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Abstract

A novel local scale controlled piecewise linear dif-

fusion for selective smoothing and edge detection is

presented. The di�usion stops at the place and time

determined by the minimum reliable local scale and

a spatial variant, anisotropic local noise estimate. It

shows nisotropic, nonlinear di�usion equation using

di�usion coe�cients/tensors that continuously depend

on the gradient is not necessary to achieve sharp,

undistorted, stable edge detection across many scales.

The new di�usion is anisotropic and asymmetric only

at places it needs to be, i.e., at signi�cant edges. It not

only does not di�use across signi�cant edges, but also

enhances edges. It advances geometry-driven di�usion

because it is a piecewise linear model rather than a full

nonlinear model, thus it is simple to implement and

analyze, and avoids the di�culties and problems asso-

ciated with nonlinear di�usion. It advances local scale

control by introducing spatial variant, anisotropic local

noise estimation, and local stopping of di�usion. The

original local scale control was based on the unrealistic

assumption of uniformly distributed noise independent

of the image signal. The local noise estimate signi�-

cantly improves local scale control.

1 Introduction
The theory of linear scale-space [6, 12] enables the

detection and localization of edges while eliminat-
ing noise by tracking features across multiple scales.
Koenderink pointed out that linear-scale space is
equivalent to linear di�usion [6]:

@u(x; y; t)

@t
= �u(x; y; t); (x; y) 2 
; t > 0 (1)

u(x; y; 0) = u0(x; y); (x; y) 2 
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where u0(x; y) is the original image, @u
@en

is the di-
rectional derivative of u in the normal direction of the

boundary of 
, and
p
t is the scale factor. Linear di�u-

sion smoothes out noise and edges equally. After a few
iterations of linear di�usion, all edges are smeared and
distorted. This distortion causes di�culty in tracking
features across multiple scales.

Perona and Malik [7, 8] �rst introduced the idea of
nonlinear di�usion where di�usion is preferred within
a smooth region to di�usion near an edge. They re-
placed the homogeneous heat equation (2) by a non-
linear equation

@u

@t
= div(g(jruj)ru) (2)

where g is a smooth nonincreasing function with
g(0) = 1; g(s) � 0; s � 0 and g(s)! 0 when s!1.
This actually introduces part of edge detection into
the di�usion process, and allows interaction between
scales right from the beginning of the di�usion pro-
cess. In the nonlinear di�usion process by Perona
and Malik, edges remain sharp and undistorted across
many scales. Thus it yields stable edges across many
scales and makes tracking features between scales un-
necessary. However, the nonlinear di�usion process in-
troduced by Perona and Malik does not perform well
with noisy images and very similar images could pro-
duce divergent solutions, as pointed out in [3, 1]. The
problem is mainly due to the dependence of the vari-
able di�usion coe�cient g(jruj) on the magnitude of
the gradient. Lions and Morel's group [3] proposed
to solve the problem by replacing the gradient inside
g(jruj) with the estimate from a smoothed image, i.e.,
replacing g(jruj) with g(jrG� � uj). Thus, an image
is �rst smoothed by convolving with a Gaussian kernel
of size �. It can be shown that this simple modi�ca-
tion solves the di�culties with the Perona and Malik
formulation. A question that needs to be answered be-
fore applying the di�usion process is what size Gaus-
sian kernel should be used to smooth the image. Note



that the whole image will be smoothed by a Gaussian
kernel of the same size.

Both di�usion processes in Eq. (2) and in [3] are
inhomogeneous, but still isotropic. This is because
the di�usion coe�cients are still a scalar. Note that
although their formulation was isotropic, Perona and
Malik actually implemented an anisotropic di�usion
process by making the di�usion coe�cient in each of
the four di�using directions depend on the directional
gradient in that direction [7, 8]. Lions and Morel's
group further extended their work by modifying the
di�usion operator [1]:

@u

@t
= g(jrG� � uj)jrujdiv

ru
jruj ; (3)

This process is anisotropic and has a geometric inter-
pretation: it di�uses u is in the direction orthogonal
to its gradient ru and does not di�use at all in the
direction of the gradient ru.

