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Abstract

A new method for the representation, recognition, and
interpretation of parameterized gesture is presented.
By parameterized gesture we mean gestures that exhibit
a meaningful variation; one example is a point gesture
where the important parameter is direction. Our ap-
proach is to extend the standard hidden Markov model
method of gesture recognition by including a global
parametric variation in the output probabilities of the
states of the HMM. Using a linear model to derive
the theory, we formulate an expectation-maximization
(EM) method for training the parametric HMM. During
testing, the parametric HMM simultaneously recog-
nizes the gesture and estimates the quantifying param-
eters. Using visually-derived and directly measured
3-dimensional hand position measurements as input,
we present results on two different movements — a
size gesture and a point gesture — and show robust-
ness with respect to noise in the input features.

1 Introduction
Current approaches to the recognition of human movement work
by matching an incoming signal to a set of representations of
prototype sequences. For example, a gesture recognition system
might match a sequenceof hand positions over time to a number of
prototype gesture sequences, each of which are learned from some
number of examples. To handle variations in temporal behavior,
the match is typically computed using some form of dynamic
time warping (DTW). If the prototype is described by statistical
tendencies, the time warping is often embedded within a hidden
Markov model (HMM) framework. When the match to a particular
prototype is above some threshold, the system concludes that the
gesture corresponding to that prototype has occurred.

Consider, however, the problem of recognizing the gesture pic-
tured in Figure 1 that accompanies the speech “I caught a fish. It
was this big.” The gesture co-occurs with the word “this” and is
intended to convey a quantity, namely the size of the fish. The
difficulty in recognizing this gesture is that its form varies greatly
depending on this quantity. A simple DTW or HMM approach
would attempt to model this important relationship as noise. We
call movements that exhibit meaningful, systematic variation pa-
rameterized movements.

Many hand gestures that accompany speech may be consid-
ered parameterized movements. As with the “fish” example, hand
gestures are often used in dialog to convey some quantity that oth-
erwise cannot be determined from the speech alone. Parameter-
ized movements are also extensively used in musical conducting,

Figure 1: The gesture that accompanies the speech “I caught a
fish. It was this big.” In its entirety, the gesture consists of a
preparation phase in which the hands are brought into the gesture
space, a stroke phase(depicted by the illustration) which co-occurs
with the word “this” and finally a retraction back to the rest-state
(hands down and relaxed). The distance � conveys the size of the
fish.

where the quality of the conductor’s movement is as important as
the presence of the movement itself. Driving is another domain
rich with meaningful parameterized movements.

Techniques that use fixed prototypes for matching are not well
suited to modeling movements that exhibit such meaningful vari-
ation. In this paper we present a framework which models pa-
rameterized movements in a such way that the recovery of the
parameter of interest and the recognition of the movement pro-
ceed simultaneously.

In this paper we extend the standard hidden Markov model
method of gesture recognition to include a global parametric vari-
ation in the output probabilities of the states of the HMM. Using
a linear model to derive the theory, we formulate an expectation-
maximization (EM) method for training the parametric HMM.
During testing, the parametric HMM simultaneously recognizes
the gesture and estimates the quantifying parameters. Using
visually-derived and directly measured 3-dimensional hand po-
sition measurements as input, we present results on two different
movements — a size gesture and a point gesture — and show
robustness with respect to noise in the input features.
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2 Related work

Hidden Markov models and related techniques have been applied
to the problem of gesture recognition with notable success. For
example, Darrell and Pentland [8] applied dynamic time warping
to match image template correlation scores against models to rec-
ognize hand gestures from video. A gesture model is represented
by a temporal pattern of correlation scores. Schlenzig, Hunter and
Jain [17] used HMMs and a rotation-invariant image representa-
tion to recognize hand gestures from video. Starner and Pentland
[18] applied HMMs to recognize ASL sentences.

