
Nonlinear Manifold Learning for Visual Speech Recognition 


Christoph Bregler 

Computer Science Division 
Soda Hall, D.C. Berkeley 

Berkeley, CA 94720 
bregler@cs.berkeley.edu 

Abstract 
A technique for representing and learning smooth 

nonlinear manifolds is presented and applied to sev
eral lip reading tasks. Given a set of points drawn 
from a smooth manifold in an abstract feature space, 
the technique is capable of determining the structure of 
the surface and of finding the closest manifold point to 
a given query point. We use this technique to learn the 
"space of lips" in a visual speech recognition task. The 
learned manifold is used for tracking and extracting the 
lips, for interpolating between frames in an image se
quence and for providing features for recognition. We 
describe a system based on Hidden Markov Models and 
this learned lip manifold that significantly improves the 
performance of acoustic speech recognizers in degraded 
environments. We also present preliminary results on 
a purely visual lip reader. 

1 Introduction 
This paper describes a new technique that is the 

basis for a "visual speech recognition" or "lip read
ing" system. Model-based vision systems currently 
have the best performance for many visual recogni
tion tasks. For geometrically simple domains, mod
els can sometimes be constructed by hand using CAD 
tools. Such models are difficult and expensive to con
struct, however, and are inadequate in more complex 
domains. To do model-based lipreading, we would like 
a parameterized model of the complex "space of lip 
configurations". Rather than building such a model 
by hand, our approach is to build it using machine 
learning. The system is given a collection of training 
images which it uses to automatically construct the 
models that are later used in recognition. 

There are several phases of processing involved in 
our system. Ultimately, the recognition of the time 
sequence of images uses Hidden Markov Model tech
nology similar to auditory speech recognition systems. 
Unlike speech recognition, however, there are extra 
phases to find, track, and extract the lips from a se
quence of images. We will describe how learned mod
els are used to facilitate these tasks. 

Some versions of our system do recognition based 
only on the visual input, while others use both visual 
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and acoustic information. When visual and acous
tic information is combined, it is necessary to deal 
with the fact that the acoustic sampling rate is higher 
than the visual image rate. We will describe how the 
learned models are used to interpolate between frames 
of video. 

There is a single abstract learning task that under
lies these different taks. We use the expression "non
linear manifold learning" for the task of inducing a 
smooth nonlinear surface in a high-dimensional space 
from a set of points drawn from that surface. This 
task is important throughout vision because the pa
rameters of visual tasks are often related by smooth 
nonlinear constraints. Learning such constraints and 
manipulating them in a computationally tractable way 
is therefore central to building learning~based visual 
recognition systems. 

The first section of this paper describes the mani
fold representation and learning algorithm. Next we 
describe the use of learned manifolds for interpolation. 
We then present the "lip manifold" that our system 
learns for visual speech recognition. We show how 
this is used to improve the performance of a snake
based lip tracker and to interpolate between lip im
ages. 'vVe then give recognition performance results 
for a single speaker based only on visual information. 
'vVe conclude with more complex experiments on mul
tiple speakers, combined visual and acoustic informa
tion, and in the context of a spontaneous speech dialog 
system. 

2 Smooth nonlinear manifold repre
sentation and induction 

2.1 Motivation 
Human lips are geometrically complex shapes which 

smoothly vary with the multiple degrees of freedom 
of the facial musculature of a speaker. For recogni
tion, we would like to extract information about these 
degrees of freedom from images. We represent a sin
gle configuration of the lips as a point in a feature 
space. The set of all configurations that a speaker may 
exhibit then defines a smooth surface in the feature 
space. In differential geometry, such smooth surfaces 
are called "manifolds". 

For example, as a speaker opens her lips, the cor
responding point in the lip feature space will move 
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Figure 1: Surface tasks a) Closest point query, b) inter
polation and prediction 

along a smooth curve. If the orientation of the lips is 
changed, then the configuration point moves along a 
different curve in the feature space. If both the de
g:ee of .openness and the orientation vary, then a two
dImensIonal surface will be described in the feature 
space. 	The dimension of the "lip" surface is the same 
as the number of degrees of freedom of the lips. This 
includes both intrinsic degrees of freedom due to the 
musculature and external degrees of freedom which 
represent properties of the viewing conditions. 