Weickert [10, 11, 9] proposed a fully anisotropic dif-
fusion �lter. It is obtained by integrating a 1D di�u-
sion equation in the direction of e� = (cos�; sin�)T

over [0; 180�]:
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u(x; y; 0) = u0(x; y);

where the boundary condition is given by
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= 0: (5)

This is a true anisotropic di�usion process with a di�u-
sion tensor that prefers di�usion in the direction par-
allel to the edge to di�usion in the direction perpen-
dicular to the edge.

As can be seen from the above, there have been
several important conceptual advances in scale-space,
from the linear scale-space proposed by Witkin and
Koenderink [6, 12], �rst to nonlinear di�usion initi-
ated by Perona and Malik [7], then to the anisotropic
di�usion models by Lions and Morel's group [1] and
by Weickert [9]. In this paper, we propose another
conceptual advance motivated by di�culties with the
current state-of-the-art of geometry-driven di�usion.
All di�culties are associated with the di�usion coe�-
cient/tensor that continuously depends on the gradi-
ent, and the resulting nonlinear di�usion equation.

1. The �rst di�culty is with the need to smooth
the image before estimating the gradient. First,
what should be the size of the Gaussian kernel �

Figure 1: Desired anisotropy and asymmetry near
edges. Di�usion should be stopped at edges, but al-
lowed in all directions inside each region.

used to smooth the image? Details smaller than
� will be eliminated by the smoothing Gaussian
kernel. Since Gaussian smoothing is the same as
nonselective linear di�usion, this process is equiv-
alent to a nonselective linear di�usion before a se-
lective nonlinear di�usion. The question is how
long the �rst di�usion should go on before the
second di�usion can start. This nonselective pre-
smoothing becomes more damaging considering
that the noise may not be uniformly distributed
over the image and may be correlated with the
signal. It smoothes every part of the image by the
same amount, regardless of the amount of noise
in that part.

2. Two forms of g(s) often used are:

g(s) = exp(�s=K2) or g(s) =
1

1 + (s=K)2
(6)

where the parameter K must be chosen appro-
priately. A large K will cause low contrast
edges to be smoothed out, while a small K leads
to slow di�usion within regions with no edges.
Slowly varying edges spanning a large area will
be smoothed out if the gradient is lower than the
threshold determined by K in the beginning since
the gradient will become even lower as the di�u-
sion goes on.

3. In the anisotropic di�usion processes in [1, 10,
11, 9] (Eqs. (3) and (4)), the di�usion operators
are symmetric, i.e., the di�usion is the same in
directions e� and �e�. In both cases, di�usion
is not allowed in the direction orthogonal to the
edge. However, what is really desired is to make
the di�usion asymmetric at the edge such that
di�usion in all directions within an region except
across the edge are allowed, as shown in Fig. 1.

In this paper, we propose a di�usion process in Section
2 which solves the above di�culties and is simple to
implement. Section 3 presents experimental results.
Conclusion and discussion are given in Section 4.



2 Local Scale Controlled Anisotropic

Di�usion and Local Noise Estimate
The new di�usion process is based on the follow-

ing simple observation: Anisotropic, nonlinear di�u-
sion equation using di�usion coe�cients/tensors that
continuously depend on the gradient is not necessary
to achieve sharp, undistorted, stable edge detection
across many scales. All is needed is to know when and
where to stop the linear di�usion, i.e, a piecewise lin-
ear di�usion process rather than a nonlinear di�usion
process. Di�usion should be full speed in all direc-
tions inside each region. It should stop at the edges,
in di�erent times at di�erent parts of the image. This
corresponds to an extension of the important idea of
local scale control proposed by Elder and Zucker [4, 5].

An image may have a broad range of local blur
and sizes of local structures. As a result, edges and
structures at di�erent part of an image may be best
viewed at di�erent scales. Local scale control [4, 5]
determines a unique scale for local estimation at each
point in an image. Like nonlinear di�usion, local scale
control solves the problem of tracking features across
multiscales.

