by a linear combination of optical
flow warp fields with respect to a reference image plus a global affine transformation.
The texture component is represented by a linear combination of normalized textures.
Matching is obtained by minimizing the L, norm of a novel image with that of the
model using a stochastic gradient descent method.

The similarity to the XYI technique is that the shape and texture components
are solved for simultaneously. The difference however is that these components are
represented independently as opposed to the unified method of XYI warping. Using a
hierarchical pyramid technique, Jones demonstrates robustness with respect to scale

as well rotation and translation. In the XYI technique, these invariances are obtained
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by the coarse alignment provided by the face processor which uses head location and
eye locations to align facial images prior to XYI warping.

One of the possible disadvantages of Jones’ method is its reliance or: optical flow
which is unreliable when matching images which have large grayscale variations due
to facial hair and/or lighting, necessitating the use of manual correspondences as an
initial step.

It would be interesting to see the recognition performance of Jones’ method on a
standardized test set such as the FERET database since no examples of recognition

performance are provided in the cited paper.

2.3.3 Synthesis: Beymer & Poggio

In Beymer’s work [3], images are vectorized by cornputi.ng a corresponcence flow field
and texture map which are then mapped to a 2-D pose/expression space using a
RBF network. The reverse of this analysis network yields a synthesis network which
given pose and expression parameters can synthesize a novel view using the estab-
lished correspondences. An interesting application of Beymer’s work is “directing”
the pose/expression of another person using the analysis/synthesis network. This
technique can also be used to generate synthetic views from one model view with

applications towards pose invariant face recognition.

2.3.4 Detection: Sung & Poggio

The system developed by Sung and Poggio [43] uses a distribution-based face model
for face spotting. This system uses face and non-face patterns, representing each as a
mixture of Gaussians. Two sets of distances are computed to each component for each
class and fed to a neural network which is trained to output 0 or 1 depending on the
input pattern being a face. Using an extensive training set of various face patterns,
which includes small translations, rotations and scale variations and a bootstrapped
set of face-like non-face patterns, they are able to achieve an impressive detection

performance.
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This system was further enhanced by Rowley et al. [41] which introduced some
further preprocessing consisting of lighting normalization and histogram equalization
and which replaced the distribution-based model of Sung with an arbitrated ensemble
of networks which were trained to output 0/1 values based directly on the preprocessed
image. This results in significant reduction in computational costs over the system of

Sung and Poggio.

2.3.5 Extensions

An interesting new extension of eigenspace methods for detection and tracking is
the work of Black and Jepson [4] which incorporates robust norms for computing
expansion coefficients, a “subspace constancy assumption” which uses parameterized
optical flow estimation to obtain the view as well as the affine transformation be-
tween the eigenspace and the image. This technique is used to track objects which
simultaneously undergo changes of view as well as affine image motions.

Another recent extension of eigenspace methods is the parametric feature detec-
tion technique of Nayar et al. [29] where various types of low-level features such as
step-edge, roof-edge, corners and circular disks é,re modeled in a parametric eigenspace
formulation. These features are detected using the “distance to manifold” metric. The
results obtained with this technique show significant improvément over standard edge

detection techniques.
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Chapter 3

Density Estimation in Eigenspace

Our approach to automatic visual learning is based on density estimation. However,
instead of applying estimation techniques directly to the original high-dimensional
space of the imagery, we use an eigenspace decomposition to yield a computationally
feasible estimate. Specifically, the eigenspace analysis is applied to a set of training
views of the object in order to identify a principal subspace which captures the in-
trinsic dimensionality of the data. The component of the complete density in this
lower-dimensional subspace is then estimated using a suitable parametric form. In
addition, we imi)licitly model the com.ponen‘t' of the distribution in the orthogonal
subspace. Thé complete density estimate can be efficiently computed from the lower-
dimensional principal components. Our density estimate is shown to be optimal in
the case of Gaussian-distributed training data. We also formulate an approximate
(near-optimal) density estimate for more realistic data with arbitrary and multimodal
distributions.

Specifically, given a set of training images {x!}%, from an object class £, we wish
to estimate the class membership or likelihood function for this data — i.e., P(x|Q).
In this section, we examine two density estimation techniques for visual learning of
high-dimensional data. The first method is based on the assumption of a Gaussian
distribution while the second method generalizes to arbitrarily complex distributions
using a Mixture-of-Gaussians density model. Before introducing these estimators we

briefly review eigenvector decomposition as commonly used in PCA.
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3.1 Principal Component Imagery

Given a training set of m-by-n images {I*})'%, | we can form a training set of vectors

{x!}, where x € RN=™" by lexicographic ordering of the pixel elements of each
image I*. The basis functions for the KLT [23] are obtained by solving the eigenvalue
problem

A = oTno (3.1)

where ¥ is the covariance matrix given by

1 & t t T
Yy = — x —x)(x*—-% 3.2
N7 X (¢ = R0 =% (3:2)
with the mean vector
1 Mo
NT i=1 ( )

Thus @ is the eigenvector matrix of ¥ and A is the corresponding diagonal matrix
of eigenvalues. The unitary matrix ® defines a coordinate transform (rotation) which
decorrelates the data and makes explicit the invariant subspaces of the matrix operator
Y. In PCA, a partial KLT is performed to identify the largest-eigenvalue eigenvectors
and obtain a principal component feature vector y = ®f, %, where X = x — X is the
mean-normalized image vector and ®ps is the submatrix containing the columns of
® corresponding to the principal eigenvectors. PCA can be seen as a linear trans-
formation y = 7(x) : RN — RM which extracts a lower-dimensional subspace of
the KL basis corresponding to the maximal eigenvalues. These principal components
preserve the major linear correlations in the data and discard the minor ones.!

By ranking the eigenvectors of the KL expansion with respect to their eigenvalues
and selecting the first M principal components we form an orthogonal dec>mposition
of the vector space R" into two mutually exclusive and complementary subspaces: the

principal subspace (or feature space) F' = {®;}¥, containing the principal component

'In practice the number of training images Nt is far less than the dimensionality of the imagery
N, consequently the covariance matrix X is singular. However, the first M < N eigenvectors can
always be computed (estimated) from N; samples using, for example, a Singular Value Decomposition
[13]).
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Figure 3-1: (a) Decomposition into the principal subspace F' and its orthogonal com-
plement F' for a Gaussian density, (b) a typical eigenvalue spectrum obtained from

PCA.

(first M columns of ®) and its orthogonal complement F' = {®;}¥,,.; (the remaining
columns). This orthogonal decomposition is illustrated in Figure 3-1(a) where we have
a prototypical example of a distribution which is embedded entirely in F. In practice
there is always a signal component in F' due to the minor statistical variabilities in
the data or simply due to the observation noise which affects every element of x.

In a partial KL expansion, the residual reconstruction error is defined as

N M
e(x) = 3 o = X" - X (3.4)
i=M+1 i=1

and can be easily computed from the first M principal components and the L, norm
of the mean-normalized image X. Consequently the L, norm of every element x € RN
can be decomposed in terms of its projections in these two subspaces. We refer to
the component in the orthogonal subspace F' as the “distance-from-feature-space”
(DFFS) which is a simple Euclidean distance and is equivalent to the residual error
€¢?(x) in Eq.(3.4). The component of x which lies in the feature space F is referred to
as the “distance-in-feature-space” (DIFS) but is generally not a distance-based norm,

but can be interpreted in terms of the probability distribution of y in F'.
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3.2 Gaussian Densities

We begin by considering an optimal approach for estimating high-dimensional Gaus-
sian densities. We assume that we have (robustly) estimated the mean %X and covari-
ance ¥ of the distribution from the given training set {x'}.? Under this assumption,

the likelihood of an input pattern x is given by

Xp [—%(x -7 (x - i)]

e

(3.9)
The sufficient statistic for characterizing this likelihood is the Mahalanobis distance
d(x) = X2 'x (3.6)

where X = x — X. However, instead of evaluating this quadratic product explicitly, a
much more efficient and robust computation can be performed, especially with regard
to the matrix inverse ¥~'. Using the eigenvectors and eigenvalues of ¥ we can rewrite