None of these works have developed representations to learn
meaningful variation of the gestures. For example, Starner and
Pentland restrict the ASL alphabet to repeatable, non-varying ges-
tures. In fact ASL is subject to complex grammatical processes
that operate on multiple simultaneous levels. These kinds of vari-
ation in ASL are addressed in a machine perception framework by
Poizner et al [15].

A number of systems have been developed which use gesture
recognition within an interactive context. These are relevant for
the present work in that the system is charged with the task of
extracting a parameter important to the interaction as well as the
task of recognizing that the gesture occurred. The ALIVE [9]
and Perseus [12] systems are examples. The typical approach of
these systems is to first identify static configurations of the user’s
body that are diagnostic of the gesture, and then use an unre-
lated method to extract the parameter of interest (e.g., direction of
pointing). Manually constructed ad hoc procedures are typically
used to identify the diagnostic configuration, a task complicated
by the requirement that this procedure work through the range of
meaningful variation and also not be confused by other gestures.
Perseus, for example, understands pointing gestures by detecting
when the user’s arm is extended. The system then finds the point-
ing direction by computing the line from the head to the user’s
hand.

Darrell [7] addresses the problem of crafting perceptual strate-
gies automatically in part by training a model of attention. The
model learns a policy to select features from the input using par-
tially observable Markov decision process (POMDP). In [1] we
used hand-tuned HMMs using temporal properties to recognize
two broad classes of natural, spontaneous gesture. Campbell and
Bobick [6] search for orthogonal projections of the feature space
to find the most diagnostic projections in order to classify ballet
steps.

In [20], we apply HMMs to the task of hand gesture recognition
from video by training an eigenvector basis set of the images at
each state. An image’s membership to each state is a function of
the residual of the reconstruction of the image using the state’s
eigenvectors. The state membership is thus invariant to variance
along the eigenvectors. Although not applied to images directly,
the present work is an extension of this earlier work in that the
goal is to recover a parameterization of the systematic variation of
the gesture.

Murase and Nayar [13] parameterize meaningful variation in
the appearance of images by computing a representation of the
nonlinear manifold of the images in an eigenspace of the images.
Their work is similar to ours in that training assumes that each input
feature vector is labeled with the value of the parameterization. In
testing, an unknown image is projected onto the manifold and the
parameterization is recovered. Their framework has been used,
for example, to recover the camera angle relative to a known object
in the field of view.

Parameterized object recognition has sought to couple the

matching problem with the estimation of parameters of the ob-
ject. For example, ACRONYM (Brooks [4]) uses constraints on
the free parameters that specify the shape of an object. The recog-
nition is then a matter of satisfying these constraints and setting
the free parameters. Potential approaches to parameterized object
recognition are discussed in [10].

Recently there has been interest in methods that recover latent
parameterizations. In his "family discovery" paradigm, Omohun-
dro [14], for example, outlines a variety of approaches to learning
the nonlinear manifold representing systematic variation. One of
these techniques has been applied to the task of lip reading by
Bregler and Omohundro. Bishop, Svensen and Williams [5] have
also introduced techniques to learn latent parameterizations. Their
system begins with an assumption of the dimensionality of the pa-
rameterization and uses an expectation-maximization framework
to compute a manifold.

Lastly we mention Tenenbaum and Freeman’s work on sepa-
rating style from content. They use a generative factorial model
to learn separate representations of style (e.g., font) and content
(e.g., letter). Their work differs from ours in that the emphasis is
learning the factorial structure of the problem. However, the goal
of learning variation due to style is common to both.

2.1 Images versus features
Previous work in gesture recognition, including some of our own,
has been criticized for using features that are not robust with re-
spect to varying imaging conditions (e.g. illumination changes or
translation of the hand’s rest position with respect to the camera).
In this paper we describe the results of two experiments. The first
test operates on hand position features derived from a stereo vision
system; the second, position features generated using a electro-
magnetic sensor. Our view is that the extraction of robust, salient,
semantically rich features is an important problem but one that is
independent of the recognition and estimation task being inves-
tigated here. Our technique however does not require noiseless
feature tracking: in the results section we show the performance
of our technique under varying noise conditions.