2.1 Local Scale Control with Local Noise
Estimate

The key to local scale control is the prior computa-
tion of a signi�cance function s(�) which determines
the lower bound on the smoothing kernel needed to
reliably assert a non-zero gradient or to reliably de-
termine the sign of the second order derivative. Re-
liability here means that the likelihood of making at
least one decision error over an entire image is less
than a given tolerance, say 5%. The signi�cance func-
tion depends on the L2 norm of the �lter, the statistics
of the sensor noise, and the quantity to be estimated.
For Gaussian i.i.d. sensor noise and an image of stan-
dard size (� 256� 384), Elder and Zucker [4, 5] found
the signi�cance functions for asserting a non-zero gra-
dient or for determining the sign of the second order
derivative to be

s1(�1) = 3�n=
p
��21 ; s2(�2) = 5�n=2

p
2��32 ; (7)

where �n is the standard deviation of the noise, �1
and �2 are the scales of the Gaussian �rst and second
derivative �lters respectively.

At the beginning, the gradient (second order deriva-
tive) response is normally smaller than the signi�cance
function. With increasing scale, both the gradient
(second order derivative) response and the signi�cance
function decrease. However, the signi�cance function
decreases much faster than the gradient (second or-
der derivative) response. The scale at which the two

Figure 2: The blur of the vertical edge at the center
increases gradually from top to bottom. The scale of
the blur of the horizontal edges is much smaller and
�xed. This shows that local scale control should be
anisotropic.

curves intersect is the minimum reliable scale for as-
serting a nonzero gradient (zero-crossing of the second
order derivative). Elder and Zucker estimated �n from
the image by highpass �ltering a slow varying region of
the image. They obtained the minimum reliable scale
at each point by using the smallest scale at which a
nonzero gradient or a zero-crossing of the second order
derivative can be reliably detected, chosen from gradi-
ents or second order derivatives computed at a certain
interval of scales, say �1 (or �2) = 0:5; 1; 2; 4; 8. As
demonstrated in [4, 5], local scale control enables the
scale to be chosen according to the local contents of
the image, and yields edge detection results that re-
move noises, show both the details and clear edges
from blurred contours.

The local scale control as presented by Elder and
Zucker [4, 5] needs further improvements.

1. The local scale as presented by Elder and Zucker
is isotropic. The example in Fig. 2 shows the ne-
cessity of anisotropic local scale control. The blur
scale of the horizontal edges is small and constant
while the blur scale for the vertical edge varies
over a wide range.

2. A more important problem with the local scale
as presented by Elder and Zucker is that the
same noise variance �2n is used for the entire im-
age. This assumes that the noise is uniformly
distributed over the image and uncorrelated with
the image signal. This assumption is not true in
general. The example shown in Fig. 3 is a 1D
signal obtained from a single row of the clown
image (60th row in Fig. 4(a)). It is obvious that
the noise is not uniformly distributed. If a single
noise variance estimate is used in the local scale,
places with less noise will be oversmoothed, while
places with more noise will be undersmoothed. In
2D images, the noise variance at a point may be
di�erent in each direction.



To overcome these problems, it is necessary to esti-
mate the noise at each point in each direction. There
may be several feasible noise estimates. We propose a
noise estimate based on the number of zero-crossings
of the second order derivatives in a direction and the
amount of unipolar energy in the directional deriva-
tive, i.e.,

�n(i; j; e�; �; 
) = �
Z(i; j; e�; �; 
)

1 + j
P(i;j)+
e�

(i;j)
@u
@e�
j

(8)

where Z(i; j; e�; �; 
) is the number of zero-crossings
of the second order derivative at (i; j) in the direction
e� over the distance of 
, i.e., from (i; j) to (i; j)+
e�.
� and 
 can also be estimated from the image. This
estimate is motivated by the following two facts:

1. In a place with lots of noise, there is always lots
of zero-crossings of the second order derivative.
Therefore, the noise estimate should increase with
Z(i; j; e�; �; 
).

2. A signi�cant edge is associated with a large,
mostly unipolar, i.e, either mostly positive or
mostly negative, derivative over a certain range.

