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Abstract. A theoretical framework is introduced for the perception of specular surface geometry. When an observer
moves in three-dimensional space, real scene features such as surface markings remain stationary with respect to
the surfaces they belong to. In contrast, a virtual feature which is the specular reflection of a real feature, travels on
the surface. Based on the notion of caustics, a feature classification algorithm is developed that distinguishes real
and virtual features from their image trajectories that result from observer motion. Next, using support functions
of curves, a closed-form relation is derived between the image trajectory of a virtual feature and the geometry of
the specular surface it travels on. It is shown that, in the 2D case, where camera motion and the surface profile are
coplanar, the profile is uniquely recovered by tracking just two unknown virtual features. Finally, these results are
generalized to the case of arbitrary 3D surface profiles that are traveled by virtual features when camera motion is
not confined to a plane. This generalization includes a number of mathematical results that substantially enhance the
present understanding of specular surface geometry. An algorithm is developed that uniquely recovers 3D surface
profiles using a single virtual feature tracked from the occluding boundary of the object. All theoretical derivations
and proposed algorithms are substantiated by experiments.

1. Introduction

This paper focuses on mirror-like reflection from
smooth surfaces like glass, ceramic, polished metal,
and plastic. Although the physics and geometry that
govern specular reflection are well understood, visual
interpretation of specular surfaces remains an open
problem. Two major issues are associated with spec-
ular reflection. The first is detection of specularity.
How can we determine whether an image feature cor-
responds to an actual scene point or whether it is the
specular reflection of another scene point? This am-
biguity poses a problem for all vision techniques that
are based on feature detection and matching, such as,
binocular stereo and structure from motion. At present
these techniques simply produce incorrect results when
confronted with specular surfaces. The second prob-
lem, which is even more challenging, is shape recov-
ery of specular surfaces. This problem is hard from

an analytical perspective and currently only structured
(active) illumination techniques can recover the shape
of a specular object.

The ambiguity that specular surfaces introduce into
image analysis arises from the existence of two dis-
tinctly different types of image features: real and vir-
tual. A real featurecorresponds to a physical scene
point such as a surface marking or a surface texture
element. On the other hand, avirtual featureis the re-
flection by a specular surface of another physical scene
point1. While a real feature remains stationary with re-
spect to the surface it belongs to, a virtual feature shifts
on the specular surface when either the reflected scene
point or the observer moves. Further, as the observer
moves, the virtual feature produces an image trajectory
that varies with the geometry of the specular surface.

Given the fundamental nature of the difference be-
tween real and virtual features, they must be distin-
guished before they are used (or discarded) by existing
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Figure 1. A simple example to illustrate that specular surfaces can
cause existing shape recovery algorithms to produce results that do
not lie even close to the desired result. The case at hand is binocular
stereo. The same scene feature produces two virtual features, one in
each sensor. The depth computed by matching these features does
not lie on the physical surface (also see (Blake, 1985; Lee, 1991)).
Interestingly, even as the stereo vergence(2θ) approaches zero, the
computed virtual point does not approach the physical surface. It
converges to a point midway between the sphere’s center and its
surface.

vision algorithms. As an example, Fig. 1 shows a spec-
ular object in a binocular stereo setting. We see that
the same scene feature is reflected into the two sensors
by different physical points on the surface. The result-
ing virtual features in the two images, when matched,
produce an erroneous depth estimate; a virtual point is
estimated that can be either above or below the surface
(depending on whether the surface is concave or convex
(Blake, 1985; Lee, 1991)). Even if the vergence of the
stereo pair is reduced, the virtual point fails to approach
the physical surface. In the case of a specular sphere,
it can be shown to converge exactly midway between
the center of the sphere and its surface. Virtual features
also pose problems for motion estimation. This prob-
lem was investigated by Waldon and Dyer (1993) who
showed that the optical flow field for specular surfaces
does not yield the correct motion parallax but instead
the flow of virtual features on the surface, calledspec-
ular flow.

These examples illustrate that current vision algo-
rithms that were designed to handle only real fea-
tures fail for specular objects. Therefore, a technique
that determines whether a feature is real or virtual is

clearly desirable. This classification problem is non-
trivial since the photometric properties of a virtual
feature could be identical to those of a real one. Con-
sequently, brightness based methods for identifying
specular highlights (reflections of light sources), such
as Ullman’sS-operator (Ullman, 1976) or the retinex-
based test and the cylinder test proposed by Brelstaff
and Blake (1988), are limited in their applicability. In
recent years, several photometric methods have been
developed for detection of specular reflections using
color (Klinker et al., 1988), polarization (Wolff and
Boult, 1991), color and multiple views (Lee, 1991),
and color and polarization (Nayar et al., 1996). These
techniques work reasonably well in partially controlled
scenes but are not guaranteed to resolve ambiguities
posed by virtual features in unstructured settings (see
discussion in (Nayar et al., 1996)).

The fundamental difference between real and virtual
features raises two questions: First, what geometric in-
formation is contained in virtual features? Second, how
can virtual features be exploited to recover shapes of
specular surfaces? Before we address these questions
and introduce our results, a survey of previous work is
in order. Several techniques have been developed that
use active illumination to recover shapes of specular
surfaces. These include the photometric stereo based
approach of Ikeuchi (1981), the photometric sampler
developed by Nayar et al. (1990) and the SHINY sys-
tem implemented by Sanderson et al. (1988). Recently,
Schultz (1994) suggested using multiple viewpoint im-
ages of a specular surface to iteratively recover shape.
This technique uses a known irradiance map of the il-
lumination to compute the surface that minimizes dis-
crepancies between rendered and measured images.

Others have analyzed specular surfaces from the per-
spective of an active observer. Koenderink and van
Doorn (1980) described the qualitative behavior of
highlights under observer motion. It was shown that
highlights travel freely in elliptic or hyperbolic regions
and speed up near parabolic lines. Blake (1985), Blake
and Brelstaff (1988), and Blake and Bulthoff (1991)
have studied the effect of specular reflection on binocu-
lar stereo. Stereo disparities produced by a real feature
(surface texture for instance) and a virtual feature (a
highlight) were compared. They showed that a spec-
ular highlight can yield additional information about
the local curvature of the surface. For instance, it can
be used to resolve convex/concave ambiguities. Healey
and Binford (1988) analyze monocular images to esti-
mate local shape within a highlight region. They use
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the Torrance-Sparrow model (Torrance and Sparrow,
1967) to relate the brightness distribution of a high-
light to local surface curvature. Thrift and Lee (1983)
studied the problem of localizing and determining the
dimensions of spheres and straight-axis generalized
cylinders from specular highlights. A similar prob-
lem of surface geometry classification based on the
reflection of a rectangular light source was studied by
Symosek (1985) who developed estimators for recog-
nition and pose estimation of three quadric surfaces—
planes, cylinders and spheres. A novel direction was
pursued by Longuet-Higgens (1960) who studied spec-
ular reflections from random surfaces (such as a sea
surface) and explored the creation and annihilation of
specular points.