! in the diagonalized form

d(x) = xTT-1%
= %7 [eA~107| % (3.7)
= y"Aly

where y = ®Tx are the new variables obtained by the change of coordinates in a KLT.
Because of the diagonalized form, the Mahalanobis distance can also be expressed in

terms of the sum
2
i

e

(3.8)

S

N
d(x) = Y 3
=1 't
In the KLT basis, the Mahalanobis distance in Eq.(3.6) is conveniently decoupled
into a weighted sum of uncorrelated component energies. Furthermore, the likeli-

hood becomes a product of independent separable Gaussian densities. Despite its

2In practice, a full rank N-dimensional covariance £ can not be estimated from Ny independent
observations where typically Nr << N. But as we shall see our estimator does not require the full
covariance, but only its first M principal eigenvectors where M < Ny << N.
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simpler form, evaluation of Eq.(3.8) is still computationally infeasible due to the
high-dimensionality. We therefore seek to estimate d(x) using only M projections.
Intuitively, an obvious choice for a lower-dimensional representation is the principal
subspace indicated by PCA which captures the major degrees of statistical variabil-
ity in the data.® Therefore, we divide the summation into two independent parts

corresponding to the principal subspace F = {®;}¥, and its orthogonal complement

F= {‘I’i}iN=M+1
M 2 N2
d(x) = > " + Y " (3.9)
i=1 i i=M+1 M
We note that the terms in the first summation can be computed by projecting x
onto the M-dimensional principal subspace F. The remaining terms in the second
sum {y;}pr41, however, can not be computed explicitly in practice because of the
high-dimensionality. However, the sum of these terms is available and is in fact the

DFFS quantity €?(x) which can be computed from Eq.(3.4). Therefore, based on the

available terms, we can formulate an estimator for d(x) as follows

i M 2 N
i = £+ 3] 3
T al (3.10)
=Lty

where the term in the brackets is €2(x), which as we have seen can be computed using
“the first M principal components. We can therefore write the form of the likelihood

estimate based on d(x) as the product of two marginal and independent Gaussian

3We will see shortly that given the typical eigenvalue spectra observed in practice (e.g., Figure 3-
1(b)), this choice is optimal for a different reason: it minimizes the information-theoretic divergence
between the true density and our estimate of it.
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_densities

[ M 1
m(-%_z:"'é)
P(x|) = |
| @nun l'[;.!” ¢} 11) |

=1

= Bei) i)

' whel'e Pr(x|f2) is the true margmal densaty in F-space and Pp(xlﬂ) is the estimat ed o

marginal density in the orthogoral complement F-space. The optimal value of p_can
now be determined by minimizing a suitable cost function J (p)- From an information-
theoretic point of view, “this cost functlon should be the Kullback-Lelbler divergence
or relatwe mtmpy [9] between the true denslty P(le) and 1ts estimate P(x|)

P P(xi) dx = E Il £ ("IQ) (3.12)

J(p) / P(xm)l B * Feam]

‘Usnng the diagonalized forms of the Mahalanolns distance d(x) and its estimate d(x)
‘and the fact tha.t E[y’] A. . lt can be easlly shown tha.t (see Appendnx A)

J(p)“ é.-m: [——1+| —] (3.13)

The optlmal wmght p can be then found by minimizing this cost function with respect
to p. Solvmg the equatlon = 0 yields (see Appendix A)

> N SUNaE (3.14)

P = —
"NF-__M-'=M+! _-

‘ "which?is simpl'y“thearithmaic: a_verage of the eigenvalues in -the_jorthdgonal su_bspace -
F.In addltlon to its optimality, h“ also results in an unbicsed estimate of the Maha-

lanobis distance — i.e, E[d(x; p*)] = E[d(x)] (see Appendix A). What this derivation
shows is that once we select the M-dimensional principa.l subspace F (as indicated,

| ,for example by PCA), the optnma.l estlmate of the suﬂicnent sta.tlstlc d(x) has the
"formoqu(3 10) with p given byEq(3 14) | .
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It is interd_cting to consider the minimal cost J(p*)

w_1 & p
I = 5 % logh (3.15)

i=M+1

from the point of view of the F-space eigenvalues {); :i =M +1,---,N}. It is easy
to show that J(p*) is minimized when the F-space eigenvalues have the least spread
about their mean p*. This suggests a strategy for selecting the principal subspace:
choose F such that the eigenvalues associated with its orthogonal complement F' have
the least absolute deviation about their mean. In practice, the higher-order eigen-
values typically decay and stabilize near the observation noise variance. Therefore
this strategy is usually consistent with the standard PCA practice of discarding the
higher-order components since these tend to correspond to the “flattest” portion of
the eigenvalue spectrum (see Figure 3-1(b)). In the limit, as the F-space eigenvalues
become exactly equal, the divergence J(p*) will be zero and our density estimate
P(x|0) approaches. the true density P(x|2).

We note that in most applications it is customary to simply discard the F-space
component and simply work with Pr(x|Q2). However, the use of the DFFS metric or
equivalently the marginal density Pp(x|Q2) is-critically important in formulating the
likelihood of an observation x — especially in an object detection task — since there
aré an infinity of vectors which are not members of 2 which can have likely F-space

projections. Without Pg(x|f2) a detection system can result in a significant number

| of false alarms.

3.3 Multimodal Densities

~In the previous section we assumed that the probability density of the training im-

ages was Gaussi;n. This lead to a likelihood estimate in the form of a product of two

‘independent multivariate Gaussian distributions (or equivalently the sum of two Ma-

halanobis distances: DIFS + DFFS). In our experience, the distribution of samples in

' vthAe feature space is often accurately modeled by a single Gaussian distribution. This
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Figure 3-2: Decomposition into the principal subspace F' and its orthogonal comple-
ment F for an arbitrary density.

is especially true in cases where the training images are accurately aligned views of
similar objects seen from a standard view (e.g., aligned frontal views of human faces
at the same scale and lighting conditions). However, when the training set represents
multiple views or multiple objects under varying illumination conditions, the distri-
bution of training views in F-space is no longer unimodal. In fact the training data
tends to lie on complex and non-separable low-dimensional manifolds in image space.
One way to tackle this multimodality is to build a view-based (or object-based) for-
mulation where separate eigenspaces aie used for each view [32]. Another approach is
to capture the complexity of these manifolds in a universal or parametric eigenspace
using splines [25], or local basis functions [5].

If we assume that the F-space components are Gaussian and independent of the
principal features in F' (this would be true in the case of pure observation noise in
F) we can still use the separable form of the density estimate P(x|Q) in Eq.(3.11)
where Pp(x|(?) is now an arbitrary density P(y) in the principal component vector
y. Figure 3-2 illustrates the decomposition, where the DFFS is the residual €%(x)
as before. The DIFS, however, is no longer a simple Mahalanobis distance but can
nevertheless be interpreted as a “distance” by relating it to P(y) — e.g., as DIFS =
—log P(y).

The density P(y) can be estimated using a parametric mixture model. Specifically,
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we can model arbitrarily complex densities using a Mixture-of-Gaussians

Ne
P(y|©) = Y m g(y; mir 5i) (3.16)

i=1

where ¢(y; ¢, X) is an M-dimensional Gaussian density with mean vector p and covari-
ance X, and the 7; are the mixing parameters of the components, satisfying 3_ m; = 1.
The mixture is completely specified by the parameter © = {m;, u;, £;}¥5. Given a

training set {y'} N7 the mixture parameters can be estimated using the ML principle

Nt
©" = argmax [H P(y'|©) (3.17)
t=1

This estimation problem is best solved using the Expectation-Maximization (EM)

algorithm [12] which consists of the fol! swing two-step iterative procedure:

e E-step:

Fo(yt: uk. Sb
hE(t) = N:"g(y’” %) (3.18)

Y wkg(yt; uk, BF)

i=1
o M-step:

Nt
> k()

W!‘-H = Nc—NT_ (319)

PPIAC

i=1 t=1

it = H—— (3.20)

Np
YRy — T - it
) AR (3.21)

Nt
> hi(t)

The E-step computes the a posteriori probabilities h;(t) which are the ezpectations

of “missing” component labels z;(t) = {0,1} which denote the membership of y*
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in the i-th component. Once these expectations have been computed, the M-step
maximizes the joint likelihood of the data and the “missing” variables zi(t). The EM
algorithm is monotonically convergent in likelihood and is thus guaranteed to find a
local maximum in the total likelihood of the training set. Further details of the EM
algorithm for estimation of mixture densities can be found in [39].