In this case, the sum
P(i;j)+
e�

(i;j)
@u
@e�

in the de-

nominator will be large. On the other hand, in
a region with high frequency noise over a slowly
varying signal, the derivative will oscillate be-
tween positive and negative. Thus, the sumP(i;j)+
e�

(i;j)
@u
@e�

will be small. As a result the de-

nominator reduces the noise estimate at high con-
trast edges to avoid smoothing out the edge, and
at the same time, maintains the high noise es-
timate level at regions with heavy noise over a
slowly varying signal.

In our implementation, four directional noise esti-
mates is computed at each point:

s1(�1; i; j; e�; �; 
) = �n(i; j; e�; �; 
)=�
2
1 ;

s2(�2; i; j; e�; �; 
) = �n(i; j; e�; �; 
)=�
3
2 ; (9)

e� = 0; �=2; �; 3�=4:

The constants in Eq. (7) are incorporated in the pa-
rameter �. Note that this estimation needs to be done
only once before the di�usion starts. Figs. 3(b) and
(c) show the two directional noise estimates of the sig-
nal in Fig. 3(a) with � = 1 and 
 = 5 points in both
directions. Observe that both noise estimates are very
small around the signi�cant edges and large at places
with lots of oscillations.

2.2 Local Stopping of Linear Di�usion
with Anisotropic and Asymmetric
Di�usion at Edges

In the local scale control proposed by Elder and
Zucker [4, 5], the image is smoothed with a set of
linear scale �lters. The results from multiple scales
are combined into a single local scale image. Based
on the equivalence of scale space and di�usion, we
propose a new type of local scale control process: lo-
cal stopping of a linear di�usion process, i.e., a linear
di�usion process that stops at di�erent times at dif-
ferent places. The result is a single image. We will
show that the new local scale controlled di�usion will
lead to a much simpler algorithm but with the de-
sired properties of geometry-driven anisotropic, asym-
metric nonlinear di�usion. The new di�usion process
does not need a continuous gradient dependent di�u-
sion rate/tensor. It is a linear di�usion process with
local stopping criteria. Di�usion is full speed in all
directions inside a region while stops at the edges, in
di�erent times at di�erent parts of the image.

This is achieved with a simple modi�cation of
Eq. (4) by replacing the gradient dependent function

g(
���@G��u

@e�

���) with a piecewise linear di�usion rate:
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where g(
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)) is a binary func-

tion of the derivative
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, the signi�cance function

sn(
p
t; ; i; j; e�; �; 
), n=1 or 2, and the scale

p
t:
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(
1 if j

@unp
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@en
�

j < sn(
p
t; i; j; e�; �; 
)

0 otherwise
n = 1; 2: (11)

The term up
t
means that the image u has di�used for

time t, or equivalently been smoothed by Gaussian
kernel

p
t, modulated by the binary function g(�; �).

The initial and boundary conditions are the same as
in Eqs. (4) and (5), i.e., di�usion along the normal of
the image boundary is zero. Note that the integral in
Eq. (10) is over the interval (0; 2�) so that di�usion
can be asymmetric on two sides of the edges.

The
new local scale controlled di�usion can be based ei-



ther on the magnitude of the gradient using the dif-

fusion function g(
@up

t

@e�
; s1(

p
t; i; j; e�; �; 
)), or on the

zero-crossing of the second order derivative using the

di�usion function g(
@2up

t

@e2
�

; s2(
p
t; i; j; e�; �; 
)). The

di�usion starts with g(@
nu0
@en

�

; sn(0)) = 1 for all pixels,

where either n = 1 or n = 2. This is linear di�usion
for the entire image. As time goes by, the signi�cance
function s1(

p
t; i; j; e�; �; 
) = �n(i; j; e�; �; 
)=t, or

s2(
p
t; i; j; e�; �; 
) = �n(i; j; e�; �; 
)=

p
t3 declines

much faster than the response of the gradient �lter or
the second order derivative �lter. For local scale con-
trolled di�usion based on the magnitude of the gradi-

ent, set the function g

�
@up

t

@e�
; s1(

p
t; i; j; e�; �; 
)

