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Abstract 

We have been developing a theory of generic 2-D 
shape based on a reaction-diffusion model from math- 
ematical physics. The description of a shape is de- 
rived from the singularities of a curve evolution process 
driven b y  the reaction (hgperbolic) term. The diffusion 
(parabolic) term is related to smoothing and shape sim- 
plification. However, the unification of the two is prob- 
lematic, because the slightest amount of diffusion dom- 
inates and prevents the formation of generic first-order 
shocks. The technical issue is whether it is possible to 
smooth a shape, in  any sense, without destroying the 
shocks. We now repod a constructive solution to this 
problem, by  embedding the smoothing term in a global 
metric against which a purely hyperbolic evolution is 
performed from the ini t id  curve. This is a new flow 
for shape, that extends the advantages of the original 
one. Specific metrics a m  developed, which lead to  a 
natural hierarchy of shape features, analogous to  the 
simplification one might perceive when vaewing an ob- 
ject from increasing distances. We illustrate our new 
flow with a variety of examples. 

1 Introduction 

Look. U p  in the sky; it’s a bird; at’s a plane; 
no, it’s superman! 

Although superman is a fictitious cartoon charac- 
ter in North America, the above quotation reveals two 
fundamental aspects of visual shape analysis. First, 
recognition proceeds from general to specific, and sec- 
ond, descriptions are more fully articulated as addi- 
tional structure appears. The articulated appearance 
in this example depends on distance, with smaller de- 
tails apparent only up close, while the generic descrip- 
tions are fundamental to cognitive psychology. Rosch, 
for example, has shown that entry level categorization 
precedes the recognition of specifics [13]. The tempta- 
tion, however, is to use additional detail to refine the 
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Figure 1: The pure reaction flow (TOP) and the pure diffusion 
flow (BOTTOM) for a pear shape adapted from Richards [12]. 
The reaction flow generates shocks whose loci are equivalent 
to Blums’s skeleton; the diffusion flow continuously smoothes 
the shape, taking it to a circle in the limit. 

generic categories into specific instances (e.g., to recog- 
nize a robin as a specific bird), not to refine one generic 
category (bird) into another generic one (plane) before 
both are shown to be incorrect. The realization of these 
two competing aspects of the problem within a single 
theory is the focus of this paper. 

There have been several attempts to  develop generic 
shape descriptions within computer vision. One possi- 
bility is boundary based [3], and dictates that objects 
should be decomposed into parts at positions of maxi- 
mal negative curvature. Boundary smoothing can then 
be used to blur noise and un-necessary detail away, re- 
sulting in scale spaces for shape [8, 9, 141. A second 
approach is to use region based descriptions derived 
from Blum’s medial axis transform, which can then be 
smoothed or pruned using various methods [lo]. The 
challenge, for both approaches, is to simplify the de- 
scription so as to support generic shape recognition. 

In an attempt to do this, a curve evolution based 
reaction-diffusion space was proposed for shape analy- 
sis [5,6,7], see Section 2. This theory has the attractive 
property that natural components of shape are given 
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original = lobes + stem + hairs 

Figure 2: Simplification of  the pear shape using our y flow. 
TOP: The y flow with no smoothing provides all the dominant 
structures. SECOND ROW: With  some smoothing the “hairs” 
are removed, but the other structures remain. THIRD ROW: 
W i t h  further smoothing the stem i s  also removed, while the 
two lobes remain. BOTTOM: The reconstructed hierarchy. 

by the singularities or shocks of the curve evolution 
equation. Further, it has recently been shown that it 
can be used to support recognition [17]. However, an 
unfortunate consequence of integrating a hyperbolic re- 
action term (required for generating shocks), with a 
parabolic diffusion term (required for simplification), 
see Figure 1, is that the slightest amount of diffusion 
will prevent the formation of generic first-order shocks 
which are crucial for shape description. The question of 
unification, then, is how to achieve a type of “smooth- 
ing” for hyperbolic equations. Whereas this may ap- 
pear paradoxical, we have discovered a method to do 
this, which is the technical contribution of this paper. 