We would like to learn the lip manifold from exam
ples and to perform the computations on it that are 
required for recognition. We abstract this problem as 
the "manifold learning problem": given a set of points 
drawn from a smooth manifold in a space, induce the 
dzmenswn and structure of the manifold. 

There are several operations we would like the sur
face representation to support. Perhaps the most im
portant for re.cognition is the "nearest point" query: 
return the pomt on the surface which is closest to a 
specified q;.t~ry point (Fig. la). This task arises in 
a~y recogmtIOn context where the entities to be recog
mzed are smoothly parameterized (eg. objects which 
may be rotated, scaled, etc.) There is one surface for 
eac~ class which represents the feature values as the 
vanous p~rameters are varied [13J. Under a distance
based nOIse model, the best classification choice for 
recognition will be to choose the class of the surface 
whose closest point is. nearest the query point. The 
cho.sen surface determIn~s th~ class of the recognized 
entIty and the closest pomt gIves the best estimate for 
values of the parameters within that class. The same 
query arises in several .other contexts in our system. 
The.surface representatIOn should therefore support it 
effiCIently. 

9ther i:r::tportant classes of queries are "interpo
latIOn q~enes" and "prediction queries". Two or 
more pomts on a curve are specified and the system 
must Interpolate between them or extrapolate beyond 
them. Knowledge of the constraint surface can dra
matically im:prov~ performan~e o,:"er "knowledge-free" 
~broaches lIke lInear or splIne Interpolation. (Fig. 

2.2 	 Manifold representation based on the 
closest point query 

. In this section we describe a manifold represent a
tl0? based on the closest point query [2]. If the data 
pomts were drawn from a linear manifold then we 
~ou~d repres~nt it by a point on the surface ~nd a pro
JectIOn matrIX. After the specified point is translated 

to the origin, the projection matrix would project any 
vector orthogonally into the linear subspace. Given a 
set of points drawn from such a linear surface, a princi
pal components analysis could be used to discover its 
dimension and to find the least-squares best fit pro
jection matrix. The largest principal vectors would 
span the space and there would be a precipitous drop 
in the principle values at the dimension of the surface 
(T.his. is similar to approaches described [9, 18, 17]). A 
prIncIpal components analysis no longer suffices, how
ever, when the manifold is nonlinear because even a 
I-dimensional nonlinear curve can span all the dimen
sions of a space. 

If a nonlinear manifold is smooth, however then 
each local piece looks more and more linear 'under 
magnification. Surface data points from a small local 
neighborhood will be well-approximated by a linear 
patch. Their principal values can be used to deter
mine the most likely dimension of the patch. We take 
that number of the largest principal components to 
~pproximate the tangent space of the surface. The 
I~ea behind our representations is to "glue" such local 
lInear patch~s to~ether using a partition of unity. 

The r:namfold IS r~present~d as a mapping from the 
embeddmg space to Itself whIch takes each point to the 
nearest point on the manifold. K-means clustering is 
used to determine an initial set of "prototype centers" 
f~or:n the data points. A principal components analy
SIS IS performed on a specified number of the nearest 
neighbors of each prototype point. These "local peA" 
results are used to estimate the dimension ofthe mani
fold and to find the best linear projection in the neigh
borhood of prototype i. The influence of these local 
models is determined by Gaussians centered on the 
prototype location with a variance determined by the 
local sample density. The projection onto the mani
fold is determined by forming a partition of unity from 
these Gaussians and using it to form a convex linear 
combination of the local linear projections: 

P(x) = Li G;(x)P;(x} (1)Li G;(x} 

This initial model is then refined to minimize the 
mean squared error be~ween the training samples and 
the near~st surface pomt using EM optimization [4J 
and gradIent descent. We have demonstrated the ex
cellent performance of this approach on synthetic ex
amples [3]. A related mixture model a.pproach applied 
to mput-output mappings appears in [7]. 