Although specular surfaces have intrigued many re-
searchers, we still lack a complete understanding of
what information regarding scene geometry can be
extracted from specularities. It is clear that virtual fea-
tures in a single image do not reveal sufficient informa-
tion. Hence, we pursue an active approach where the
observer (sensor) moves along a known trajectory in the
scene. Image features are tracked through the acquired
image sequence. It turns out that even for a moving
observer, exploitation of virtual features is a difficult
problem. Zisserman et al. (1989) showed that a mov-
ing observer can determine a surface profile by tracking
the reflection of a known light source, but only up to a
one-parameter family of curves. In other words, even
with a known source, shape cannot be uniquely recov-
ered. While their result shows the existence of a family
of curves, it does not provide a closed-form expression
for this family. It is only recently that Bellver-Cebreros
and Rodriguez-Danta (1992) derived equations for the
family of curves in the 2D case, where camera motion,
a known source, and the reflecting surface profile are
all assumed to be coplanar. Recent work by Zheng
et al. (1995) also addressed the problem of 2D recov-
ery using single and multiple light sources. All of the
above schemes assume that the light source position is
known a-priori. They also lead to the conclusion that
the exact surface profile remains ambiguous if a sin-
gle virtual feature is used. Moreover, profile recovery
using unknown features and relating image trajectories
to surface profiles for general 3D camera motion have
remained unsolved problems.

In our work, we address all of the problems stated
above. The first half of this paper focuses on the 2D
case, where camera motion, the reflected scene feature,
and the specular profile curve are confined to the same

plane. It is observed that analysis of specular surface
geometry is possible only if the surface curve represen-
tation used is chosen with care. We begin by analyzing
the envelope of the family of reflected rays produced by
sensor motion. This envelope is referred to as thecaus-
tic of reflection. Caustics play an important role in ge-
ometrical optical design (Cornbleet, 1984; Stavroudis,
1972) and here we show that they can be exploited for
classification of image features into real and virtual,
based solely on their image trajectories and not their
brightness properties. Next, we proceed to address the
recovery of 2D surface profiles from image trajecto-
ries. A differential equation is derived that relates sur-
face profile to the caustic of a virtual feature. Based
on this result, an algorithm is devised for unique re-
covery of 2D specular profiles from just twounknown
virtual features. In contrast to all previous work, this
approach does not require prior knowledge of scene
features or markings on the profile. Experimental re-
sults are presented that verify the effectiveness of both
feature classification and 2D profile recovery.

In the second half of the paper, we extend our ideas to
the more challenging 3D case where the camera motion
and the surface profile can be arbitrary space curves.
The problem of profile recovery in this case is more dif-
ficult than in the 2D case. A solution to this problem re-
quires a non-trivial mathematical generalization of the
concepts and the techniques developed for the 2D case.
We begin with an analysis of 3D caustic curves. This
involves the derivation of a new set of explicit caustic
equations that do not appear in previous literature. This
derivation was made possible using the idea of a coor-
dinate frame that is attached to the specularly reflected
ray. Mathematical conciseness resulting from this idea
enables us to derive a differential equation that relates
the 3D caustic of a virtual feature to the 3D specular
surface profile. We find that, when a virtual feature can
be tracked from the occluding boundary of an object,
the 3D surface profile can be recovered without ambi-
guity. The feasibility of this technique is demonstrated
via experiments.

The paper is organized as follows. In Section 2, we
study 2D specular surface profiles. We first describe
a curve representation based on the support func-
tion (Guggenheimer, 1963) and derive a set of fun-
damental expressions, including, the caustic equation
and the profile recovery equation. Next, unique pro-
file recovery using two unknown features is presented.
In addition, we present experiments that demonstrate
practical feasibility of the feature classification and
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profile recovery algorithms. In Section 3, we study the
more general case of arbitrary 3D camera motions. The
caustic curve equation for a family of reflected rays in
3D is derived and used for feature classification. Next,
the 3D curve recovery equation is derived and exper-
iments on curve recovery are shown. Finally, in Sec-
tion 4, we conclude with a summary of our results and
their implications.

2. Recovery of 2D Surface Profiles

In this section, we will analyze the 2D case where the
camera motion, the scene feature, and the specular sur-
face profile are all confined to the same plane. In our
analysis, we assume that the profile curve is smooth
(twice differentiable) and its curvature does not vanish.
The case of zero curvature (a straight line segment) is
a special one that may be detectable by other means; it
causes the reflection of a well-defined point feature to
be spread over a large part of the segment.

2.1. Curve Representation

Appropriate representation of curves and surfaces is
critical for most shape recovery algorithms and object
recognition techniques. A carefully chosen represen-
tation can simplify analysis of the problem and some-
times even determine its tractability. The same is true
in the case of specular surfaces. In this section, we
discuss limitations of popular representations of 2D
curves, introduce a representation based on the support
function of a curve, and demonstrate its pertinence to
the analysis of specular reflection.

2.1.1. Envelopes and the Legendre Transform.The
most common description of a 2D curve is its repre-
sentation as a collection of points given by their Carte-
sian coordinates,(x, y) (see Fig. 2(a)). Though this

Figure 2. (a) Representation of a curve using its Cartesian coordi-
nates(x, y). (b) Representation of a curve as an envelope of tangents.

Figure 3. A ray reflected from a specular surface constraints the
position of the reflecting surface point to a line in space. It also
imposes constraints on the slope of the surface. These constraints
are hard to formulate when the curve is described in a Cartesian
coordinate system, since the reflected ray and the reflecting surface
point both vary with camera location.

representation is conceptually simple, it results in com-
plex equations when used to describe the geometry of
specular reflection. The reason is that specular reflec-
tion depends not only on the spatial coordinates of the
reflecting surface profile but also its local slope. The
constraints on the reflecting profile point are that its
normal is the bisector of the angle between the incident
and reflected rays and that the point lies on the reflected
ray. This is illustrated in Fig. 3. As an observer moves
around the surface, the direction of the reflected ray
and the location of the reflecting point both vary. There
is no convenient Cartesian coordinate system that can
be used to express the above constraints. This problem
suggests that the analysis of specular reflection requires
the use of an alternative curve representation. Since the
information available to the observer is restricted to re-
flected rays, it is more meaningful to treat the curve as
an envelope of surface tangents rather than a collection
of points. This concept is illustrated in Fig. 2(b). As
we will see shortly, the two representations in Fig. 2
are equivalent.

What is the most suitable representation for our en-
velope of tangents? Bellver-Cebreros and Rodriguez-
Danta (1992) suggested using the Legendre transform
of the curve equation. The Legendre transform,9(ξ),
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Figure 4. (a) Representation of a tangent using(9(ξ), ξ). (b) Rep-
resentation of a tangent using the support function, i.e., the distance
ρn from the origin and the normal angleθn.

of a differentiable function of one variable,y(x), is:

ξ = dy/dx (1)

9(ξ) = y(x) − ξx (2)

A geometric interpretation of the Legendre transform
is illustrated in Fig. 4(a). If(x, y(x)) is the Cartesian
representation of a curve thenξ is the tangent of the
angle between the tangent line and thex̂-axis, and9(ξ)

is the intersection of the tangent line with theŷ-axis.
If we apply the Legendre transform to the function
9(ξ), the resulting function is nothing but the original
functiony(x). This shows that the Legendre transform
preserves all the information contained in the original
function.

2.1.2. Support Function Representation of Curves.
As described above, the Legendre transform of a curve
is a representation of its tangent lines by their slopes
andŷ-intercepts (see Fig. 4(a)). While this representa-
tion simplifies the treatment of specular reflectance,
as noted by Bellver-Cebreros and Rodriguez-Danta
(1992), it suffers from a few drawbacks. The main
disadvantage is that neither9 nor ξ undergo simple
transformations under rotation of the coordinate sys-
tem, a property that is highly desirable in our work
for reasons that will become clear in due course. To
achieve such an invariance, we represent the tangent
line not with the slope and intersection point but with
its distance to the origin,ρn, and the normal angle,θn,
as shown in Fig. 4(b). The function,ρn(θn), is called
thesupport functionof the curve (see (Guggenheimer,
1963; Horn, 1986)).