The trick is to embed the “smoothing” information 
in a global metric, and then to perform the hyperbolic 
evolution from the initial curve against this metric. 
This has an interpretation as an area-based weighted 
gradient flow [16]. Specific metrics are developed ac- 
cording to the following intuition. Consider a shape to 
be built from a number of different clumps of material, 

with each initial clump describing a significant compo- 
nent. For example, in Figure 2 (top), the “hairy pair” 
is built from 15 distinct components, one for the base 
lobe, one for the upper lobe, one for the stem, and a 
dozen for the “hairs”. The new evolution reveals pre- 
cisely these components, together with any additional 
deformations implicit in the initial shape. To simplify 
this, however, we might want to eliminate the “hair”, 
as in Figure 2 (second row), or the hair and the stem, 
as in Figure 2 (third row). The reconstructed hierarchy 
is depicted in Figure 2 (bottom). Notice how each sim- 
plification resembles a view of the pear from increasing 
distances. The results could be combined to  define a 
type of scale-space for shapes. 

2 Background 

The foundation of our approach is the mathemat- 
ical theory of curves flowing in the plane with speed 
a function of curvature. Using a model from math- 
ematical physics (see [ll] and the references therein), 
Kimia, Tannenbaum and Zucker introduced a reaction- 
diffusion space for visual shape analysis [5, 6, 71. More 
precisely with K the curvature, N the inward unit nor- 
mal, and G the curve coordinates, families of plane 
curves flowing according the equation 

were considered, with CY, p E R, /3 2 0. The key idea 
is to play off the hyperbolic reaction term a with the 
parabolic diffusion term p: the former leads to the for- 
mation of shocks from which a representation of shape 
can be derived (see Figure 3 for a summary and [7] 
for details), and the latter smoothes the front, which 
is important for distinguishing more significant shape 
features from less significant ones. 

2.1 Hyperbolic Smoothing 

Third order shocks indicate a symmetric axis for an 
extended region, as arises in images of objects with par- 
allel sides. Thus they are also important for describing 
shapes, since they signify a natural type of part such as 
a tail or a leg, but therein lies the difficulty in working 
with them. Only first-order and second-order shocks 
are generic [7], in the sense that such singularities can- 
not be removed by a small perturbation; see Arnold [l]. 
True third-order shocks will almost never occur for nat- 
ural or sampled images. Perfectly parallel sides would 
correspond to a 1-shock moving with infinite velocity. 
Instead, for real images minor variations will lead to a 
generic series of closely spaced 2-shocks with extremely 
rapid (but finite) 1-shocks between them. An example 
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First-Order Second-Order 

Third-Order Fourth-Order 

Figure 3: The four types of shocks. A 1-shock derives from 
a protrusion, and traces out a curve segment of 1-shocks. A 
2-shock arises at a neck, arid is  immediately followed by two 
1-shocks flowing away from i t  in opposite directions. 3-shocks 
correspond to an annihilation into a curve segment due to a 
bend, and a 4-shock an annihilation into a point or a seed. 
The loci of  these shocks gives Blum’s medial axis. 

of this is shown in Figure 4; from a distance it resem- 
bles a worm but, up close:, minor variations in the skin 
due to bending will induce multiple parts (left). As da 
Vinci put it: “the flesh which clothes the joints of the 
bones and other adjacent parts increases and decreases 
in thickness according to bending or stretching...”. The 
task that we face is regularizing these natural irregu- 
larities in extended tails, or bends. 

A first approach to regularizing 3-shocks might be 
to increase the amount of diffusion in the reaction- 
diffusion model. The difficulty with applying this di- 
rectly to shape analysis is that the slightest bit of dif- 
fusion tends to dominate. preventing the formation of 
generic first-order shocks which are key to shape rep- 
resentation. In this paper we will modify the evolution 
equation so that the pde initially mimics parabolic be- 
havior (allowing for degrees of smoothing) but in the 
limit becomes a pure constant motion flow, leading to 
the morphological skeleton. Specifically, we shall con- 
sider families of curves evolving under 

dC 
d t  - = yN,  

where y : R2 -+ R is a gbbally defined positive func- 
tion on the plane. Note that in contrast to the reaction- 
diffusion equation 1, equation 2 is purely hyperbolic. A 
key development in this paper will be the choice of y 
to  effect an appropriate smoothing; hence the title of 
our paper. 