�
= 0

at the next pixel in the e� direction as soon as the mag-
nitude of gradient at that pixel exceeds the signi�cance
function s1(

p
t; i; j; e�; �; 
) = �n(i; j; e�; �; 
)=t. For

local scale controlled di�usion based on zero-crossing
of the second order derivative, set the function

g

�
@2up

t

@e2
�

; s2(
p
t; i; j; e�; �; 
)

�
= 0 at the next pixel in

the e� direction as soon as a zero-crossing of the second
order derivative at that pixel can be reliably detected,
i.e., as soon as the magnitudes of the second order
derivative at neighboring pixels exceed the signi�cance
function s2(

p
t; i; j; e�; �; 
) = �n(i; j; e�; �; 
)=

p
t3,

and there is a sign change of the second order deriva-
tive. This stops the di�usion either at pixels with sig-
ni�cant magnitude of gradient or at a zero-crossing in
a direction as soon as the gradient or zero-crossing can
be reliably detected in that direction. After a su�cient
amount of time, di�usion is stopped along all bound-
aries with signi�cant gradient or second order deriva-

tive zero-crossings exceeding the signi�cance function.
In regions inside boundaries with signi�cant gradi-
ent or bounded by zero-crossings of the second order
derivative, di�usion is still linear except at the bound-
ary. On the boundary, the di�usion is zero. Next to
the boundary, the di�usion is anisotropic, asymmet-
ric, and does not cross the boundary as illustrated in
Fig. 1. The anisotropy and asymmetry is only with
respect to the boundary in the sense that di�usions
on two sides of the boundary are totally independent.
This is a much more e�cient scheme for smoothing in-
side a region than the methods by Lions and Morel's
group [1], and by Weickert [10, 11, 9] where di�usion
near the boundary is only concentrated along the di-
rection of the boundary.

Advantages of the new local scale controlled di�u-
sion algorithm is summarized below:

1. It stops the di�usion at the place and time de-

termined by the signi�cance function using a
spatial variant, anisotropic local noise estimate.
The use of local noise estimate avoids nonselec-
tive smoothing, and further enhances selective
smoothing. Together with local stopping, it solves
the di�culty of determining the size of Gaussian
kernel � for smoothing the image in order to re-
liabley estimate the derivatives, existing in previ-
ous geometry-driven di�usion algorithms.

2. It advances the local scale concept by introducing
spatial variant, anisotropic local noise estimation
and local stopping of di�usion. The local noise
estimate is more realistic than the previous as-
sumption of uniformly distributed noise uncorre-
lated with the image signal. The local noise es-
timate signi�cantly improves local scale control.
With the local noise estimate, heavy noise areas
are smoothed substantially more, and at the same
time, enables preservation of sharper signi�cant
edges, than a constant noise estimate for the en-
tire image. Local stopping of di�usion allows an
e�cient implementation of local scale control.

3. It not only does not di�use across boundaries of
signi�cant gradient or zero-crossings of the second
order derivative, but also enhances edges. Unlike
in [7, 8] where the edges are enhanced right from
the beginning, which could amplify noises, our
algorithm starts to enhance edges only after just
the right amount of smoothing speci�ed by the
signi�cance function and the local noise estimate.
This is illustrated in Fig. 3 using a 1D example.
Notice that the edges in Fig. 3 become shaper af-
ter the di�usion. As soon as a zero-crossing of the
second order derivative can be reliably detected
according to the signi�cance function, the di�u-
sion is stopped at the zero-crossing. Since the
di�usion form the two sides keep on di�using to-
wards the zero-crossing point where the di�usion
is stopped, it brings one side higher, and the other
side lower, thus, enhances the edge. Because of
the �xed boundary condition used, there will be
no bunching up at the place where di�usion is
stopped. The points where di�usion is stopped
will eventually reach steady state, i.e., be brought
up or down to the same level of immediate edges,
if the di�usion keeps on going. Afterwards, there
will be no more changes because gradients will be
zero everywhere except at the points where di�u-
sion is stopped. In experiments, it is found that
for most images, after about 20 to 50 iterations, it
will be very close to the steady state and changes
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Figure 3: The �rst plot is a noisy and blurred edge.
It is the 60th row of the original clown image shown
in Fig. 4(a). The second and third plots show the
local noise estimate as de�ned in Eq. (8) with � = 1
for in the left and right directions respectively. The
remaining plots show the di�usion results. The three
numbers in the format of a-b-c next to the vertical axes
indicate: a|the number of iterations , b|the range 