Given the Cartesian representation(x, y(x)) of a
curve, the support function representation is:

θn = tan−1

(
− 1

/
dy

dx

)
(3)

ρn = x cosθn + y sinθn (4)

Calculating the derivative ofρn in (4) with respect toθn

and usingx′ cosθn + y′ sinθn = 0 from Eq. (3) yields
the following transformation:(

ρn

ρ ′
n

)
=

(
cosθn sinθn

−sinθn cosθn

)(
x
y

)
(5)

From the above relation, the inverse transform is easily
determined as:(

x
y

)
=

(
cosθn −sinθn

sinθn cosθn

)(
ρn

ρ ′
n

)
(6)

This representation has the advantage that it depends
explicitly on the slope of the curve, and that under a ro-
tation of the coordinate systemρn remains unchanged
while θn is only subjected to a simple linear shift.

2.2. Caustics and Feature Classification

Before addressing shape recovery, we study the prob-
lem of feature classification and introduce the impor-
tant notion of caustics. As stated in the introduction,
several vision algorithms rely on robust detection and
tracking of scene features. Whilereal scene features
(such as surface markings) cling to the surface they
belong to, specular reflection producesvirtual features
that do not directly reveal the locations of the real fea-
tures that produce them and tend to travel on the surface
as the observer moves in the world. Techniques ranging
from motion estimation to structure from motion pro-
duce incorrect results when a virtual feature is taken to
be a real one. Therefore, a technique for distinguishing
between real and virtual features would serve as a valu-
able preprocessing step for almost any vision algorithm
that relies on feature tracking.

Figure 5 shows a single image taken from a sequence
obtained by a moving sensor. Two image features (1 and
2) are highlighted. Feature 1 is a real surface mark-
ing (a checkerboard corner pasted on the surface of
the sphere) while feature 2 is the reflection of a scene
feature (also a checkerboard corner) that is located out-
side the field of view of the sensor. Despite these dif-
ferences, the two features appear almost identical and
hence are indistinguishable from a single image. How-
ever, if the observer moves around the object, each of
the above features traces a trajectory in image space.
We devise a technique for quickly discriminating be-
tween real and virtual features based solely on the ge-
ometrical properties of their image trajectories.

Pertinent information that the image of a virtual
feature contains is the direction and position of the
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Figure 5. Image of a specular sphere with two features (both
checkerboard corners). One is a real feature (surface marking, (1))
while the other is a virtual feature (reflection of a scene feature, (2)).
The features are similar in appearance and cannot be distinguished
from just their brightness properties. However, they can be discrim-
inated by tracking them along an image sequence taken by a moving
sensor and computing their caustics.

reflected ray relative to the world coordinate system.
Given the position of a virtual feature in the image and
the camera parameters (position, orientation and focal
length), the direction of the reflected ray,θr , and its
signed distance,ρr , from the origin of the world coor-
dinate system are easily computed. In the special case
of orthographic projection, the direction of the reflected
ray is simply the direction of the optical axis, and the
distanceρr is just the distance in the image between
the projection of the feature and the projection of the
origin of the world coordinate system.

Figure 6. (a) The caustic of a feature is the envelope of the reflected rays. (b) The support function of the caustic is given by the distance of
the reflected ray from origin of the world coordinate system. This distance is computed from the feature position in the image and the camera
parameters.

When the sensor moves around the object, the vir-
tual feature travels on the specular surface producing a
family of reflection rays. The envelope defined by this
family, illustrated in Fig. 6(a), is called acaustic. The
caustic is tangent to each one of the reflected rays, and
the normal to the caustic for a reflection ray in direction
θr is θr + π

2 . From Fig. 6(b), we see that the support
function representation of the caustic is given simply
byρr (θr + π

2 ). (We could also choose the normal angle
to beθr − π

2 , in which case,ρr (θr − π
2 ) = −ρr (θr + π

2 )).
In the remaining of this paper, we useρr for the support
function of the caustic, to distinguish it from the sup-
port function of the specular surface profile which will
be denoted byρn. For simplicity of notation, we pa-
rameterizeρr by θr but the normal angle to the caustic
is reallyθr + π

2 .
From the above discussion, we see that the image

trajectory traced by a feature is nothing but the support
function of the feature’s caustic. Therefore, hereafter,
we will use the termscausticand image trajectoryof
a feature interchangeably since they convey the same
information.

Returning to the problem of feature classification,
we note that the caustic of a real feature is nothing but
a point, the actual position of the feature in the scene
where all the reflected rays intersect. But for a virtual
feature the caustic will be a curve, (except for the spe-
cial case of a parabolic specular surface with a scene
feature exactly on its axis2, clearly a special case that is
unlikely in most practical applications). Therefore, to
classify a feature, all we need is to compute the caustic
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and to test whether it is a point or a curve. The compu-
tation of the caustic curve(xc, yc) (parameterized by
θr ) in Cartesian coordinates is straightforward. Given
ρr (θr ), and using expression (6) withθn = θr + π

2 , the
caustic curve is determined as:(

xc

yc

)
=

(−sinθr −cosθr

cosθr −sinθr

)(
ρr (θr )

ρ ′
r (θr )

)
(7)

whereρ ′
r is the derivative ofρr with respect toθr .

When the radius of curvature of the profile is very
small, for example at a sharp corner (Koenderink and
van Dorn, 1980), the caustic will be compact making
it hard in the presence of noise to determine whether
it is a virtual feature or a real feature. However, such
virtual features are almost fixed in space and behave
like real feature points. As a result, they can be treated
as real features and directly used in techniques such
as stereo and motion. The above described test on the
compactness of caustics can be invoked while track-
ing image features. Then, only those trajectories that
are found to be produced by real features are used as
input to vision algorithms such as structure from mo-
tion. Meanwhile, detected virtual features can be used
as an additional source of scene geometry, as we will
see shortly.

2.3. Experiments: Feature Classification

To illustrate classification we used the metallic sphere
shown in Fig. 5. The real and virtual features shown

Figure 7. (a) Support functions produced by the two features shown in Fig. 5. (b) Caustics computed from the support functions and plotted
on thex̂-ŷ plane. The caustic of the real feature (1) is a compact cluster, while that of the virtual feature (2) is a curve with a cusp. Real and
virtual features are distinguished by using a simple measure of caustic compactness. For instance, the second moments of the two caustics have
a ratio of 30:1.

in the image were tracked while the sensor was moved
around in a planar trajectory using a 5 degree of free-
dom robot manipulator. The viewing direction of the
sensor was varied over a range of approximately 150◦;
images were taken every 1◦. The two features are
tracked along the sequence, using the sum of square dif-
ference (SSD) correlation operator. The support func-
tionsρr (θr ) of the two features are shown in Fig. 7(a).
From each support function a caustic curve was com-
puted using expression (7), as outlined in the previous
section. The computation of the caustic involves find-
ing the local derivativeρ ′

r (θr ) which is typically noise
sensitive. To minimize the effect of noise we smoothed
the data by fitting a quadratic polynomial to each data
point and its close neighbors (we used 7 neighbors on
either side). The values ofρr (θr ) andρ ′

r (θr ) were then
evaluated from the local polynomial coefficients. This
smoothing technique considerably improved the qual-
ity of the computed caustic curves. Another factor that
must be consider is the perspective projection of the
camera. We found that the deviation of the reflected
ray direction from that of the optical axis of the camera
must be taken into consideration, even if the deviation
is as small as 3◦. If not, the accumulated error in caustic
computation can be substantial.