Given our operating assumptions — that the training data is M-dimensional (at
most) and resides solely in the principal subspace F with the exception of pertur-
bations due to white Gaussian measurement noise, or equivalently that the F-space
component of the data is itself a separable Gaussian density — the estimate of the

complete likelihood function P(x|Q) is given by
P(xI) = P(y|0) Pp(x|) (3.22)

where Pr(x|02) is a Gaussian component density based on the DFFS, as before.
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Chapter 4

Probabilistic Detection

In this chapter we examine the use of the eigenspace density estimates derived in the

previous chapter for visual object de.ection of frontal faces, facial features and hands.

4.1 Maximum Likelihood Detection

The density estimate P(x|$2) can be used to compute a local measure of target saliency
at each spatial position (z,j) in an input image based on the vector x obtained by

the lexicographic ordering of the pixel values in a local neighborhood R
S(i,j;ﬂ) = f’(xlﬂ) , x =1 [{I(z +rJ5+ c) : ("'vc) € R}] (4'1)

where | [#] is the operator which converts a subimage into a vector. The ML estimate

of position of the target €2 is then given by

(G, ML = argmax S(s,5; Q) (4.2)
This is illustrated in Figure 4-1.

This ML formulation can be extended to estimate object scale with multiscale
saliency maps. The likelihood computation is performed (in parallel) on linearly

scaled versions of the input image I®) corresponding to a pre-determined set of scales
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S(i,))

Figure 4-1: Target saliency map S(i,j) showing the probability of a left eye pattern
over the input image.

{0'110'21 .. .0-"}
Sty k; Q)= P (L {1 owi +r,00) +¢) : (rc) € R} | Q) (4.3)
where the ML estimate of the spatial and scale indices is defined by
(4,4, k)M = argmax S(i,j, k; Q) (4.4)

One important factor of variability in the appcarance of the object in grayscale
imagery is that of lighting and contrast. While compensation for variable lighting
direction is difficult, one can normalize for global (ambient) illumination changes
(as well as the linear response characteristics of the CCD camera) by normalizing
each subimage x by its mean and standard deviation. This contrast normalization
is performed both during training (density estimation) and also in the operational

mode (e.g., in detection).



Figure 4-2: (a) Lxamples of facial feature training templates and () the resulting
typical detections.

4.2 Applications

The above ML detection technique has been tested in the detection of complex natural
objects including human faces, facial features (e.g., eyes), as well as non-rigid and
articulated objects such as human hands. In this section we will present several

examples from these application domains.

4.2.1 Faces

Over the years, various strategies for facial feature detection have been proposed,
ranging from edge-map projections [18], to more recent techniques using generalized
symmetry operators [40] and multilayer perceptrons [45]. In any robust face process-
ing system this task is critically important since a face must be first geometrically
normalized by aligning its features with those of a stored model before recognition
can be attempted.

The cigentemplate approach to the detection of facial features in “mugshots”
was proposed in [32], where the DI'F'S metric was shown to be superior to standard
template matching for target detection. The detection task was the estimation of the
position of facial features (the left and right eyes, the tip of the nose and the center

of the mouth) in frontal view photographs of faces at fixed scale. IMigure 4-2 shows
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Figure 4-3: (a) Detection performance of an SSD, DFFS and a ML detector, (b)
geometric interpretation of the detectors.

examples of facial feature training templates and the resulting detections on the MIT
Media Laboratory’s database of 7,562 “mugshots”.

We have compared the detection performance of three different detectors on ap-
proximately 7,000 test images from this database: a sum-of-square-differences (SSD)
detector based on the average facial feature (in this case the left eye), an eigentem-
plate or DFFS detector and a ML detector based on S(z, 7; ) as defined in section
3.2. Figure 4-3(a) shows the receiver operating characteristic (ROC) curves for these
detectors, obtained by varying the detection threshold independently for each detec-
tor. The DFFS and ML detectors were computed based on a 5-dimensional principal
subspace. Since the projection coefficients were unimodal a Gaussian distribution was
used in modeling the true distribution for the ML detector as in section 3.2. Note that
the ML detector exhibits the best detection vs. false-alarm tradeoff and yields the
highest detection rate (of 95%). Indeed, at the same detection rate the ML detector
has a false-alarm rate which is nearly 2 orders of magnitude lower than the SSD.

Figure 4-3(b) provides the geometric intuition regarding the operation of these
detectors. The SSD detector’s threshold is based on the radial distance between
the average template (the origin of this space) and the input pattern. This leads
to hyperspherical detection regions about the origin. In contrast, the DFFS detector

measures the orthogonal distance to F', thus forming planar acceptance regions about
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[igure 4-4: Multiscale Face Detection

. Consequently to accept valid object patterns in  which are very different from the
mean, the 55D detector must operate with high thresholds which consequently lead
to many false alarms. But at the same time, the DFFS detector can not diseriminate
between the object class 2 and non-Q patterns in F. The solution is provided by
the ML detector which incorporates hoth the F-space component (DI'FS) aud the /-
space likelihood (DIFS). The probabilistic interpretation of Figure -3(b) is as follows:
5SD assumes a single prototype (the mean) in additive white Ganssian noise whercas
the DFES assumes a wniform density in F'. The ML detector, on the other haud, uses
the complete probability density for detection.

We have incorporated and tested the multiscale version of the M1 detection tech -
nique in a face detection task. This multiscale head finder was tested on the ARPA
FERET database where 308 out of 310 faces were correctly detected. Figure -4
shows examples of the ML estimate of the position and scale on these images. The
multiscale saliency maps S(i, j, k; Q) were computed based on the likelihood estimate
P(x|©) in a 10-dimensional principal subspace using a Gaussian model (scction 3.2).
Note that this detector is able to localize the position and scale of the head despite
variations in hair style and hair color, as well as presence of sunglasses. [llumina-
tion invariance was obtained by normalizing the input subimage X to a zero-mean
untt-norm vector.

We have also used the multiscale version of the ML detector as the atlentional
component of an automatic system for recognition and model-based coding of faces.

The block diagram of this systern is shown in Figure 5-5 which consists of a two-stage
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(a) (b)

Figure 4-6: (a) original image, (b) position and scale estimate, (c) normalized head
image, (d) position of facial features.

object detection and alignment stage, a contrast normalization stage, and a feature
extraction stage whose output is used for both recognition and coding. Figure 4-6
illustrates the operation of the detection and alignment stage on a natural test image
containing a human face. The function of the face finder is to locate regions in the
image which have a high likelihood of containing a face.

The first step in this process is illustrated in Figure 4-6(b) where the ML estimate
of the position and scale of the face are indicated by the cross-hairs and bounding
box. Once these regions have been identified, the estimated scale and position are
used to normalize for translation and scale, yielding a standard “head-in-the-box”
format image (Figure 4-6(c)). A second feature detection stage operates at this fixed
scale to estimate the position of 4 facial features: the left and right eyes, the tip of
the nose and the center of the mouth (Figure 4-6(d)). Once the facial features have
been detected, the face image is warped to align the geometry and shape of the face
with that of a canonical model. Then the facial region is extracted (by applying a

fixed mask) and subsequently normalized for contrast. The geometrically aligned and
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Figure 4-7: (a) aligned face, (b) eigenspace reconstruction (85 bytes) (c¢) JPEG re-
construction (530 bytes).