3 Using manifold representation for 
interpolation 

This representation is especially suited for nearest 
poi.nt queries. We are interested in using this query 
t? mterpol.ate b~tween two specified points. Geomet
r~cal~y: ~ lmear m~erpolant ,,?oves along the straight 
hne JOInmg two POInts and wIll typically not lie within 
the constraint surface. 

~n our non-linear approach to interpolation, the 
pomt moves along a curve in the learned manifold 
that joining the two points. This constrains the in
terpolated point to only "meaningful" values. We 
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have studied several algorithms for approximating 
the shortest manifold trajectory connecting two given 
points [3], but report here only the most sucessful one. 
We use the term "Surface-Snake" to refer to a se
quence of n feature space points which are approxi
mately on the surface. An energy function is defined 
on such sequences of points which prefers curves that 
better satisfy the three criteria of smoothness, equidis
tance, and nearness to the surface: 

E has value 0 if all Vi are equally distributed on a 
straight line and also lies on the surface. In general E 
will not achieve the value 0 if the surface is nonlinear, 
but the system tries to minimize it. 

The interpolation algorithm begins with a straight 
line between the two query points and performs gra
dient descent in E to find the optimal solution. For 
another approach to nonlinear interpolation using a 
different architecture see [15]. 

4 Application to visual speech recog
nition 

We use these manifold learning techniques in a sys
tem for visual speech recognition. We view certain 
feature vectors of human lips as points which are con
strained to lie on a low-dimensional nonlinear mani
fold embedded in the lip feature space. This manifold 
represents all possible lip configurations. While utter
ing a word or a sentence the "lip feature point" moves 
along a trajectory on this manifold. 

We model these trajectories using Hidden Markov 
Models (H.~IIMs). The domain of the HMM emission 
vectors is defined by the lip-manifold. Therefore a 
specific HMM word model represents the probability 
distribution over trajectories on the lip-manifold for 
a given word. We represent the emission probability 
distributions by a mixture of gaussians or by a multi
layer-perceptron (MLP). 

To get the input for the Hidden Markov Model we 
first find and track the lip position (section 4.1). We 
then extract the lip image at the selected location and 
size. It is then encoded as a point in a lip-feature space 
(section 4.2). VVhen we want to perform combined 
acoustic and visual recognition, we fuse the visual n
dimensional visual feature vector together with a m
dimensional acoustic feature vector obtained from an 
acoustic front end (section 4.4). Because the acoustic 
vectors are produced with a higher frame rate (nec
essary for good acoustic recognition), we need to in
terpolate the visual vectors (section 3). This pro
duces a sequence of combined visual-acoustic n + m
dimensional vectors as input for the HMM. 

The parameters of the HMM are set by the Baum
Welch procedure from a set of example utterances. 
We train a separate HMM for each word that is to 
be recognized. Once learned, the HMM's may be pre
sented with a sequence of purely visual feature vectors 
or a sequence of bimodal visual-acoustic vectors. Each 
HMM estimates the likelihood that it generated the 

(x,y) ,., ("y) :-\ 

(O.Ol.~.(I.Y) (x,y, .... x,y, .... x,y) 
.~ .. 

Figure 2: Lip contour coding 

Figure 3: Snakes for finding the lip contours a) A cor
rectly placed snake b) A snake which has gotten stuck in 
a local minimum of the simple energy function. 

sequence and the most likely HMM is selected as the 
class of the utterance. In the pure visual domain we 
are interested in the recognition performance on the 
word level (section 4.3). In the visual-acoustic domain 
we are interested in the improvement that visual in
formation can make over purely acoustic continuous 
speech recognition (section 4.5). 

4.1 	 Constraint boundary tracking 
To track the position of the lips we use an "ac

tive vision" technique related to "snakes" [8] and "de
formable templates" [21]. In each image, a contour 
shape is matched to the boundary of the lips. The 
space of contours that represent lips is represented by 
a learned lip-contour-manifold. During tracking we 
try to find the contour (manifold-point) which maxi
mizes the graylevel gradients along the contour in the 
image. 