The caustics computed for the two features are
shown in Fig. 7(b). They are plotted as parameterized
curves in thêx-ŷ plane. As expected, the caustic of the
real feature is a small cluster centered around the actual
position of the feature. In contrast, the caustic of the
virtual feature is a curve with a cusp (which is common
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in caustics resulting from specular reflection). We used
the second moment of the caustic, computed with re-
spect to the axis through the centroid perpendicular
to caustic plane, as a simple measure of caustic com-
pactness. In the above experiment, second moments of
the real and virtual caustics were found to have a ratio
of 30:1, clearly sufficient for reliable classification. In
case a significant level of noise causes the caustic of
the real feature to spread out in a larger random cluster,
additional tests based on the spatial distributions of the
two caustics (a well-defined continuous curve versus a
random scatter of points) can be employed.

2.4. 2D-Profile Recovery

We now examine the problem of recovering 2D spec-
ular profiles by moving the sensor and tracking vir-
tual features. Zisserman et al. (1989) showed that
a single feature trajectory yields surface profile only
up to a one-parameter family of curves even when the
position of the light source (scene feature) is known.
This means that there are an infinite number of pos-
sible profiles that can yield the same image trajectory.
Bellver-Cebreros and Rodriguez-Danta (1992) used the

Figure 8. (a) The general setting of a specular object in an environment including a variety of visual features. The observer can view the object
from different directions. (b) The geometry of feature reflection from a specular profile.

Legendre transform to derive the equation of this family
of curves. Their technique was designed for applica-
tions such as inspection of cracks from profile defor-
mations. A single light source of known position was
used to generate a specular highlight which is treated
as a virtual feature. The expressions they have derived
are hard to extend to the analysis of profiles when the
locations of scene features areunknown. Moreover,
their expressions cannot be generalized to 3D specular
surfaces, which are also of interest to us.

In this section, we derive a new set of expressions that
relate surface profile to image trajectory using the sup-
port function representation. We also show how track-
ing of two or more unknown virtual features enables us
not only to find the position of the corresponding scene
features but also to recover the profile of the specular
surface without any ambiguity. In contrast to previous
work, this is shown to be possible without prior knowl-
edge of any profile points.

2.4.1. Trajectory Equation. Figure 8 shows a specu-
lar profile and scene features reflected by it in the direc-
tion of the camera. The camera is moved in the plane of
the profile and each feature is tracked in image space.
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We assume that all scene features are relatively far, so
that any given feature’s direction is the same for all
points on the surface profile, i.e., for each feature,θi is
nearly constant over the entire profile. As in Section
2.2, we use the notationρn(θn) for the profile support
function andρr (θr ) for the caustic of the feature. By
(x, y) we denote the Cartesian coordinates of the re-
flecting point on the profile. The reflecting point lies
on two tangents. The first is a tangent to the profile
curve whose normal isθn. From (5) we get:

ρn(θn) = x cosθn + y sinθn

The second tangent is the reflected ray which is a tan-
gent to the caustic. The normal to the caustic at the
tangential point isθr + π

2 . Again, using (5) we have

ρr (θr ) = x cos

(
θr + π

2

)
+ y sin

(
θr + π

2

)
These two equations can be written together as:(

ρn(θn)

ρr (θr )

)
=

(
cosθn sinθn

−sinθr cosθr

)(
x
y

)
(8)

By matrix inversion, we get the following expression
for the profile coordinatesx andy:(

x
y

)
= 1

cos(θr − θn)

(
cosθr −sinθn

sinθr cosθn

)(
ρn(θn)

ρr (θr )

)
(9)

Also, from expression (6) we get:

x = cosθnρn(θn) − sinθnρ
′
n(θn) (10)

Equating the above two expressions forx, and using
the law of specular reflection:

θr = 2θn − θi (11)

we get

ρr (2θn − θi ) = −sin(θn − θi )ρn + cos(θn − θi )ρ
′
n (12)

or

ρr (2θn − θi ) = d

dθn
[cos(θn − θi )ρn(θn)] (13)

This differential equation is fundamental to our analy-
sis as it relates the support functionρr of a feature to
the surface profileρn that we seek to recover. We need
to integrate this equation to retrieve the desired pro-
file support functionρn(θn). Since in practice we work
with the angle of reflectanceθr and not withθn (which
depends on the unknown scene feature direction) we
substitute Eq. (11) in (13) and integrate overθr :

ρn

(
θr + θi

2

)
=

1
2

∫ θr

θ0
r

ρr (θ
′
r )dθ ′

r + ρn
( θ0

r +θi

2

)
cos

( θ0
r −θi

2

)
cos

(
θr −θi

2

) (14)

whereθ0
r is the starting angle of the integration. This

equation gives the support function of the unknown
profile as an integral of the support function of the
caustic which is measured by the moving observer. But
we see that even if the feature directionθi is given, the
surface profile cannot be determined completely due to
the unknown constant of integration:

C = ρn

(
θ0

r + θi

2

)
cos

(
θ0

r − θi

2

)
(15)

This implies that the surface profile is determined
only up to a one-parameter family of curves. How-
ever, we can make an important observation: If we can
start the integration from an occluding boundary of
the profile, the constant of integration vanishes since
cos( θ0

r −θi

2 ) = 0. This facilitates unambiguous recovery
of the support function and hence the surface profile.
Since reflections from occluding boundaries are not
always guaranteed, we will pursue an alternative ap-
proach in the next section that uses multiple features.
Either way, once the support functionρn(θn) of the
profile is determined, the actual shape of the profile is
computed using Eq. (6). Alternatively, as we will see
in Section 3, we can recover the profile by just usingρn

andρr , without computing the derivative ofρn in (6).

2.4.2. Recovery of a 2D-Profile Using Multiple Fea-
tures. As we saw in the previous section, even if we
track a feature whose position is known, the surface
profile cannot be recovered uniquely unless we start
tracking the feature from the occluding boundary, a
requirement that cannot always be satisfied in prac-
tice. We show in this section that the image trajecto-
ries of two unknown virtual features impose powerful
constraints. The trajectories of two different features
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not only enable us to determine the positions of the
unknown features in the scene, but also estimate the
constant of integration in (15) and thus unique pro-
file recovery. In the following discussion we confine
ourselves to two features, though the approach easily
generalizes to any larger number of features.