Returning to  the “bumpy” worm shape in Figure 4, 
but viewing it at a distance, the description of a 
smooth, coiled worm is more satisfying. This is pre- 
cisely the type of simplification that we would like our 

Figure 4: LEFT TO RIGHT: The high-order shocks are “regu- 
larized” by diffusion of  the global metric, using the geometric 
heat equation, see Section 3. LEFT: An attempt to localize 3- 
shocks; the problem is that 2-shocks will appear between them 
and indicate distinct “parts”. RIGHT: For sufficient diffusion 
in our y flow, the worm appears t o  be a single part. 

notion of “smoothing” to effect; note that this cou- 
ples the general problem of shape “smoothing” with the 
“regularization” of the high-order shocks. A y function 
that does this is designed in Section 3. We first pro- 
vide the necessary theoretical motivation for equation 2 
(henceforth referred to as the y flow), by interpreting 
it as a gradient flow. 

2.2 Weighted Area Gradient Flows 

We follow our treatment in [16], where we consid- 
ered area (or volume) in a conformal metric and then 
derived the associated gradient flow. Let C = C ( p ,  t )  be 
a smooth family of closed curves where t parametrizes 
the family and p the given curve. Modify the standard 
Euclidean metric ds2 = dx2  + dy2 of the underlying 
space over which the evolution takes place to a con- 
formal one ds$ = $’(dx2 + dy’). The “$-area” of the 
curve is then defined as 

A+( t )  = -1 LL(‘) $(C,N) ds, 
2 

where $ : R2 + R is a positive differentiable func- 
tion defined on the image plane. Differentiating the 
functional with respect to t ,  it can be shown that the 
fastest way to shrink the #-area of the curve is via the 
equation 

(3) 

Note that since $ is a globally defined function on the 
plane, (3) defines a hyperbolic equation. As is standard 
in the subject, our implementation of equation (3) uses 
level sets [ll]. An easy exercise shows that in level set 
form (3) may be written as 

(4) 
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and that equation (2) may be written as 

(5) 

for the level set function Q 

Solving for + from y We now make the connection 
between equation (4) and equation ( 5 ) ,  providing the 
necessary theoretical motivation for the y flow. Equat- 
ing the terms on the right hand side, we see that 

x#z + Y+Y = - 4) (6) 

which is an Euler e,quation with forcing term y, that 
can easily be solved (see [4], pp. 13-15.) The charac- 
teristic curves may be easily computed to be 

and so 

3 T h e y  Flow 

3.1 General Properties 

We now derive a number of properties of families of 
plane curves flowing according to equation (2). We will 
assume that y : R2 + R is a global ly  defined positive 
function on the plane R2. This is in contrast to  the 
standard choices in which y is a function defined only 
on the curve (typically taken to be some function of 
the curvature). As above for T the tangent, N the 
inward normal, and K the curvature, one can compute 
that (see [2, 61) 

Nt = y8T ,  
Tt = YsN, 
K t  = yss +v2, 
4 = ys, 

where s is arc-length and 0 is the angle parameter, i.e., 
dB = fids. Now if ys = 0 (that is, we are on a level curve 
y(s) = ,U), noticekhat the normal and tangent don’t 
change, i.e., they remain parallel. This indicates that 

a curve segment of the evolving curve that coincides 
with a level curve of y remains as such, as long as the 
curve remains non-singular. (This is very similar to the 
classical skeleton flow.) 

The evolution equation for K is a Ricatti equation, 
which is well known in control theory. There is an 
essential relationship between the curvature, the min- 
imal time till shock formation and the speed function 
y, which can be made explicit. Let us assume that 
yss = 0. For the y functions we will be choosing (based 
on the signed distance function), the qualitative behav- 
ior when yss # 0 will be similar. Separating variables, 
and integrating the evolution equation from 0 to t we 
get t 

-dtc = yd2. 
l : 2  I 

Thus, we can solve for K ( S ,  t ) :  

4% 0) 
1 - &(SI o)r’ K ( S , t )  = 

where 

l? = 6’ ydt. 