Figure 4-8: The first 8 eigenfaces.

normalized image (shown in Figure 4-7(a)) is then projected onto a custom set of
eigenfaces to obtain a feature vector which is then used for recognition purposes as
well as facial image coding.

Figure 4-7 shows the normalized facial image extracted from Figure 4-6(d), its
reconstruction using a 100-dimensional eigenspace representation (requiring only 85
bytes to encode) and a comparable non-parametric reconstruction obtained using a
standard transform-coding approach for image compression (requiring 530 bytes to
encode). This example illustrates that the eigenface representation used for recogni-
tion is also an effective model-based representation for data compression. The first 8
eigenfaces used for this representation are shown in Figure 4-8.

Figure 4-9 shows the results of a similarity search in an image database tool called
Photobook [33]. Each face in the database was automatically detected and aligned by
the face processing system in Figure 4-5. The normalized faces were then projected

onto a 100-dimensional eigenspace. The image in the upper left is the one searched
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Figure 1-9: Photobook: FLERET face databasc.

on and the remainder are the ranked nearest neighbors in the FERET database. The
top three matches in this case are images of the same person taken a month apart and
at different scales. The recognition accuracy (defined as the percent correct rank-one

matches) on a database of 155 individuals is 99% [21].

4.2.2 Hands

We have also applied our eigenspace densily estimation technique to articulated and
non-rigid objects such as hands. In this particular domain, however, the original in-
tensity image is an unsuitable representation since, unlike faces, hands are essentially
textureless objects. Their identity is characterized by the variety of shapes they can
assume. Por this reason we have chosen an edge-based representation of hand shapes
which is invariant with respect to illumination, contrast and scene background. A

training set of hand gestures was obtained against a black background. The 21) con-
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Figure 1-10: Examples of hand gestures and their diffused edge representation.

tour of the hand was then extracted using a Canny edge-operator.  These binary
cdge maps, however, are highly uncorrelated with each other due to their sparse na-
ture. This leads to a very high-dimensional principal subspace. Therelore to reduce
the intrinsic dimensionality, we induced spatial correlation via a diffusion process on
the binary edge map. which effectively broadens and “smears™ the edges, vielding a
continuous-valued contour image which represents the object shape in terms of the
spatial distribution of edges. Figure 4-10 shows examples of training images and their
diffused edge map representations. Note that this spatiotopic representation of shape
is interesting because it is consonant with our knowledge ol biological representations,
especially as compared to approaches motivated purely by computational corsidera-
tions (e.g., moments [15], Fourier descriptors [36], “snakes™ [19], Point Distribution
Models (PDM) [3], and modal descriptions [12]).

[t is important to verily whether such a representation is vahid for modeling hand
shapes. Therefore we tested the diffused contour image representation in a recognition
experiment which yvielded a 100% rank-one accuracy on 375 frames from an image
sequence containing 7 hand gestures. The matching technique was a nearest-neighbor
classification rule in a 16-dimensional principal subspace. Figure 4-11(a) shows some
examples of the various hand gestures used in this experiment. Figure 4-11(h) shows
the 15 images that are most similar to the “two” gesture appearing in the top left.

Note that the hand gestures judged most similar are all objectively the same gesture.
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Figure 4-11: (a) a random assortment of hand gestures (b) images ordered by simi-
larity (left-to-right, top-to-bottom) to the image at the upper left.

Naturally, the success of such a recognition system is critically dependent on the
ability to find the hand (in any of its articulated states) in a cluttered scene, to
account for its scale and to align it with respect to an object-centered reference frame
prior to recognition. This localization was achieved with the same multiscale ML
detection paradigm used with faces, with the exception that the underlying image
representation of the hands was the diffused edge map rather the grayscale image.

The probability distribution of hand shapes in this representation was automati-
cally learned using our eigenspace density estimation technique. In this case, however,
the distribution of training data is multimodal due to the different hand shapes for
each gesture. Therefore the multimodal density estimation technique in section 3.3
was used. Figure 4-12(a) shows a projection of the training data on ihe first two
dimensions of the principal subspace F' (defined in this case by M = 16) which ex-
hibit the underlying multimodality of the data. Iigure 4-12(b) shows a 10-component
Mixture-of-Gaussians density estimate for the training data. The parameters of this
estimate were obtained with 20 iterations of the IKM algorithm. The orthogonal
F-space component of the density was modeled with a Gaussian distribution as in
section 3.3.

The resulting complete density estimate P(x|Q) was then used in a detection

experiment on test imagery of hand gestures against a cluttered background scene.
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| Figure 4-12: (a) Distribution of training hand shapes (shown in the 1st two dimensions
- of the principal subspace) (b) Mixture-of-Gaussians fit using 10 components.

In accordance with our representation, the input imagery was first pre-processed to

generate a diffused edge map and then scaled accordingly for a multiscale saliency

computation. Figure 4-13 shows two examples from the test sequence, where we

o have shown the original image; the negative log-likelihood saliency map, and the ML
| ‘estlmates of position and scale (superimposed on the diffused edge map). Note that

 these examples represent two different hand gestures at slightly different scales. We

note that the success of this detection scheme is dependent on a visible and mostly

éomfhlete hand contour in the edge map, which places some restrictions on the imaging

- sltuatlon and background

To better quantlfy the performance of the ML detector on hands we carried out

. "the follownng experiment. The original 375-frame video sequence of training hand
v gmfura’ was divided into 2 parts. The first (training) half of this sequence was

| “used for- lea.rmng, mcludlng computat.lon of the KL basis and the subsequent EM

: .clustenng For t.hls expenment we used a 5- -component mixture in a 10-dimensional

. ‘:pnnCIpa.l subspace. The second (testing) half of the sequence was then embedded in

the background scene, which contains a variety of shapes. In addition, severe noise

G cqnditiqns were simulated as shown in Figure 4-14(a).
L ; ‘We then compared the detection performance of an SSD detector (based on the
meanedge-based hand representation) and a probabilistic detector based on the com-
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a)

Iigure 4-13: (a) Original grayscale image, (b) negative log-likelihood map (at. most
likely scale) and (¢) ML estimate of position and scale superimposed on edge-map.

plete estimated density. The resulting negative-log-likelihood detection maps were
passed through a valley-detector to isolate local minimum candidates which were then
subjected to a ROC analysis. A correct detection was defined as a below-threshold
local minimum within a 3-pixel radius of the ground truth target location. Figure 41-
[4(b) shows the performance curves obtained for the two detectors  We note, for
example, that at an 85% detection probability the ML detector vields (on the aver-
age) | false alarm per frame, where as the SSD detector yields an order ol magnitude

more false alarms.
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Figure 4-14: (a) Example of test frame containing 2 hand gesture amidst severe back-
ground clutter and (b) ROC curve performance contrasting SSD and ML detectors.
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Chapter 5

Probabilistic Recognition

In the previous chapter we demonstrated how the subspace density estimates can
be used for target detection. Now we will see how they also can be used for visual
recognition. From a probabilistic perspective, the class conditional density P(x|f?) is
the most important object representation to be learned. This density is the critical
component in detection, recognition, prediction, interpolation and general inference.
For example, having learned these densities for several object classes {Q;,9Q,,---,Q,},

one can invoke a Bayesian framework for classification and recognition:

P@ix) = o XIWPE) (5.1)

Y. P(x|Q;)P(Q;)

i=1

where now a maximum a posteriori (MAP) classification rule can be used for ob-
ject/pose identification.