in which the local noise is estimated, and c|the value
of � used. The result in the last plot is obtained with
the same � and 
 as the �fth plot. The only di�erence
is the �fth plot is obtained with 20 iterations, while
the last one is obtained with 200 iterations. As can be
seen, the steady state is approximately reached after
a small number of iterations.

become very small for further di�usion.

In previous geometry-driven nonlinear di�usion,
although di�usion across edges is small, it is not
zero. If the di�usion is allowed a long period of
time, some edges will be smoothed out. On the
other hand, the local stopping in our approach,
the steady state is reached approximately in a
small number of iterations. Afterwards, even if
the di�usion continues to run for a long period
of time, it will not smear edges, but simply make
the edges sharper.

4. The algorithm is very simple to implement, and
only two parameters are required: the scale fac-
tor � of the noise estimate �n and the 
 used
for counting the number of zero-crossings. In ad-
dition, there is no need to �rst smooth the im-

age nonselectively before the selective geometry-
driven di�usion as in previous algorithms. There
is only one di�usion process, thus only one copy
of the image is needed in our algorithm.

5. It will enhance a slowly varying edge that persists
long enough in the di�usion process even if the es-
timate of �n is too large, because the signi�cance
function declines much faster than the gradient
and second order derivative �lters. A slowly vary-
ing edge will remain to exist for a long time in the
di�usion process if it spans a long range. The abil-
ity to enhance slowly varying edges is in contrast
to previous geometry-driven algorithms. In these
algorithms, if a large K (Eq. (6)) is chosen and if
in the beginning the gradient of a slowly varying
edge spanning a long range is smaller than the
threshold determined by K, it will become even
lower as the di�usion goes on. As a result, these
slowly varying edges tend to be smoothed out .

6. It is anisotropic and asymmetric only with re-
spect to boundaries with signi�cant gradient or
reliably detected zero-crossings of the second or-
der derivative, thus allowing di�usion in all di-
rections on each side of the edge, and leading to
simple computation and fast smoothing within a
region. In previous geometry-driven di�usion al-
gorithms, di�usion is the same in direction e� and
�e�, and di�usion near the boundary is concen-
trated to be parallel to the edge.

What edges get enhanced at what time is deter-
mined by the the local estimate of the amount of noise
in the image, i.e., �n in the signi�cance function. If �
in �n is chosen too small, some small variations will be
enhanced as well, leading to the staircase phenomenon
similar to those in other geometry-driven methods as
pointed out in [8]. These staircases may be eliminated
by increasing �. If � is chosen too large, small struc-
tures or low contrast edges may be smoothed out.
However, if the low contrast edge extends a longer
range than the smaller variations, and can survive a
longer di�usion time, it will eventually be enhanced.

3 Experimental Results

We implemented two versions of the new local scale
controlled di�usion. One based on the magnitude of
the gradient and the other based on the zero-crossing
of the second order derivative. Some results are pre-
sented in this section. For comparison, results us-
ing the improved Perona and Malik di�usion using
g(jrG� � uj) in Eq. (2), as proposed in [3], are also
given. In the improved Perona and Malik di�usion,



(a) (b)

(c) (d)

Figure 4: (a) Original clown image. (b) Edge detec-
tion result of the original clown image. (c) Local scale
controlled di�usion based on zero-crossing of the sec-
ond order derivative, � = 100, 
 = 6, 60 iterations.
(d) Edge detection result of the di�used image in (c).

there are three parameters: � in g(jrG� � uj), K in
Eq. (6), and the number of iterations. G� = G1 in all
examples using the improved Perona and Malik di�u-
sion. Smaller � leads to noisy edge detection results,
requiring more iterations to remove noises. Bigger �
means more nonselective smoothing, leading to loss of

more details. In our algorithm, there are also three
parameters: �, 
, and the number of iterations. How-
ever, the number of iterations is unimportant in our
algorithms as discussed previously.