Therefore the time of first shock formation, curva- 
ture along the initial curve, and the speed y are related 

1 
by 

J,”ydt = “ 
What this formula roughly says is that the larger the 
speed y, and the larger the maximal curvature of the 
initial curve, the shorter the time of shock formation. 
The well-known formula for y = 1, t = & for the 
time till first shock for the usual morphological (skele- 
ton) flow, is a special case. As another case, when y 
varies linearly (as in the case of a Euclidean distance 
function), e.g., y ( s , t )  = -p l t+pO,  y (s , t )d t  can be in- 
tegrated to get the minimum time till shock formation: 

t = PQf p1 - d m / P l  

Thus a shock forms provided pg > 2 p l / ~ ( s ,  0). 

Remark. 
The formulae for the evolution of curve length and area 
are also interesting: 

L 2T 

Lt = - I  yrcds = -l yd8, 

At = - yds. J 
In particular, we would like to  see what happens to 
the isoperimetric inequality as a function of y. Since 
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we are interested in shock formation, we would like the 
isoperimetric inequality to get worse (that is, increase 
as a function o f t )  and least after some given time in 
the evolution. Recall that for closed simple curves we 
always have that 

with equality for the circle. Now for a family of curves 
as above, the isoperimetric inequality getting worse 
means that 

But this is equivalent to  

2LiA  2 AtL,  

or from the above formula for Lt and At, 
r L  P L  

2 J, yrcdsA 5 J, ydsL. (9) 

Notice that when y = 1 (the usual skeleton), we have 
that (9), becomes 

2 1" KdsA 5 lL dsL, 

which is precisely the classical isoperimetric inequality 

47iA 5 L2 

given above. Note that this follows since 

lL tcds = 2a. 

We will be interested in studying (9) for other speed 
functions y. 

3.2 Construction of y 

We now turn to  the design of y functions that effect 
the type of smoothing we are after. 

Requirement 1 y must be a globally defined function 
on the plane. 

This requirement follows from the interpretation of 
equation (2) as a weighted area gradient flow in Sec- 
tion 2.2. 

Requirement 2 y musi be a positive function on the 
plane. 

The second requirement keeps the curve moving in a 
fixed direction. Furthermore, we would like the y flow 
to converge to globally salient features of the shape, 
which are typically captured by the central high order 
(2-,3-,4-) shocks (see Figure 3) .  Thus, 

Figure 5: A surface plot of y for the horse shape in Figure 7. 
The function is constructed as an outward distance map from 
the high order shocks. 

Observation 1 A suficient condition for the y flow 
to converge t o  the loci of high-order shocks is to let y 
be identically zero a t  them. 

Let \E be the embedding surface of which the evolving 
curve C is its zero level set. 

Observation 2 The high-order shocks coznczde wzth 
the zeros of llV\Ell. 

These zeros can be accurately detected using the algo- 
rithm in [15]. Thus, 

Proposal 1 For each (2, y) E R2, let y(z,y) be the 
Euclidean distance to the nearest high-order shock. 

Formally, let S be the set of all high-order shocks and 
d(, ,  .) the Euclidean distance function. Then, for all 
(X,Y> E R2 

Y(Z, Y) = mind(($, Y), (z(s), Y(S)>>. 
S € S  

Therefore, y is an outward distance map from the high- 
order shocks, see Figure 5. Note that the above con- 
struction satisfies the requirements that  y be positive 
and globally defined. Intuitively, it captures the notion 
that significance should be measured with respect to 
relative size (distance to  the nearest high-order shock). 
To illustrate, a pimple on a nose is typically viewed as 
more salient than the same pimple on the cheek. 