The boundary shape is parameterized by the x and 
y coordinates of 40 evenly spaced points along the con
tour. The left corner of the lip boundary is anchored at 
(0,0) and all values are normalized to give a lip width 
of 1 (Fig 2). Each lip contour is therefore a point in an 
80-dimensional "contour-space" (because of anchoring 
and scaling it is actually only a 77-dimensionalspace). 

The training set consists of 4500 images of 6 speak
ers uttering random words. The training images are 
initially labeled with a conventional snake algorithm. 
The standard snake approach chooses a curve by try
ing to maximizing its smoothness while also adapting 
to certain image features along its length. These crite
ria are encoded in an energy function and the snake is 
optimized by gradient descent. Unfortunately, this ap
proach sometimes causes the selection of incorrect re
gions (Fig. 3). We cull the incorrectly aligned snakes 
from the database by hand. 

We then apply the manifold learning technique de
scribed above to the database of correctly aligned lip 
snakes. The algorithm learns a 5-dimensional mani
fold embedded in the 80-dimensional contour space. 
5 dimensions were sufficient to describe the contours 
with single pixel accuracy in the image. Figure 4 
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Figure 4: Two principle axes in a local patch in lip space. 
a, b, and c are configurations along the first principle axis, 
while d, e, and f are along the third axis. 

Figure 5: A typical relaxation and tracking sequence of 
our lip tracker 

shows some of the lip models along two of the principal 
axes in the local neighborhood of one of the patches. 

The tracking algorithm starts with a crude initial 
estimate of the lip position and size. In our training 
database all subjects positioned themselves at similar 
locations in front of the camera. The initial estimate 
is not crucial to our approach as we explain later. Cur
rently work is in progress to integrate a full face finder, 
which will allow us to estimate the lip location and 
size without even knowing the rough position of the 
subject. 

Given the initial location and size estimate, we 
backproject an initial lip contour from the lip-manifold 
back to the image (we choose the mean of one of the 
linear local patches). At each of the 40 points along 
the backprojected contour we estimate the magnitude 
of the graylevel gradient in the direction perpendicular 
to the contour. The sum of all 40 gradients would be 
maximal if the contour were perfectly aligned with the 
lip boundary. We iteratively maximize this term by 
performing a gradient ascent search over the 40 local 
coordinates. After each step, we anchor and normalize 
the new coordinates to the 80-dimensional shape space 
and project it back into the lip-manifold. This con
strains the gradient ascent search to only to consider 
legal lip-shapes. The search moves the lip-manifold 
point in the direction which maximally increases the 
sum of directed graylevel gradients. The initial guess 
only has to be roughly right because the first few it
erations use big enough image filters that the contour 
is attracted even far from the correct boundary. 

The lip contour searches in successive images in 
the video sequence are started with the contour found 
from the previous image. Additionally we add a tem
poral term to the gradient ascent energy function 
which forces the temporal second derivatives of the 
contour coordinates to be small. Figure 5 shows an 
example gradient ascent for a starting image and the 
contours found in successive images. 

4.2 	 Lip Image Coding and Interpolation 
In initial experiments we directly used the contour 

coding as the input to the recognition Hidden Markov 
Models, but found that the outer boundary of the lips 
is not distinctive enough to give reasonable recognition 

a) 	 b) 

Figure 6: 24x24 images projected into a 32 dimensional 
subspace: a) linear interpolation b) nonlinear i~terpola
tion. (The slider bars represent the current weights for 
the linear patches which are necessary to produce the 
interpolated image) 

performance. The inner lip-contour and the appear
ance of teeth and tongue are important for recognition. 
These features are not very robust for lip tracking, 
however, because they disappear frequently when the 
lips close. For this reason the recognition features we 
use consist of the components of a graylevel matrix po
sitioned and sized at the location found by the contour 
based lip-tracker. Empirically we found that a matrix 
of 24x16 pixels is enough to distinguish all possible lip 
configurations. Each pixel of the 24x16 matrix is as
signed the average graylevel of a corresponding small 
window in the image. The size of the window is de
pendent of the size of the found contour. Because a 
24x16 graylevel matrix is equal to a 384-dimensional 
vector, we also reduce the dimension of the recogni
tion feature space by projecting the vectors to a linear 
su?space determined by a principal components anal
YSIS. 