In all cases, the edge images are obtained us-
ing the Canny edge operator [2] on the Web at
http://www.ius.cmu.edu/demos/edge.html provided
by Henry Rowley of CMU. In this implementation,
the Gaussian smoothing kernel is a 3�3 window with
� � 0:6. Therefore, smoothing is minimal and the al-
gorithm basically detects maximums of the gradients.

Fig. 4 shows the 200�320 clown image in the Mat-
lab, examples of the di�used clown images using the
new local scale controlled di�usion and the improved
Perona and Malik di�usion with similar amount of dif-
fusion, and the edge detection results using the dif-
fused images. Di�erent parameter settings were used
in each case.

Figs. 5 shows the Canaletto image used in [7, 8],
examples of di�usion of the image using the new local
scale controlled di�usion and the improved Perona and
Malik di�usion with similar amount of di�usion, and
the edge detection results using the di�used images.
The size of the Canaletto image is 479 � 512. The
image has a broad range details, blurs and contrasts.

In the experiments it is observed that the new lo-
cal scale control di�usion yields comparable or better
results compared to the improved Perona and Malik
di�usion, but with an algorithm that is simpler and
easier to analyze. Quantitative study with speci�ed
applications is required for a more accurate assess-
ment.

Note that in both Figs. 4 and 5, the � used in the
zero-crossing stopping criterion is larger that required
in the magnitude of gradient based criterion to ob-
tain similar results. This is because the zero-crossing
criterion is more strict than the magnitide of gradi-
ent criterion, and is able to eliminate more unwanted
noises. The advantage of the magnitude of gradient
based criterion is that it is simpler to compute and
faster to run.

4 Conclusion and Discussion

We showed that piecewise linear di�usion may be a
better alternative than nonlinear anisotropic di�usion
for image smoothing and edge detection. The spatial
variant, anisotropic local noise estimate we proposed
advances the important idea of local scale control by
Elder and Zucker [4, 5]. Our approach of local stop-
ping of di�usion o�ers an e�cient implementation of
local scale control. Our local scale controlled di�usion
based on the local noise estimate determines a unique
scale for local estimation at each point in an image
by stopping at the right place at the right time. It
produces a single image that is selectively smoothed
with edges enhanced and accurately localized, making
tracking features across multiscales unnecessary.

Local scale controlled di�usion does not di�use
across reliably detected signi�cant gradients or re-
liably detected zero-crossings of the second order
derivative. It is anisotropic and asymmetric only with
respect to reliably detected edges. This allows di�u-
sion in all directions on each side of the edge, lead-
ing to simple computation and fast smoothing within
a region. It also enhances slowly varying edges that
persist long enough in the di�usion process because of
the declination of the signi�cance function. These two
points are di�cult to achieve with previous geometry-
driven di�usion algorithms.

Future work includes investigation of other local
noise estimates, methods for estimating � and 
 from
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Figure 5: (a) Original Canaletto image. (b) Edge de-
tection result of the original Canaletto image. (c) Lo-
cal scale controlled di�usion based on magnitude of
gradient, � = 200, 
 = 6, 50 iterations. (d) Edge
detection result of the di�used image in (c). (e) Lo-
cal scale controlled di�usion based on zero-crossing of
the second order derivative, � = 80, 
 = 6, 50 itera-
tions. (f) Edge detection result of the di�used image
in (e). (g) Improved Perona and Malik di�usion with
G� = G1; K = 4, 60 iterations. (h) Edge detection
result of the di�used image in (g).

images, and quantitative evaluation of the new local
scale controlled di�usion, in comparison with other
geometry-driven di�usion and edge detection meth-
ods.
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