3.3 Smoothing y 

The above construction of y is entirely determined 
by the initial shape. Thus, if the shape is made of 
many lumps, as in Figure 4, the y flow will converge to  
these structures. In order to  effect the form of smooth- 
ing we are after, our strategy will be to  regularize y by 
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Figure 6 :  The front evolving under equation (Z), with + a 
distance function from the central 4-shock. 

computing it from the high-order shocks of an increas- 
ingly smoothed distance map (to the original shape). 
A very natural form of smoothing is the geometric heat 
equation, since this flow simplifies the shock structure 
of the level curves. In particular, generic first-order 
shocks are associated with points of extrema1 curva- 
ture. It has been shown that under equation (1) with 
a = 0, the number of curvature extrema and inflec- 
tion points are strictly decreasing for all non-circular 
curves, and non-increasing for a perfect circle [6]. 

4 Examples 

We provide several examples of shapes evolving un- 
der equation ( 2 ) ,  with 7 constructed as a distance func- 
tion to the closest high-order shock, as described in 
Section 3.  For all simulations the high-order shock lo- 
cations are obtained using the the algorithm developed 
in [15], and the curve is evolved using level set tech- 
niques [ll]. 

Figure 6 illustrates the y flow on a square shape hav- 
ing a single 4-shock in its center. Observe that whereas 
shocks are initially formed (corners), they are eventu- 
ally smoothed away. The limit shape appears to be 
a circle around the central 4-shock. Figure 7 (top) 
depicts a da  Vinci horsc, scanned from a book of his 
sketches, along with the high-order shocks of the sil- 
houette. The associated y flow is depicted in Figure 7 
(middle and bottom rows). Notice how intuitive the 
captured components are, i.e., they correspond to  the 
head, neck, torso, limbs, and tail. Finally, we consider 
a da Vinci study of the hind quarters of a horse, Fig- 
ure 8 and zoom on the region of the right leg. Observe 
that with increased smoothing the y flow effectively 
regularizes the undulating structure due t o  “the flesh 
which clothes the joints of the bones and other adjacent 
parts...’) 

Figure 7: A d a  Vinci horse, scanned from a book of hissketches 
(top left) a n d  the high-order shocks of the silhouette (top 
right). The front evolving under equation (2), with y a dis- 
tance function from the high-order shocks, is shown i n  the 
middle a n d  bottom rows. 

5 Conclusions 

The problem of generic shape description through 
the singularities of a curve evolution process has been 
plagued by the mis-match between a reaction term, 
which causes the shocks that provide descriptors, and 
the diffusion term, which simplifies the shape via 
smoothing. In brief, diffusion destroys the first-order 
shock structure. We have discovered a solution to this 
problem, in which the “smoothing” information is em- 
bedded in a global metric, and a hyperbolic (reactive) 
flow is then effected against this metric. The result is a 
new flow that is amenable to smoothing but which still 
develops shocks. It is shown that increasing smoothing 
results in smoother flows, thereby leading to a hier- 
archical representation of structure. As a side effect, 
non-generic third-order shocks are regularized, facili- 
tating the recognition of elongated “tails)’ and “bends” 
as distinct parts. 

This technique i s  fundamentally different from tradi- 
tional approaches (where some form of boundary melt- 
ing occurs) in that,  roughly speaking, the significance 
of a structure is determined by its size with respect to  
the structure to  which it is attached. The global in- 
formation is taken from the distance map, and is used 
to  define the metric against which the hyperbolic evo- 
lution takes place. The smoothing is implemented on 
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Figure 8: TOP Row: A da Unci study of the hind quarters 
of a horse. We zoom i n  on the region of the right leg. SEC- 

OND Row: The high-order $.hocks of the original are overlayed 
(left), with the y flow shown from left to right, yielding 4 com- 
ponents. THIRD Row: With some amount of smoothing of 
the embedding surface, the y flow now yields 2 components. 
BOTTOM ROW: With increased smoothing, the y flow effec- 
tively regularizes the leg into a single structure. 

the  distance m a p  a n d  noi, on  the  evolution. T h e  result 
is a purely hyperbolic process that “smooths” shapes. 

Although the  techniques developed in this paper  
a re  entirely two-dimensional, another  advantage of this 
class of hyperbolic evolut,ions is that they are directly 
extensible to three dimensions. This will b e  extremely 
impor tan t  for applications, especially those in bio- 
medicine. 
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