One disadvantage of this technique is that it would require many views to estimate
individual densities, requiring multiple images for each object. A more computation-
ally attractive alternative is to redefine the similarity measure such that recognition
can be performed from a single view. In this chapter we introduce a probabilistic

similarity measure which has this characteristic.
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5.1 Similarity Measures

Current approaches to image matching for visual object recognition and image database
retrieval often make use of simple image similarity metrics such as Euclidean distance
or normalized correlation, which correspond to a standard template-matching ap-
proach to recognition. For example, in its simplest form, the similarity measure
S(I, I2) between two images I; and I; can be set to be inversely proportional to the
norm ||I; — L1]|. Such a simple formulation suffers from two major drawbacks: it
requires precise alignment of the objects in the image and does not exploit knowl-
edge of which type of variations are critical (as opposed to incidental) in expressing
similarity. In this chapter, we formulate a probabilistic similarity measure which is
based on the probability that the image-based differences, denoted by d(I,, I,), are
characteristic of typical variations in appearance of the same object. For example,
for purposes of face recognition, we can define two classes of facial image variations:
intrapersonal variations {}; (corresponding, for example, to different facial expressions
of the same individual) and eztrapersonal variations Qg (corresponding to variations
between different individuals). Our similarity measure is then expressed in terms of

the probability
S(h,I;) = P(d(I), ;) € Q) = P(Q|d(], 1)) (5.2)

where P(Q|d(I, I2)) is the a posteriori probability given by Bayes rule, using esti-
mates of the likelihoods P(d(Iy,I>)|r) and P(d(Ih,I;)|2g) which are derived from
training data using the subspace methkod for density estimation of high-dimensional

data developed in Chapter 3.

5.2 Representations for d(I;, I5)

Furthermore, we use a novel representation for d(I, ;) which combines both the
spatial (XY) and grayscale (I) components of the image in a unified XYI framework

(unlike previous approaches which essentially treat the shape and texture components
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independently, e.g., [10, 11, 22, 3]). Specifically, I, is modeled as a physically-based
deformable 3D surface (or manifold) in XYI-space which deforms in accordance with
attractive “physical forces” exerted by I,. The dynamics of this system are efficiently
solved for using the analytic modes of vibration [26], yielding a 3D correspondence field
for warping I, into I>. In addition, we use the parametric representation, d(Iy, [5) =
U, where U is the modal amplitude spectrum of the resultant deformation [28]. This
manifold matching technique can be viewed as a more general formulation for image
correspondence which, unlike optical flow, does not require a constant brightness
assumption [14]. In fact, by simply disabling the I component of our deformations
we can obtain a standard 2D deformable mesh which yields correspondences similar
to an optical flow technique with thin-plate regularizers.

Finally, we experimentally compare our deformable matching technique with two

alternative (non-deformable) methods: one using intensity differences with
d(L,L)=5L-1
and a standard correspondence method using optical flow with
d(h, ;) = flow(l, I)

where flow(lh, I,) is the vector flow field between I, and I,. We note that these
two methods can be viewed as degenerate cases of our general XYI correspondence
method: the former assumes XY correspondences and makes the I difference explicit,
whereas the latter assumes comparable I components and makes the XY variations
explicit. OQur experimental results have confirmed our basic intuition that the fully
deformable XYI warping method yields the best characterization of d(Iy, I2), at least
as far as recognition is concerned. The advantage of our method over optical flow
is key, since this simpler method relies all too heavily on the constant brightness
assumption and is prone to failure when there are large grayscale variations between

the images of different individuals (e.g., presence/absence of facial hair).
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Figure 5-1: An image and its XYI surface representation
5.3 XYI Image Warping

As shown in [28], we can formulate an image matching technique based on a 3D surface
representation of an image I(z,y) — i.e., as the surface (z,y, I(z,y)) as shown, for
example, in Figure 5-1 -—— and developed an efficient method to warp one image onto
another using a physically-based deformation model. In this section we briefly review
the mathematics of this approach (for further details the reader is referred to [27, 28]).

The intensity surface 1s modeled as a deformable mesh and is governed by La-
grangian dynamics [2] :

MU + CU + KU = F(¢) (5.3)

where U = [...,Az;, Ay;, Az, ...]T is a vector storing nodal displacements, M, C
and K are respectively the mass, damping and stiffness matrices of the system, and
F is the external force. In warping one image onto a second (reference) image, the
external force at each node M; of the mesh points is the vector to the closest 3D point

P; in the reference surface:
F(t)=[...,M:P(t),.. " (5.4)

The final correspondence (and consequently the resultant XYI-warp) between two
images is obtained by solving the governing equation above. Iigure 5-2 shows a
schematic representation of the deformation process. Note that the external forces

(dashed arrows) do not necessarily correspond to the final displacement field of the
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Figure 5-2: A cross-section of the intensity surface S being pulled towards S’ by image
forces _

surface. The elasticity of the surface provides an intrinsic smoothness constraint for
computing the final displacement field.

We note that this formulation provides an interesting alternative to optical flow
methods for obtaining correspondence, without the classical brightness constraint [14].
Indeed, the brightness constraint corresponds to a particular case of our formulation
where the closest point P; has to have the same intensity as M; — i.e., W is parallel
to the XY plane. We do not make that assumption here.

Solutions of the governing equation are typically obtained using an eigenvector-
based modal decomposition [35, 27, 26]. In particular, the vibration modes ¢(z) of

the previous deformable surface are the vector solutions of the eigenproblem :
K¢ = w*M¢ (5.5)

where w(?) is the i-th eigenfrequency of the system. Solving the governing equations

in the modal basis leads to scalar equations where the unknown #(z) is the amplitude

of mode : [2]

a(i) 4 &u(i) + w(i)?a() = fit)  i=1,...,3N. (5.6)
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Figure 5-3: Example of XYI warping two images.

The closed-form expression of the displacement field is then given by

U~ Y ai)e(i) (5.

=1

(7]
=1
~

with P € 3N, which means that only P scalar equations of the type of (5.6) need to
be solved. The modal superposition equation (5.7) can be seen as a Fourier expansion
with high-frequencies neglected [26]. In our formulation, however, we make use of the
analytic modes [26, 28], which are known sine and cosine functions for specific surface

topologies

(5.8)

] t'2"— n 2’.— ,
¢(P,p')=[...,cospr(_t l)cospﬂ-( J 1),...]‘r

2n 2n!
These analytic expressions avoid costly cigenvector decompositions and furthermore
allow the total number of modes to be easily adjusted for the application.

The above modal analysis technique represents a coordinate transform from the
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nodal displacement space to the modal amplitude subspace:
U=9%"U (5.9)

where ® is the matrix of analytic modes ¢(p,p') and U is the resultant vector of
modal amplitudes which encodes the type of deformations which characterize the
difference between the two images. In addition, once we have solved for the resultant
3D displacement field we can then warp the original image onto the second in the
XYI space and then render a resultant 2D image using simple computer graphics
techniques. Figure 5-3 shows an example illustrating this warping process. We note
that the warped image I_,; is only an incidental by-product of our correspondence
method. Since our main goal is image matching we are primarily interested in the

modal amplitude spectrum U for expressing d(Ih, I,).

5.4 Analysis of Deformations

We now consider the problem of characterizing the type of deformations which occur
when matching two images in a face recognition task. We define two distinct and
mutually exclusive classes: §; representing intrapersonal variations between multiple
images of the same individual (e.g., with different expressions and lighting conditions),
and (g representing eztrapersonal variations which result when matching two different
individuals. We will assume that both classes are Gaussian-distributed and seek
to obtain estimates of the likelihood functions P(U|Q;) and P(U|Qg) for a given
deformation’s modal amplitude vector U.

Given these likelihoods we can define the similarity score S(I1, I;) between a pair
of images directly in terms of the intrapersonal a posteriori probability as given by

Bayes rule:
S(h,L) = P(Q,]0)
P(U|Q)P() (5.10)
P(0|2)P(Q) + P(U|0£)P(Qx)

where the priors P(2) can be set to reflect speciﬁc operating conditions (e.g., num-
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ber of test images vs. the size of the database) or other sources of a priori knowl-
edge regarding the two images being matched. Additionally, this particular Bayesian
formulation casts the standard face recognition task (essentially an M-ary classifi-
cation problem for M individuals) into a binary pattern classification problem with
Q; and Qg. This simpler problem is then solved using the maximum a posteriori

(MAP) rule — i.e., two images are determined to belong to the same individual if

P(4]0) > P(Qg|0), or equivalently, if S(I;,I;) > z-

5.4.1 Statistical Modeling of Modes

One difficulty with this approach is that the modal amplitude vectors are high-
dimensional, with U € RN with N = 0(10°). Therefore we typically lack sufficient
independent training observations to compute reliable 2nd-order statistics for the
likelihood densities (i.e., singular covariance matrices will result). Even if we were
able to estimate these statistics, the computational cost of evaluating the likelihoods
is formidable. Furthermore, this computation would be highly inefficient since the
intrinsic dimensionality or major degrees-of-freedom of U for each class is likely to
be significantly smaller than N.