Consider two scene features in the directionsθk
i (k =

1, 2). If these directions are known, the observer can
compute the range of surface normals (θn = 1

2(θk
i +θr ))

along the profile traversed by each of the features. Fur-
thermore, unless the two features are located exactly
at diametrically opposite sides of the object, i.e., 180◦

apart, their profile trajectories must overlap on some
region. This overlap region, although its shape is un-
known as yet, is defined by an intervalI of surface
normals which can be computed easily fromθ1

i and
θ2

i and the range of viewing angles. The result of the
previous section, Eq. (14), gives the support function
of the surface profileρk

n(θn ; θk
i , Ck) (k = 1, 2) as a

function of the surface normal which depends on two
parameters: the feature directionsθk

i and the constants
of integrationCk. In the intervalI of surface normals,
the two support functions must agree, as they represent
the same profile segment:

ρ1
n

(
θn ; θ1

i , C1
) = ρ2

n

(
θn ; θ2

i , C2
)
, θn ∈ I (16)

The above constraint will not be satisfied exactly due to
noise, quantization and calibration errors. To quantify
the above constraint, we define a distance functionR(;)
that measures how close the two support functions are
in the intervalI :

R
(
θ1

i , C1; θ2
i , C2

) =
Dist

[
ρ1

n

(
θn; θ1

i , C1
)
, ρ2

n

(
θn; θ2

i , C2
); θn ∈ I

]
(17)

There are several ways of definingR(;). Our choice
is discussed in the following experimental section.
Once R(;) is defined, the idea is to search through
(θ1

i , C1; θ2
i , C2)-space and find the four parameters that

minimize R(;). Using the recovered parameters, the
surface profile is reconstructed over the entire range of
measurements, i.e., not just the overlap region, but all
points on the profile traveled by either of the two fea-
tures. The above described approach is easily extended
to larger numbers of features; the distance metric is
minimized using pairs of successive features and all
computed profile segments are concatenated to obtain
a larger profile.

2.5. Experiments: Recovery of 2D Profile
Using 2 Unknown Features

We now present experimental results on 2D profile
recovery by tracking two unknown features. We con-
ducted experiments on a variety of objects. Here, we
present results on two profiles, one circular and the
other elliptical. The experimental setup used is shown
in Fig. 9(a). A specular object is positioned in a robot’s
workspace. A textured background at a large distance
from the object produces virtual features on the spec-
ular surface of interest. A camera attached to the end-
effector of the robot is moved around the object. In
these experiments, the features, the camera, and object
are all in the same plane. All objects used are approx-
imately 6 cm in diameter, the camera is at a distance
of approximately 40 cm from the object, and the tex-
tured background at a distance of about 200 cm. The
range of viewing angles used is about 250◦ and images
were taken for every 1◦ increment to ensure continu-
ity of the support function. Two features were selected
in the initial image (Fig. 9(b)) along the equator and
tracked through the image sequence. Each feature was
tracked independently by matching a small rectangu-
lar window around it to windows in the consecutive
image in the sequence, using the SSD correlation op-
erator. The search for the feature in the second image
was pruned by estimating its new position based on its
motion between the previous pair of images. Since the
sensor, the feature and the object are in the same plane,
self-occlusion of the feature by the sensor can occur.
This problem is not critical since it occurs in no more
than a couple of images in the sequence. However, we
avoided such occlusions completely by raising the sen-
sor slightly above the feature plane. Once the image tra-
jectories were obtained, using the camera coordinates
and focal length, support functions for each of the two
tracked features were computed (see Fig. 10(a)).

Next, the two pairs of unknown parameters(θ1
i , C1)

and(θ2
i , C2) were determined by minimizing the dis-

tance functionR(θ1
i , C1; θ2

i , C2). The current imple-
mentation uses the following distance function, which
is simply a mean-squared-distance metric:

R
(
θ1

i , C1; θ2
i , C2

) =(
1

N

∑
θ ′

n∈I

[
ρ1

n

(
θ ′

n; θ1
i , C1

) − ρ2
n

(
θ ′

n; θ2
i , C2

)]2

) 1
2

(18)

Each term in the sum corresponds to a pair of mea-
surements (one for each feature) in the overlap region
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Figure 9. (a) The experimental setup. A camera is mounted on the end-effector of a 5 DOF robot. It is moved around the object and virtual
features are continuously tracked in image space using correlation. (b) A typical image including a large number of virtual features.

Figure 10. 2D profile of a sphere recovered by tracking two unknown features. (a) Support functions of the two features computed from
their image trajectories. (b) The recovered surface profile. The dots represent the computed profile and the solid line is the actual profile. The
directions of the two unknown features were found to beθ1

i = −28◦ andθ2
i = 34◦.

I determined by the parameters (θ1
i , θ2

i ) chosen during
search. N is the total number of measured pairs in
the overlap region. The surface support functionρn is
computed for each chosen set of parameter values by
using Eq. (14). This process is made efficient by stor-
ing all the partial sums of the integral

∫ θr

θ0
r

ρr (θ
′
r )dθ ′

r in
a look-up table indexed byθr .

During the minimization process, to avoid getting
trapped in local minima, we employ exhaustive search
in the 4-parameter space. To limit the search, we use
rough estimates of the upper and lower bounds on the
4 parameters. Given the physical constraints of our
experimental setting, we used−150◦ ≤ θ1

i ≤ 150◦

and|θ2
i − θ1

i | ≤ 120◦. Estimates for the search ranges
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Figure 11. 2D profile of an ellipsoid recovered by tracking two unknown features. (a) Support functions of the two features computed from
their image trajectories. (b) The recovered (dots) and actual (solid line) profiles. The directions of the two unknown features were found to be
θ1

i = −26◦ andθ2
i = 50◦.

of C1 andC2 can be obtained using rough approxima-
tions for the size and location of the object. Note that
none of the above approximations are critical to profile
recovery; they are only used to expedite the search pro-
cess. Once the two pairs of parameters,(θ1

i , C1) and
(θ2

i , C2), are determined, the support functionsρ1
n(θn)

andρ2
n(θn) can be computed without ambiguity. From

the support functions the surface profile corresponding
to each feature trajectory is independently recovered
and then the two profiles are fused together to obtain
a larger reconstructed profile. Figure 10(b) shows the
recovered profile of the sphere. Experimental results
for an oval-shaped object (elliptical profile with ratio
between major and minor axes of 1.6) are shown in
Fig. 11. In both experiments we see that the specular
profiles are estimated with high accuracy.

The tracking of virtual features is harder than the
tracking of real features. One practical problem is
related to the quality of the surface finish. A poor fin-
ish can blur reflections which limit the types of features
which can be tracked. A second problem arises at re-
gions of very low curvature. In such cases, the distortion
of the feature can be significant even for small view-
point changes. The experiments reported here demon-
strate that, when virtual features can be tracked with
precision, caustics and surface profiles can be com-
puted with high accuracy.

3. Recovery of 3D Surface Curves

We now generalize the results of the previous sec-
tions to 3D surfaces. The camera motion is no longer

Figure 12. Recovery of surface geometry for general camera mo-
tion (along a 3D trajectory) cannot be decomposed into two 2D profile
recovery problems.

confined to a plane, and consequently, the surface pro-
file can be any smooth space curve. Before we pro-
ceed with our 3D analysis, it is worth elaborating on
the problems we face. Figure 12 shows the tracking
of a virtual feature as it travels on a 3D curve. If we
project the curve onto a 2D plane, for instance thex̂-ẑ
plane, the projection of any surface normal on the curve
is not necessarily the bisector of the projections of the
incidence and reflection angles. In general, there is no
projection plane that obviates this problem. In short,
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the problem of 3D curvescannotbe reduced to a finite
number of 2D profile problems. However, our results
on 2D profiles have given us the basic tools and under-
standing necessary to proceed with the 3D case.

We begin by generalizing the notion of caustics to
a family of reflected rays in 3D space. For the deriva-
tion of this caustic equation, we introduce a coordinate
system that is attached to reflected rays. This simple
idea has made the 3D case tractable. Using this mov-
ing coordinate system, we derive equations that relate
the image trajectory of a virtual feature to the reflect-
ing surface curve. We conclude this section with ex-
perimental verification of feature classification and 3D
profile recovery.