To interpolate missing lip-images, we induce a non
linear manifold embedded in this lower dimensional 
subspace. The interpolation is done in the lower 
dimensional linear space and is also constrained by 
the learned manifold. Figure 6 shows an example 
interpolation of lip images in a 32-dimensional lin
ear subspace. Figure 6a shows the linear interpola
tion, and Figure 6b shows the nonlinear interpolation 
constrained by an 8-dimensional manifold, using the 
manifold-snake interpolation technique. 

4.3 	 One speaker, pure visual recognition 
The simplest of our experiments is based on a small 

speaker dependent task, the "bartender" problem. 
The speaker may choose between 4 different cocktail 
names l , but the bartender cannot hear due to back
ground noise. The cocktail must be chosen purely by 
lipreading. A subject uttered each of the 4 words 23 
times. An HMM was trained for each of the 4 words 

1 We choose the words: "anchorstearn", "bacardi", "coffee" I 
and "tequilla". Each word takes about 1 second to utter on 
average. 
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using a mixture of Gaussians to represent the emis
sion probabilities. With a test set of 22 utterances, 
the system made only one error (4.5% error). 

This task is artificially simple, because the vocab
ulary is very small, the system is speaker dependent, 
and it does not deal with continuous or spontaneous 
speech. These are all state-of-the-art problems in the 
speech recognition community. For pure lip reading, 
however, the performance of this system is sufficiently 
high to warrant reporting here. The following sec
tions describe more state-of-the-art tasks using a sys
tem based on combined acoustic and visual modalities. 
4.4 	 Acoustic processing and sensor fusion 

For the acoustic preprocessing we use an off-the
shelf acoustic front-end system, called RASTA-PLP 
[6] which extracts feature vectors from the digitized 
acoustic data with a constant rate of 100 frames per 
second. 

Psychological studies have shown that human sub
jects combine acoustic and visual information at a 
rather high feature level. This supports a preceptual 
model that posits conditional independence between 
the two speech modalities [Ul. We believe, however, 
that such conditional indepenaence cannot be applied 
to a speech recognition system that combines modali
ties on the phoneme/viseme level. Visual and acoustic 
speech vectors are conditionally independent given the 
vocal tract position, but not given the phoneme class. 
Our experiments have shown that combining modal
ities at the input level of the speech recognizer pro
duces much higher performance than combining them 
on higher levels. 
4.5 	 Multi-speaker visual-acoustic recog

nition 
In this experiment, the aim is to use the the vi

sual lipreading system to improve the performance of 
acoustic speech recognition. We focus on scenarios 
where the acoustic signal is distorted by background 
noise or crosstalk from another speaker. State-of-the
art speech recognition systems perform poorly in such 
environments. We would like to know how much the 
additional visual lip-information can reduce the error 
of a purely acoustic system. 

We collected a database of 6 speakers spelling 
names or saying random sequences of letters. Let
ters can be thought of as small words, which makes 
this task a connected word recognition problem. Each 
utterance was a sequence of 3-8 letter names. The 
spelling task is notoriously difficult, because the words 
(letter names) are very short and highly ambiguous. 
For example the letters "n" and "m" sound very sim
ilar, especially in acoustically distorted signals. Visu
ally they are more distinguishable (it is often the case 
that visual and acoustic ambiguities are complemen
tary, presumably because of evolutionary pressures on 
language). In contrast, "b" and "p" are visually sim
ilar but acoustically different (voiced plosive vs. un
voiced plosive). Recognition and segmentation (when 
does one letter end and another begin) have additional 
difficulties in the presence of acoustical crosstalk from 
another speaker. Correlation with the visual image of 
one speaker's lips helps disambiguate the speakers. 