However, as derived in Chapter 3 using the subspace method, the complete high-
dimensional likelihood estimate can be written as the product of two independent

marginal Gaussian densities

i=1 2p

- M -
1 y? -
exp| -3 3 exp[ - £C0)

POIQ) =

(2rp)(N-M)/2

M
(2m)M/2 H,\}/z __. (5.11)

i=1

= Pr(0IQ) Pe(T10)

where Pr(U|R) is the true marginal density in F, Pr(U|Q) is the estimated marginal
density in the orthogonal complement F', y; are the principal components and ez(ﬁ)

is the residual (or DFFS).
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Figure 5--1: Examples of FERET frontal-view image pairs used for (a) the Gallery set
(training) and (b) the Probe set (testing).

5.5 Experiments

To test our recognition strategy we used a collection of images from the FERET
face database. This collection of images consists of hard recognition cases that have
proven difficult for all face recognition algorithims previously tested on the FERIT
database. The difficulty posed by this dataset appears to stem [rom the fact that
the images were taken at different times, at different locations, and under different
imaging conditions. The set of images consists of pairs of [rontal-views and are
divided into two subsets: the ~gallery™ (training set) and the “probes™ (testing set).
The gallery images consisted ol Tt pairs of images (2 per individual) and the probe
set consisted of 38 pairs of images, corresponding to a subset of the gallery members.
These images are shown in Figure 5-1.

Before we can apply our deformable matching technique. we need to perform a
rigid alignment of these facial images. For this purpose we have nsed an automatic
face-processing system which extracts faces from the input image and normalizes for
translation. scale as well as slight rotations (both in-plane and out-of-plane).  As
described in Chapter b the system uses maximum-likelihood estimation of object
location (in this case the position and scale ol a face and the location of individual
facial features) to geometrically align faces into standard normalized form as shown in

Figure 5-5. All the faces inour experiments were geometrically aligned and normalized
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Figure 5-6: The first 8 normalized eigenfaces.

in this manner prior to further analysis.

5.5.1 Matching with Eigenfaces

As a baseline comparison, we first used an eigenface matching technique for recog-
nition. The normalized images from the gallery and the probe sets were projected
onto a 100-dimensional eigenspace and a nearest-neighbor rule based on a Euclidean
distance measure was used to match each probe image to a gallery image.! A few of
the lower-order eigenfaces used for this projection are shown in Figure 5-6. We note
that these eigenfaces represent the principal components of an entirely different set
of images — i.e., none of the individuals in the gallery or probe sets were used in ob-

taining these eigenvectors. In other words, neither the gallery nor the probe sets were

'We note that this method corresponds to a generalized template-matching method which uses a
Euclidean norm tyoe of similarity S(I;, I2), which is restricted to the principal component subspace
of the data.
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Figure 5-7: Examples of (a) intrapersonal and (b) extrapersonal facial warps.

part of the “training set.” The rank-1 recognition rate obtained with this method was
found to be 84% (64 correct matches out of 76), and the correct match was always
in the top 10 nearest nzighbors. Note that this performance is better than or similar
to recognition rates obtained by any algorithm tested on this database, and that it is
lower (by about 10%) than the typical rates that we have obtained with the FERET
database [24). We attribute this lower performance to the fact that these images were
selected to be particularly challenging. In fact, using an eigenface method to match
the first views of the 76 individuals in the gallery to their second views, we obtain
a higher recognition rate of 89% (68 out of 76), suggesting that the gallery images
represent a less challenging data set since these iinages were taken at the same time

and under identical lighting conditions.

5.5.2 Matching with XYI Deformations

For our probabilistic algorithm, we first gathered training data by computing the

modal amplitude spectra for a training subset of 74 intrapersonal warps (by match-
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~ Figure 5-8: (a) distribution of the two classes in the first 3 principal components
(circles for 21, dots for g) and (b) schematic representation of the two distributions

 showing orientation difference between the corresponding principal eigenvectors.

'ing the two views of every individual in the gallery) and a random subset of 296

‘exttapersdnal warps (by matching images of different individuals in the gallery), cor-
o regpoﬁding to the classes Q; and g, respectively. An example of each of these two
.'ty'ées of warps is shown in Figure 5-7.

It is mterestmg to consider how these two classes are distributed, for example, are

i "they lmearly sepa.rable or embedded distributions? One simple method of visualizing

W thls 1s to plot their mutual pnncnpal components — i.e., perform PCA on the combined

fj‘_dataset and pro,lect each vector onto the principal eigenvectors. Such a visualization is

o ‘shoyvn-lq Figure 5-8(a) which is a 3D scatter plot of the first 3 principal components.

“ 'Tli}iiln:‘]vi‘lo.t‘_shows what appears to be two completely enmeshed distributions, both

| héirihg near-zero means and differing primarily in the amount of scatter, with Q;

_ | -d.isplaying smaller modal amplitudes as expected. It therefore appears that one can

oo not rehably distinguish low-amplitude extrapersonal warps (of which there are many)
_ from‘intrapers'onal ones. ‘

However, direct visual interpretation of Figure 5-8(a) is very misleading since we

~ are essentlally dealmg with low-dimensional (or “flattened”) hyper-ellipsoids which

W - are mtersectmg near the origin of a very high-dimensional space. The key distinguish-

o flng factorfbetween the two distributions is their relative orientation. Fortunately, we
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Figure 5-9: Total number of misclassified extrapersonal matches (with P(Q;|U) >
0.5) as a function of the principal subspace dimensionalities My and Mg.

can easily determine this relative orientation by performing a separate PCA on each
class and computing the dot product of their respective first eigenvectors. This anal-
ysis yields the cosine of the angle between the major axes of the two hyper-ellipsoids,
which was found to be 68°, implying that the orientation of the two hyper-ellipsoids
is quite different. Figure 5-8(b) is a schematic illustration of the geometry of this
configuration, where the hyper-ellipsoids have been drawn to approximate scale using
the corresponding eigenvalues.

We note that since these classes are not linearly separable, simple linear discrimi-
nant techniques (e.g., using hyperplanes) can not be used with any degree of reliabil-
ity. The proper decision surface is inherently nonlinear (quadratic, in fact, under the
Gaussian assumption) and is best defined in terms of the a posterior: probabilities
— i.e., by the equality P(Q;|U) = P(Q2g|U). Fortunately, the optimal discriminant
surface is automatically implemented when invoking a MAP classification rule.

Having analyzed the geometry of the two distributions, we then computed the
likelihood estimates P(U|Q;) and P(U|Qg) using the PCA-based method outlined in
Section 5.4.1. We selected principal subspace dimensions of M; = 10 and Mg = 30
for ; and Qg, respectively. These density estimates were then used with a default
setting of equal priors, P(2;) = P(Qg), to evaluate the a posterior: intrapersonal

probability P(€;]U) for matching probe images to those in the gallery.
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[ | XYI-warp | I-diff | XY-flow |

Mean Correct Recognition Rate | 86.8 % [859 % | 82.3 %
Max Correct Recognition Rate | 92.1 % (89.5% | 86.8 %
Mean Number of False Matches 10 14 1
Max Number of False Matches 115 155 53

Table 5.1: Performance of Bayesian classifier with three different data representations:
full XYI-warp, intensity differences (I-diff) and optical flow (XY-flow). Results are
mean/maximum values over nearly 2000 experimental trials with varying M; and
Mg.