In the following analysis, we assume that the cam-
era motion is continously differentiable and that the
surface is twice differentiable. We also assume that the
Gaussian curvature does not vanish along intervals on
the surface profile traversed by the virtual feature. In
regions with zero Gaussian curvature (parabolic lines
and planar regions) all the points in the region will re-
flect a single feature in the same viewer direction. Such
regions need to be analyzed by other means. For in-
stance, regions with zero Gaussian curvature may be
identified by the spread of virtual features.

3.1. 3D Caustic Curve and Feature Classification

In Section 2, the caustic was defined for a family of
coplanar lines. In the current scenario, as the camera
moves, reflected rays are no longer confined to a plane.
Therefore, the family of lines is parameterized not by
their direction (which is defined now by two angles) but
rather by a parametert which may be viewed as atime
parameter. Other (allowable) parameters can be used
too. If the envelope of this family of 3D rays exists, it
is known as a 3Dcaustic curve.

For arbitrary camera motion in 3D, the family of re-
flected rays is given by the direction of each line, the
unit vectorv̂(t), and its distance vectorEL(t) from the
origin of the world coordinate system as illustrated in
Fig. 13. At any given instancet , these two vectors are
computed from the feature position in the image and
the camera parameters. The vectorEL(t) is analogous to
the support function3, ρn, introduced in Section 2.1.2.
In the case of orthographic projection,v̂(t) is the opti-
cal axis andEL(t) is simply a vector on the image plane
between the image projections of the feature and the
origin of the world coordinate systemEO. In the follow-
ing derivation, we assume the existence of the caustic
curveExc and derive its equation. The caustic curve is

Figure 13. The 3D-caustic of a feature is the envelope of the re-
flected rays. The reflected ray is defined by its directionv̂(t) and
by its distanceEL(t) from the origin of the world coordinate system.
Both vectors,EL(t) and v̂(t), are determined by the position of the
feature in the image and the camera parameters.

also parameterized byt such that the pointExc(t) on the
caustic is tangent to the rayv̂(t). The main idea behind
the derivation of the caustic curve, is to decompose the
caustic point position at any givent into two orthogonal
components as follows:

Exc(t) = EL(t) + 〈Exc(t), v̂(t)〉v̂(t) (19)

The above decomposition expresses the unknown caus-
tic curveExc(t) in a moving coordinate system that is
attached to the raŷv(t). In this coordinate system, the
two orthogonal components ofExc(t) which are given
by EL(t) are known, and the third component alongv̂(t)
needs to be determined.

The first step is to differentiate (19) with respect to
t . This yields the tangent to the caustic curve:

Ėxc(t) = ĖL(t) + 〈Exc(t), v̂(t)〉˙̂v(t)
+ (〈Ėxc(t), v̂(t)〉 + 〈Exc(t), ˙̂v(t)〉)v̂(t) (20)

SinceExc(t) is the caustic curve, for any givent its tan-
gentĖxc(t) is parallel tôv(t) and therefore perpendicular
to ˙̂v(t):

〈Ėxc(t), ˙̂v(t)〉 = 0 (21)

Taking the inner product of both sides of Eq. (20) with
˙̂v(t) and using〈v̂(t), ˙̂v(t)〉 = 0, we get:

0 = 〈ĖL(t), ˙̂v(t)〉 + 〈Exc(t), v̂(t)〉‖˙̂v(t)‖2
(22)
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From the above equation, we get an expression for
〈Exc(t), v̂(t)〉 that can be substituted back in (19). The
result is the caustic curve equation:

Exc(t) = EL(t) − 〈ĖL(t), ˙̂v(t)〉
‖˙̂v(t)‖2 v̂(t) (23)

Comparing this to (7) we see that the 2D caustic is a
special case of the 3D caustic, i.e., for coplanar mo-
tion when the curve parameter4 is t = θr . It may be
noted that the caustic does not always exist for a one-
parameter family of lines5. Since the tangent vector
Ėxc(t) must be parallel tôv(t), for a caustic to exist, the
following condition must also hold true in addition to
Eq. (21):

〈Ėxc(t), v̂(t) × ˙̂v(t)〉 = 0 (24)

However, this additional condition may not always be
satisfied6.

As in the 2D case, Eq. (23) can be used for feature
classification. For a real feature, the caustic exists and
it is a point. In contrast, for a virtual feature, the curve
defined by Eq. (23), will be a space curve. In Appendix
B, we show that the only case where a virtual feature
produces a point caustic is the case of a paraboloid

Figure 14. (a) Image trajectories,EL(t), of two features plotted as parameterized curves. (b) The computed 3D caustic curves. The caustic of
the real feature (1) is a compact cluster while that of the virtual feature (2) is a space curve. The two are easily distinguished using a measure
of compactness.

surface whose axis is parallel to the feature direction.
From a practical perspective, this is clearly a patho-
logical case. Clearly, not a common case in practical
applications.

3.2. Experiments: 3D Caustic Curves
and Feature Classification

We now present experimental results on classification
of real and virtual features based on their caustic curves.
The object used is the one shown in Fig. 5, it has a
single surface marking (real feature) and a virtual fea-
ture that is almost identical in appearance to the real
one. The camera motion is not planar but rather an
arbitrary smooth 3D trajectory. The caustics shown
in Fig. 14(b) are computed from the image trajecto-
ries shown in Fig. 14(a) using Eq. (23). As expected,
the caustic curve of the real feature is a small cluster
of points centered around the actual feature position,
while the caustic curve of the virtual feature is a space
curve. Again, the caustics can be distinguished by mea-
suring their compactness. The measure we used is the
sum of squares of distances of the caustic’s points from
its centroid. The ratio of the sums of squares of dis-
tances of points on the two caustics was found to be
12:1.
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3.3. Surface Curve Equation for 3D Camera Motion

As the observer moves around a specular object, each
virtual feature travels along a 3D profile on the ob-
ject’s surface. The recovery of the surface profileEx(t)
directly from the image trajectory, given by the pair
(EL(t), v̂(t)), is a very difficult problem. Therefore, as
with the analysis of the 2D-profile recovery problem
in Section 2.4, our goal here is to first recover the sup-
port functionρn(t), which is the distance of thetan-
gent planeat the pointEx(t) from the world originEO.
As shown in Appendix A, the support function serves
as a dual representation not only in the case of planar
curves, but also surfaces. These results suggest that the
study of the support function and its derivative would
be worthwhile also in the case of 3D-profile recovery.

As in Section 3.1, the key step is to decompose the
surface curve into two orthogonal components as:

Ex(t) = EL(t) + 〈Ex(t), v̂(t)〉v̂(t) (25)

The unknown quantity is the component ofEx(t) along
the reflected ray which is given by〈Ex(t), v̂(t)〉. The
fundamental equation that defines the relationship be-
tween the support function and the surface is:

ρn(t) = 〈Ex(t), n̂(t)〉 (26)

where, the unit vector̂n(t) is the surface normal atEx(t).
Differentiation of the above expression with respect to
t gives:

ρ̇n(t) = 〈Ėx(t), n̂(t)〉 + 〈Ex(t), ˙̂n(t)〉

The vectorĖx(t) is tangent to the surface and therefore
orthogonal ton̂(t). This simplifies the above expres-
sion to:

ρ̇n(t) = 〈Ex(t), ˙̂n(t)〉 (27)

It can be shown that (26) and (27) reduce to Eq. (5),
for the special case of a 2D profile witht = θr . Now,
the law of specular reflection can be written in vectorial
form as,

v̂(t) = 2〈 ŝ, n̂(t)〉n̂(t) − ŝ (28)

where the unit vector̂s is the feature direction. Using
this expression for̂v(t) in (25) and substitutingEx(t)

back in (26) and (27) we get:

ρn(t) = 〈 Ex(t), v̂(t)〉〈 ŝ, n̂(t)〉 + 〈 EL(t), n̂(t)〉
ρ̇n(t) = −〈 Ex(t), v̂(t)〉〈 ŝ, ˙̂n(t)〉 + 〈 EL(t), ˙̂n(t)〉

Multiplying the first equation by〈 ŝ, ˙̂n(t)〉, the second
by 〈 ŝ, n̂(t)〉, and adding the results we have:

ρn(t)〈 ŝ, ˙̂n(t)〉 + ρ̇n(t)〈 ŝ, n̂(t)〉
= 〈 EL(t), n̂(t)〉〈 ŝ, ˙̂n(t)〉 + 〈 EL(t), ˙̂n(t)〉〈 ŝ, n̂(t)〉
= 〈 EL(t), 〈 ŝ, ˙̂n(t)〉n̂(t) + 〈 ŝ, n̂(t)〉 ˙̂n(t)〉 (29)

This result can be further simplified. To this end, we
find the derivative of̂v(t) with respect tot using (28).
Since the feature direction̂s is a constant we get:

1
2 Ėv(t) = 〈 ŝ, ˙̂n(t)〉n̂(t) + 〈 ŝ, n̂(t)〉 ˙̂n(t) (30)

Note that the right hand side of the above expression
figures explicitly in (29). Substituting the left hand side
in its place gives the following fundamental relation-
ship between the image trajectoryEL(t) and the support
functionρn(t) of the surface profile:

d

dt
(ρn(t)〈 ŝ, n̂(t)〉) = 1

2
〈 EL(t), Ėv(t)〉 (31)

Then, by integration we have:

ρn(t) =
1
2

∫ t
t0
〈 EL(t ′), Ėv(t ′)〉dt′ + ρn(t0)〈 ŝ, n̂(t0)〉

〈 ŝ, n̂(t)〉
(32)

Note that even for a known feature direction the above
solution is determined only up to an unknown param-
eter, namely, the constant of integration:

C = ρn(t0)〈 ŝ, n̂(t0)〉 (33)

The above ambiguity is inherent to the recovery prob-
lem;C is determined byρn(t0) which is itself unknown.
However, if the integration in (32) is started from an
occluding boundary, the ambiguity is eliminated; the
unknown constant vanishes since〈 ŝ, n̂(t0)〉 = 0.

3.4. Curve Equation from the Support Function

Our final result is a closed-form solution that enables
the unique recovery of a surface curve from the above
support function,ρn(t). The unknown quantity we seek
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is 〈 Ex(t), v̂(t)〉. Our first step is to obtain an expression
for the support function by taking the inner product of
(25) with the normal vector̂n(t):

〈 Ex(t), n̂(t)〉 = 〈 Ex(t), v̂(t)〉〈 v̂(t), n̂(t)〉 + 〈 EL(t), n̂(t)〉
(34)

The left hand side of the above equation is the support
function ρn(t). After rearranging terms, we get the
desired unknown quantity:

〈 Ex(t), v̂(t)〉 = ρn(t) − 〈 EL(t), n̂(t)〉
〈 v̂(t), n̂(t)〉 (35)

Substituting this back in (25) gives us the surface curve:

Ex(t) = EL(t) +
(

ρn(t) − 〈 EL(t), n̂(t)〉
〈 v̂(t), n̂(t)〉

)
v̂(t) (36)

For the special case of 2D camera motion, if the
caustic and the surface profile are parameterized by
t = θr , the surface profile equation is reduced to:(

x(θr )

y(θr )

)
= ρr (θr )

(−sinθr

cosθr

)
+ ρn

(
θr +θi

2

) + ρr (θr ) sin
(

θr −θi
2

)
cos

(
θr −θi

2

) (
cosθr

sinθr

)
(37)

Eq. (37) can be used instead of the inverse transform
in Eq. (6) to reconstruct surface profiles. This is ad-
vantageous since the above expression does not require
computation of the derivative ofρn(θn), which is noise
sensitive and hence tends to introduce errors in profile
recovery.

3.5. Experiments: Recovery of 3D Curves

Our last set of experiments are on recovery of 3D spec-
ular curves. In the 2D case, we were able to effectively
use multiple features since the surface trajectories trav-
eled by different features were guaranteed to overlap.
This unfortunately is not the case with 3D surfaces; fea-
ture trajectories may at best intersect but not likely to
overlap over large surface curve segments. This forces
us to use one feature at a time and resolve shape am-
biguity by tracking each feature from the occluding
boundary of the surface. As explained in the Section

3.3, this forces the constant of integration to vanish and
results in unambiguous recovery of 3D curves.

In these experiments, we tracked the reflection of a
point light source (highlight) rather than the reflection
of a scene feature. However, the two are equivalent
from a theoretical perspective. The object used is a
chrome-plated sphere of radius 2.5 cm. The camera
mounted on the robot was moved around at a distance
of about 20 cm from the object. This distance was
selected based on the robot’s limited workspace; it en-
ables us to use a large range of viewing directions.
The camera trajectory used is plotted in Fig. 15. Since
feature tracking near the occluding boundary is very
difficult due to the distortion of the feature, we tracked
the feature from the middle of the sequence toward the
occluding boundary. The surface curve was recovered
from the image trajectory of the virtual feature using
Eq. (32). The recovered (dots) and actual (solid line)
surface profiles are displayed in Fig. 16 using two dif-
ferent viewpoints. We see that the recovered curve is
in strong agreement with the actual surface curve.

4. Summary

Specular reflection is a phenomenon that is ubiquitous
in the real world; it is exhibited to some degree by
most real surfaces. A clear understanding of specu-
lar surfaces and their appearance in brightness images
is therefore fundamental to progress in computational
vision. In this paper, we explored the information re-
garding specular surface geometry that is available to
a moving observer.

We have introduced a mathematical framework for
analyzing the relation between specular surface geom-
etry and image trajectories of scene features reflected
by the surface. It was shown that analysis of specular
surfaces is tractable only if the representations for sur-
face curves and reflected rays are carefully chosen. We
invoked the notion of caustic curves to represent tra-
jectories produced by image features. Caustics were
shown to hold valuable information regarding scene
geometry.

A simple but effective algorithm was presented for
classifying all image features into two basic categories:
real and virtual. Real features are scene features such
as surface markings and texture that cling to their sur-
faces. These features are the only sort that must be
directly used by vision algorithms such as structure
from motion. In contrast, virtual features are reflec-
tions of scene features by a specular surface. Unlike
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Figure 15. (a) Actual trajectory of camera motion plotted on a sphere. (b) The tracking of a virtual feature. The trajectory is parameterized by
time t shown here as the third dimension. The remaining two coordinates represent the distance vectorEL(t).

Figure 16. 3D surface curve on a chrome-plated ball recovered and displayed from two different viewpoints. The center of the sphere is at
(20, −5, −50) in the cube (wireframe) and its radius is 225 pixels. The recovered surface profile (dots) is seen to closely match the actual profile
(solid line). This shape information is obtained from the image trajectory of a single virtual feature.

real features, they travel on specular surfaces when the
observer changes his/her viewpoint. We showed that
the caustics of real and virtual features have distinctly
different anatomies; one is a compact cluster while the
other is an arbitrary space curve. These properties of

feature caustics were used to develop a classification al-
gorithm. This algorithm can serve as a useful precursor
to vision techniques that deal with motion sequences.