Ta.sk Acoustic AV Delta-AV relative 
err.red. 

clea.n 
20db SNR 
10db SNR 
15db SNR wi 
crosstalk 

11.0 % 
33.5 % 
56.1 % 
67.3 % 

10.1 % 
28.9 % 
51.7 % 
51.7 % 

11.3 % 
26.0 % 
48.0 % 
46.0 % 

-
22.4 % 
14.4 % 
31.6 % 

Table 1: Results in word error (wrong words plus inser
tion and deletion errors caused by wrong segmentation) 

Our training set consists of 2955 connected letters 
(uttered by the 6 speakers). We used an additional 
cross-validation set of 364 letters to avoid overfitting. 
In this set of experiments the HMM emission prob
abilities were estimated by a multi-layer-percept ron 
(MLP)J3]. The same MLP/HMM architecture has 
achieve state-of-the-art recognition performance on 
standard acoustic databases like the ARPA resource 
management task. 

We have trained 3 different versions of the sys
tem: one based purely on acoustic signals using 9
dimensional RASTA-PLP features, and two that com
bine visual and acoustic features. The first bimodal 
system (AV) is based on the acoustic features and 10 
additional coordinates obtained from the visual lip
feature space as described in section 4.2. The second 
bimodal system (Delta-AV) uses the same features as 
the AV-system plus an additional 10 visual "Delta
features" which estimate temporal differences in the 
visual features. The intuition behind these features is 
that the primary information in lip reading lies in the 
temporal change. 

We generated several test sets covering the 346 let
ters; one set with clean speech, two with 10db and 
20db SNR additive noise (recorded inside a moving 
car), and one set with 15db SNR crosstalk from an
other speaker uttering letters as well. 

Table 1 summarizes our simulation results. For 
clean speech we did not observe a significant improve
ment in recognition performance. For noise-degraded 
speech the improvement was significant at the 0.05 
level. This was also true of the crosstalk experiment 
which showed the largest improvement. 

4.6 	 Large spontaneous speech dialog sys
tem 

With this evidence that our lipreading technique is 
able to improve speech recognition performance, we 
are currently integrating the visual system in a larger 
spontaneous speech dialog system. The system serves 
as a restaurant guide for the local area. This project is 
a testbed for ideas in speech recognition, natural lan
guage research and related topics in our research lab. 
The user interacts with the system by making queries 
like "I would like to eat Chinese food not far from 
campus", and the system responds with suggestions 
or asks for additional information. 

Our bimodal database consists of subjects of var-
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ious ethnic and national backgrounds, representing a 
realistic mix of the current population in the United 
States. No special attempts were made to reduce office 
background noise, or to ensure exact head/lip posi
tioning, in order to provide a realistic human computer 
interaction scenario. Experiments are in progress to 
train this larger system using the techniques discussed 
here. 
4.7 	 Related Computer Lipreading Ap

proaches 
One of the earliest successful attempts to improve 

speech recognition by combining acoustic recognition 
and lipreading was done by Petajan in 1984 [14J. 
More recent experiments include [10, 20, 19, 5, 16, 
12]. Most approaches attempt to show that com
puter lip reading is able to improve speech recog
nition, especially in noisy environments. The sys
tems were applied to phoneme classification, iso
lated words, or to small continuous word recogni
tion problems. Reported recognition improvements 
are difficult to interpret and compare, because they 
are highly dependent on the complexity of the se
lected task (speaker dependent/independent, vocab
ulary, phoneme/word/sentence recogntion), how ad
vanced the underlying acoustic system is, and how 
many simplifications were made for the visual task 
(reflective lipmarkers, special lipstick, or special light
ing conditions). We believe that our system based 
on learned manifold techniques and Hidden Markov 
Models is so far the most complete system applied to 
a complex speech recognition task but it is clear that 
many further improvements are possible. 

5 	 Conclusion and Discussion 
This paper can only begin to describe the many 

applications of manifold learning in vision. We have 
also not described certain hierarchical geometric data 
structures that can dramatically improve the perfor
mance ofthese techniques. We have shown how we are 
using them in the domain of lip reading and that they 
give significantly improved performance. It would be 
difficult to build traditional computer vision models 
of human lips and so the paradigm of building these 
models by learning is significant. Many lip reading 
research groups mark a subject's lips with special re
flective tape, paint, or lipstick or wire the subject with 
strain gauges. The techniques described in this pa
per show that such artifices are unnecessary and that 
video images may be directly used for visual speech 
recognition. 
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