In order to avoid an unnecessarily large number of XYI warps, we only matched
a probe image to the top 10 gallery images retrieved by the eigenface method. This
significantly reduces the computational cost of our system, since computing eigenface
similarity scores is negligible compared to computing XYI warps (the former takes
several milliseconds whereas the latter takes approximately 20 seconds on an HP 735
workstation).

Therefore, for each probe image we computed a set of 10 probe-to-gallery warps
and re-sorted the matching order, this time using the a posteriori probability P(2 ;Iﬁ)
as the similarity measure. This probabilistic ranking yielded an improved rank-1
recognition rate of 92% (70 out of 76). Furthermore, out of the 608 extrapersonal
warps performed in this recognition experiment, only 2% (11) were misclassified as
being intrapersonal — i.e., with P(Q,lﬁ) > P(Qg|0).

We also analyzed the sensitivity of our Bayesian matching technique with respect
to the principal subspace dimensionalities M; and Mg, which are used in estimating
the likelihoods P(fJ|Q 1) and P(fJ’IQE). The higher we set these parameters the more
accurate an estimate of the likelihoods we obtain, while also requiring more principal
projections. These parameters therefore represent an accuracy vs. complexity trade-
off in our Bayesian approach. To quantify this tradeoff, we repeated the probe set
recognition experiment while varying both parameters and noted that the recognition
rate never dropped below 79%, even when the two subspaces used in estimating the

likelihoods were as low as one-dimensional. However, we noted that the total num-
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ber of extrapersonal matches which were misclassified as being intrapersonal — i.e.,
P(Qllﬁ) > P(Qg|U) — varied in a principled way with the subspace dimensional-
ities. This variation is shown in Figure 5-9 and is clearly the type of behavior one
would expect: the total number of misclassified matches decreases with increasing
subspace dimensionalities. From the figure, it is apparent that these errors are more
sensitively dependent on M, the dimensionality of the intrapersonal subspace (pos-
sibly because this class has a much lower intrinsic dimensionality and its distribution

can be modeled using fewer principal eigenvectors).

5.5.3 Matching with Optical Flow and Intensity Differences

To compare the efficacy of our deformable representation for d(11, I,) (i.e., the modal
amplitudes of an XYI-warp), we next applied our Bayesian matching technique on
the alternative representations: intensity differences and optical flow. The particular
optical flow algorithm used in our experiment was that of Wang & Adelson [46].
For each method, the eigenspace analysis was used to derive corresponding density
estimates for the intra/extra cla.sse.s and recognition proceeded exactly as described
in the previous section.

Since it is difficult to compare recognition and false match rates directly (due to
the different dimensionalities of d(I;, I) in each case) we systematically varied the
dimensions of the principal subspaces M; and Mg, as in Figure 5-9 for each method

_ and analyzed the performance in terms of % correct recognition and the numberof
false matches. Table 5.1 shows the mean and maximum values computed over the
nearly 2,000 different combinations of M; and Mg for the three different methods:
full XYI-warp, intensity differences (I-diff) and optical flow (XY-flow). These re-
sults indicate that XYI-warps are in fact the best representation for classification
purposes, with intensity differences being second and optical flow being the least ef-
fective representation. We believe the reason optical flow is so ineffective is because
it has no intensity information encoded in the representation and also since it essen-
tially yields “garbage” for the extrapersonal class (due to the inability of obtaining

good correspondences between two different individuals). Notice how the number of
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false matches, however, is least with optical flow, possibly because it is quite easy to
discriminate between the (essentially “garbage”) flow field of an extrapersonal warp

and that of an intrapersonal one. Also note that in terms of false matches, intensity

differences seem to yield worse results than XYI-warps.
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Chapter 6

FERET Test Results

In this chapter we present results of the face recognition system on experimental trials

conducted as part of the FERET program.

6.1 The FERET Program

The Face Recognition Technology (FERET) program is sponsored by the US De-
partment of Defense’s Counterdrug Technology Transfer Program with the US Army
Research Laboratory (ARL) serving as the technical agent. The FERET database
and testing procedure is designed to assess the state of the art in face recognition by
providing a standardized testing platform for researchers, such that recognition rates
can be objectively compared. The database is divided into a development set given
to the researchers and a sequestered test set used for evaluation.

The images in the database were acquired from a 35mm camera and processed for
- digital storage and distribution. Each image was labeled with respect to the identity
and pose of the individuals. Images of individuals were acquired in several different
formats. A set of frontal images labeled FA and F'B, corresponding to two views taken
moments apart with different expressions, and so called “duplicate” images which are
views of the same individual taken at different times (weeks, months and upto a year
apart). In addition to these frontal views, the database also contains non-frontal poses

including profiles. As of July 1996, a total of over 14,000 images had been captured
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corresponding to 1,200 individuals. From this data, a subset of approximately 500
sets of images were distributed to researchers for purposes of training.

The standard testing procedure consists of matching images in two separate sets,
a gallery set and a probe set. For every image in the probe set, a similarity score is
computed to every entry in the gallery set. These similarity scores are then sorted
and ranked and used to compute a “cumulative match score” as shown for example
in Figure 6-2 which shows the number of correct matches in the top N most similar
entries computed by the recognition algorithm. The typical recognition rates reported
in the literature therefore correspond to the rank-1 match or the first point on this
graph.

The first FERET test took place in August 1994 and established a baseline for
face recognition algorithms consisting of both frontal FA/FB as well as non-frontal
views. This was followed in March 1995 by a larger gallery test which emphasized
duplicates. Both these tests required automatic face detection in addition to recogni-
tion. These tests were followed by the September 1996 test which no longer required
automatic detection, providing ground truth locations for the eyes. This test con-
sisted of matching over 3000 frontal images containing both frontal FA/FBs as well

as duplicates.

6.2 MIT Algorithm Performance

There were essentially two different versions of the MIT face recognition system which
were tested during a three year span. The first consisted of a standard eigenface
nearest neighbor recognition technique which was used in the 1994/1995 tests. The
second, improved system differed by use of the Bayesian similarity measure in place
of the nearest neighbor matching rule and was used in the 1996 test.

For computational reasons, the representation selected for d(Iy,I;) in the 1996
version was that of intensity differences, i.e. I; — I; rather than the full XYI warping
method. We note that the two mutually exclusive classes 1y and Qg corresponding

to the intrapersonal and extrapersonal image differences result in the dual eigenfaces
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[ Institution | Recognition Rate |

MIT Media Lab (August 1996) 96
Rockefeller (November 1995) 96
USC (March 1995) 92
MIT Media Lab (March 1995) 88

Table 6.1: FA vs FB results on the FERET 1995/1996 tests

 Institution | Recognition Rate |
MIT Media Lab (August 1996) 69
Rockefeller (November 1995) 62
USC (March 1995) 58
MIT Media Lab (March 1995) 40

Table 6.2: Duplicate Scores on the FERET 1995/1996 tests

shown in F igure 6-1. Note that the intrapersonal variations shown in Figure 6-1-(a)
represents subtle variations due mostly to expression changes whereas the extraper-
sonal variations in Figure 6-1-(b) are more representative of general eigenfaces which
code variations such as hair color, facial hair and glasses.

Tables 6.1 and 6.2 show a comparison of the rank-1 recognition accuracy of the
algorithms that competed in the 1995 FERET test on frontal FAs and FBs as well as
the duplicates. The MIT 1995 system is the nearest neighbor matching technique and
the 1996 version is the Bayesian similarity technique using the dual intra-extra eigen-
faces with intensity differences. Note the increased performance obtained using the
Bayesian similarity measure especially in regards to the harder problem of duplicate
images.

The performance contrast between the nearest neighbor and the Bayesian similar-
ity techniques is further illustrated in Figures 6-2 and 6-3 which show the cumulative
match scores. Note an approximate 8% improvement in the case of FA/FB and a
dramatic 30% improvement for duplicate images.