Finally, we showed that virtual features must not be
quickly discarded as they contain valuable information
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regarding the shapes of specular objects in the scene. In
the case of pure specular surfaces (smooth metals,
glass, etc.), virtual features are the only available source
of visual information. We derived shape recovery equa-
tions that relate the image trajectory of a virtual fea-
ture to the profile of the reflecting surface. Though
the problem of specular profile recovery was consid-
ered severely under-constrained in the past, we demon-
strated that it is possible and can be performed with
reasonable accuracy. The first recovery technique we
introduced was for 2D profiles. It exploits multiple
virtual features. We showed that even when the po-
sitions of the reflected scene features are unknown,
and no point on the profile is given, the profile can be
uniquely reconstructed and the feature directions deter-
mined. The second recovery technique we introduced
is for 3D surface profiles. It uses only one feature but
requires that the feature be tracked from the occluding
boundary of the object. Both techniques were demon-
strated via experiments.

A problem that future work may address is that of
combining constraints from multiple features for gen-
eral 3D camera motion. Another interesting problem
is the recognition and pose estimation of specular ob-
jects from a motion sequence. It is not entirely clear
as to what further information in contained in the caus-
tics of virtual features and whether image trajectories
can be directly used to assign surfaces to different
parametric classes. It is hoped that the results re-
ported in this paper will aid in the investigation of these
problems.

A. Surface Equation from the Support Function

For any regular surface (with the appropriate smooth-
ness conditions), the support functionρ is defined
for every point. In this appendix, we show that the
support functionρ(n̂) parameterized by the surface
normal n̂ defines the surface completely. More pre-
cisely, we show that at any surface point with non-zero
Gaussian curvature, the support function determines
the surface uniquely in the neighborhood of the point.
Furthermore, we will derive an explicit formula, anal-
ogous to Eq. (6), that expresses the surface equation
as a function of the support function and its partial
derivatives.

Given the support functionρ(n̂) in the neighborhood
of a point with non-zero Gaussian curvature, we would
like to find the surface equationEx(n̂). The fundamen-
tal relationship between the support function and the

surface is given by Eq. 26 which is restated below:

〈 Ex, n̂〉 = ρ(n̂) (38)

We can express the normal vectorn̂ using partial deriva-
tives of the the unknown surfaceEx and expand the
left side of the above equation. However, this expan-
sion results in a nonlinear partial differential equation.
Rather than solving this equation directly, we pursue
an alternative approach that requires only differentia-
tion and matrix inversion. LetEx(u, v) be a parameter-
ization of the surface. We can differentiate Eq. (38)
with respect to the parameteru, and use the fact that
〈 Exu, n̂〉 = 0 to obtain:

〈 Ex, n̂u〉 = ρu(n̂) (39)

where, the subscript denotes the partial derivative with
respect tou. Similarly, we differentiate Eq. (38) with
respect to the parameterv, and write the result together
with Eqs. (38) and (39) in matrix form as follows: n̂

n̂u

n̂v

 ExT =
 ρ

ρu

ρv

 (40)

The vectorŝnu andn̂v are perpendicular tôn and are
independent of each other since the Gaussian curvature
is non-zero and(u, v) is a parameterization of the sur-
face (doCarmo, 1976). Therefore, all the three rows
of the matrix are linearly independent and the matrix is
invertible. Hence, the surface equation is obtained as:

ExT =
 n̂

n̂u

n̂v

−1  ρ

ρu

ρv

 (41)

The above expression shows that the support func-
tion in the neighborhood of a point with non-zero
Gaussian curvature determines the surface uniquely.
Furthermore, it provides an explicit formula for the cal-
culation of the surface equation. The above analysis ex-
cludes points with zero Gaussian curvature—parabolic
and planar points—since, in the neighborhood of these
points, the mapping between surface points and their
normals (the Gauss map) is not one-to-one. However,
this restriction is not very severe since, using the con-
tinuity of the surface, we can extend the reconstruction
over parabolic and planar regions.
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B. Single-Point Caustics

In this appendix, we study the conditions under which
a virtual feature in direction̂s will produce a single-
point caustic. If the computed caustic7 is a fixed point,
Ep, then we can, without loss of generality, translate the
origin of the coordinate system such that it coincides
with the pointEp:

Exc(t) = E0 (42)

From Eq. (23) we get:

EL(t) = 〈 ĖL(t), ˙̂v(t)〉
‖˙̂v(t)‖2 v̂(t) (43)

On the other hand, the distance vectorEL(t), by its def-
inition, must be orthogonal to the reflected ray:

EL(t) ⊥ v̂(t) (44)

From the last two equations, we find that the distance
vector must be the zero vector:

EL(t) = E0 (45)

Substituting this result into the recovery expression
(31), shows that the support function of the surface
ρn(t) must satisfy:

d

dt
(ρn(t)〈 ŝ, n̂(t)〉) = 0 (46)

or equivalently:

ρn(t) = C

〈 ŝ, n̂(t)〉 (47)

for some constantC.
The above equation must be satisfied by all points

on the surface traversed by the virtual feature. It has
to be satisfed by all surface points if the caustic is a
point for any arbitrary camera motion. Our next step
is to find the surface. Without loss of generality, we
can rotate the coordinate system such that the feature
directionŝ coincides with thêz-axis of the coordinate
system. The unknown surface(x, y, z(x, y)) can be
parametrized using the partial derivatives:

p = zx q = zy (48)

This results in the following expressions for the surface
normal and the support function:

n̂(p, q) = (p, q, −1)√
p2 + q2 + 1

(49)

ρ(p, q) = −C
√

p2 + q2 + 1 (50)

Differentiating each of the above equations byp andq
and using Eq. (41), we get:

(x, y, z) = (−2Cp, −2Cq, C(1 − p2 − q2)) (51)

which is a parametric representation of the family of
paraboloids:

z = − 1

4C
(x2 + y2) + C (52)

In summary, the above analysis shows that the caus-
tic of a virtual feature is a point when the reflecting sur-
face is a paraboloid whose axis is parallel to the feature
direction. This result holds true for the 2D case. A 2D
caustic will be point if the specular curve is a parabola
whose axis is parallel to the feature direction. It is in-
teresting to note that the inverse result is well-known:
A light source placed at the focus of a paraboloid mirror
will be reflected as a beam of parallel rays. Here, we
have provided a proof for the uniqueness of the family
of surfaces with this property using the caustic Eq. (23)
and the shape recovery Eq. (31).
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Notes

1. Note that a virtual feature is not necessarily a highlight. It could
be the reflection of any scene point.

2. It is easy to convince oneself of this by using the shape recovery
equations to be derived in Section 2.4. A more detailed treatment
of 3D caustics is given in Appendix B.
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3. It is important to note thatEL is not the support function. For
a surface, the support functionρn is the distance of thetangent
planefrom the origin (see (Guggenheimer, 1963)).

4. Using the following notation:v̂ = (cosθr , sinθr ) and EL =
(ρr cos(θr + π

2 ), ρr sin(θr + π
2 )).

5. This fact was pointed out by P.J. Giblin (1995).
6. The 3D-caustic exists if the reflected rays form a developable

surface which is not a generalized cylinder or a cone (see also
(Bruce and Giblin, 1992)).

7. In this discussion, we only use the termcaustic, since, if the
curve defined by Eq. (23) is a point then it is a caustic, although
a degenerate one.
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