In September 1996, both versions of our algorithm were tested along with four

other competitors on a large gallery test consisting of over 3000 images. Figures 6-
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[ Algorithm | gallery 1 [ gallery 2 [ gallery 3 [ gallery 4 | gallery 5 |

ARL Eigenface 6 6 3 2 5
ARL Correlation 7 4 4 4 6
Excalibur Corp. 2 3 2 3 1
MIT Sep 96 1 1 1 1 1
MIT Mar 95 4 2 5 6 7
Rutgers Univ. 3 4 7 5 4
Univ. of Maryland 4 6 6 7 1
Average 0.220 0.587 0.626 0.512 0.653
Number of Probes Scored 143 64 194 277 44

Table 6.3: Variations in performance over 5 different galleries of fixed size(200) on
duplicate probes. Algorithms are order by performance (1 to 7). The order is by
percentage of probes correctly identified (rank 1). Also included in the table is average
rank 1 performance for all algorithms and number of probes scored

4 and 6-5 show a comparison of the various algorithms on FA/FB and duplicate
images. Note that the MIT96 algorithm outperforms all the other competitors by a
margin of approximately 10%. Table 6.3 shows the overall ranking of the competitors
on different subsets of the test. The data in this table and other figures were taken

from the ARL report on the FERET test results [37).
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Figure 6-1: Dual Figenfaces: (a) Intrapersonal, (b) Extrapersonal
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Figure 6-2: Comparison of nearest-neighbor (MIT95) vs. Bayesian similarity (MIT96)
methods on FA/FB FERET data.
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Figure 6-3: Comparison of nearest-neighbor (MIT95) vs. Bayesian similarity (MIT96)
methods on Duplicate FERET data.
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Figure 6-4: Results of FERET’96 Competition on FA/FB data.
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t _f-Chapter 7
| Conclusions & Future Work

7.1 Estimation & Detection

We have described a density estimation technique for unsupervised visual learning
whjch exploits the intrinsic low;diinensionality of the training imagery to form a
eoinputationally simple estimator for the complete likelihood function of the object.
R ‘Qﬁ-r‘estimato‘l' is based on a subspace decomposition and can be evaluated using
| ,. _ehly the 'M-dimensiona] principal component vector. We have derived the form for
a.n optlmal estlmator and lts associated expected cost for the case of a Gaussian
demnty In contrast to previous work on learning and characterization — which uses
: ‘PCA pnmanly for dimensionality reducticn and/or feature extraction — our method
uses the elgenspace decomposition as an integral part of estimating complete density
»fllmctlo_ns‘ in high-dimensional image spaces. These density estimates were then used

. in "a' maximum likelihood formulation for target detection. The multiscale version of
B .’v‘this det'ection strategy was demonstrated in applications in which it functioned as

an attentlonal subsystem for object recognition. The performance was found to be

oo '..',-'_:,_‘supenor to existing detection techmques in experimental results on a large number

: of test data (on the order of thousands)
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7.2 Recognition

We have also proposed an alternative technique for direct visual matching of images
for purposes of recognition and database search. Specifically, we have argued in favor
of a probabilistic measure of similarity, in contrast to simpler methods which are based
on standard L; norms (e.g., template matching) or subspace-restricted norms (e.g.,
eigenspace matching). This probabilistic framework is also advantageous in that the
intra,extra density estimates explicitly characterize the type of appearance variations
which are critical in formulating a meaningful measure of similarity. For example,
the deformations corresponding to facial expression changes (which may have high
image-difference norms) are, in fact, irrelevant when the measure of similarity is to
be based on identity. The subspace density estimation method used for representing
these classes thus corresponds to a learning method for discovering the principal
modes of variation important to the classification task. Furthermore, by equating
similarity with the a posteriori probability P(Q;|d(];, I5)), we obtain an optimal non-
linear decision rule for matching and recognition. This aspect of our approach differs
from methods which use linear discriminant analysis techniques for visual object
recognition (e.g., [47]).

Furthermore, in Chapter 5 we have experimentally shown that our deformable
XYI warping method for obtaining pixel correspondences does indeed lead to an
effective representation for d(Iy, I,), especially when compared with simpler methods
such as intensity differences and optical flow. In fact, these methods can essentially
be viewed as limiting cases of our general XYI warping method and therefore lack
full correspondence: the intensity difference method requires pre-established spatial
correspondence between I; and I, whereas optical flow assumes that I; and I, only
differ by an XY deformation. The XYI warping method, on the other hand, makes
no such assumptions and efficiently solves for both types of correspondences in a -
unified framework. The resultant modal amplitude spectra of these deformations will
therefore encode both shape (spatial) and texture (intensity) variations between the

two images. The experimental results indicate that a d(I;, I,) representation based
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P(x|)P(5,)
2 P(x|0;) P(0;)

work can be extended ysjp the notion of a “not-class” Q, resulting in 4 osterior;
g g p

saliency maps of the form

Px|2)P(0)
PxI)P@) ¢ P(x|0) P(0)

where now , Mmaximum g Pposterior; (MAP) rule can be used to estimate the Position
and scale of the object. Qpe difficulty With such a formulatiop Is that the “not-
class” ) s, in Practice, too broad , Ccategory and is therefore multimodal apg very

high-dimensional. One possible approach to thjs Problem s to yge ML detectjon



can be viewed as a probabilistic approach to learning using positive as well as negative
examples. The use of negative examples has been shown to be critically important in
building robust face detection systems by Sung ard Poggio [43]. Similarily, the face
finding system of Rowley [41] uses a neural network classifier as opposed to a Bayesian
discriminator. It should be interesting to compare the detection performance of the
neural network technique to that of a probabilistic one, since in the limit of infinite
training data, a neural network should equal the performance of a Bayesian classifier.

Another possible extension of the density estimation methods in this thesis would
be modeling temporal data such as hand gestures and body movements. With suit-
able time normalization (through dynamic time warping techniques) it should be
possible to apply the same detection and recognition methods used with 2D imagery
to multidimensional time series. A similar extension would be to volumetric data

such as medical images.
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Appendix A

The cost function we wish to minimize is the KL divergence

D) = [ ple)log (p(z)/(a)) d(a) (A1)

which is simply the expectation of the log ratio and given the two Gaussian densities

in Equation 3.11 reduces to

p(z) _ d=) d'(z) ﬁ 1 "
log @ ) 5 log(21r) log|E|+ 5 2log(21r)+2log|2,
= Sl - 41 tog I + o]
1 3 A 1 Y 12 ’
= 3 Zy +— Yoy Ey - Y %—_+logl2|—log|2|]
i=1 Ai P:—M+1 o A i=M41 M
11 & Ny N M N
=5l X vi- X y+(ZlogAs+ Y logp) = (D loghi+ 3 loghi)
pz_.M+l i=M+41 7t =1 i=M+1 i=1 i=M+1
1 N g2 N N
= 5| Z yi= 2 3+ 3 logp— 3 logh
P i=m+1 ;—M+1 i=M+1 i=M+1
3 |
= = L_t 4o log \;
2;=§+1 p A Bp 08
(A.2)
Therefore
p(z)| _ 1
J(p) = D(plp) = E [log s =3 X ——1+log— (A.3)
() i=M+1
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Taking the derivative and setting it equal to zero we obtain

N .
v sl ]
1 X A1
=53 5 (A4
=0
which implies
p= e O (A.5)

To show that this is a minimum we check the 2nd derivative

: |
‘2712) - %;% %—1+log/\£i
- Xlp

N-M 3 S A
2/’*2 p*N_M
N—M 2 %

- 2p*2 [FP —1]
N-M

2p*2

> 0 (A.6)

1] since p=p* = 37 2 A

Next we show the unbiasedness of the estimator based of p* with a simple deriva-

tion.
N 2
- Y
d = 225 (A.7)
has expectation N
N 2
Ely;
B = 3 2
a':-]\-,l,\ ‘
i A8
= ¥3 (A.8)
=1 "t
= N
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An estimator based on a single eigenvalue p has the form

SN
Il

with expectation

Eld]

I
|
N
s
>

which yields
1 N
=LA

i=1

(A.9)

(A.10)

(A.11)

(A.12)

Thus a value of p based on the average of eigenvalues of a subspace will yield an

unbiased estimate.
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