2.2 Non-parametric extensions
Before presenting our method for modeling parameterized move-
ments, it is worthwhile to consider two extensions of the standard
gesture recognition paradigm to the problem of recognizing these
parameterized classes.

The first approach relies on our ability to come up with ad hoc
methods to extract the value of the parameter of interest. For
example, in the example presented in Figure 1, one could design a
procedure to recover the parameter: wait until the hands are in the
middle of the gesture space and have low velocity, then calculate
the distance between the hands. One example of such approach is
contained in the Perseus system ([12]).

The chief objection to such an approach is not that each move-
ment requires a new ad hoc procedure, nor the difficulty in writing
procedures that recover the parameter robustly, but the fact that
they are only appropriate to use when the gesture has already been
labeled. As mentioned in the introduction, a recognition system
that abstracts over the variation induced by the parameterization
must model such variation as noise or deviation from a proto-
type. The greater the parametric variation, the less constrained the
recognition prototype can be, and the worse the detection results
become.

The second approach employs multiple DTW or HMM models
to cover the parameter space. Each DTW model or HMM is asso-
ciated with a point in parameter space. In learning, the problem of
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allocating training examples labeled by a continuous variable to
one of a discrete set of models is eliminated by uniting the models
in a mixture of experts framework [11]. In testing, the parame-
ter is extracted by finding the best match among the models and
looking up its associated parameter value. The dependency of the
movement’s form on the parameter is thus removed. This can be
embellished somewhat by computing the value of the parameter
as the weighted average of all the models’ associated parameter
values, where the weights are derived from the matching process.

The first objection to this approachis that it is unknownfrom the
outset how many separate models will be necessary. The second
objection is that all of the models are required to learn the same or
similar dynamics (i.e. as modeled by the transition matrix in the
case of HMMs) separately. The last objection is the most serious
in terms of practical use: as the dimensionality of the parameter
space increases, the large number of models necessaryto cover the
space will place unreasonable demands on the amount of training
data. 1

In the next section we introduce parametric HMMs, which
overcome the problems with both approaches presented above.

3 Parametric hidden Markov models

3.1 Model
Parametric HMMs model the dependence on the parameter of
interest explicitly. We begin with the usual HMM formulation
[16] and change the form of the output probability distribution
(usually a normal distribution or a mixture model) to depend on
the parameter �, a vector quantity.

In the standard continuous HMM model, a sequence is repre-
sented by movement through a set of hidden states. The Marko-
vian property is encoded in a set of transition probabilities, with
aij = P (qt = j j qt�1 = i) being the probability of moving to
state j at time t given the system was in state i at time t�1. Associ-
ated with each state j is an output distribution of the feature vector
x given the system is really in state j at time t: P (xt j qt = j). In
a simple Gaussian HMM, the parameters to be estimated are the
aij , �j , and Σj .2

To introduce the parameterization on � we modify the output
distributions. The simplest useful model is a linear dependenceof
the mean of the Gaussian on �. For each state j of the HMM we
have:

�̂j(�) = Wj� + �̄j (1)

P (xt j qt = j; �) = N (xt; �̂j(�);Σj) (2)

In the work presented here all values of � are considered equally
likely and so the prior P (� j qt = j) is ignored.

Note that � is constant for the entire observation sequence, but
is free to vary from sequence to sequence. When necessary, we
write the value of � associated with a particular sequencek as � k .

1In such a situation it is not sufficient to simply interpolate the
match scores of just a few models in a high dimensional space
since either (1) there will be significant portions of the space for
which there is no response from any model or (2) in a mixture of
experts framework, each model is called on to model too much of
the space, and so is modeling the dependency on the parameter as
noise.

2Technically there are also the initial state parameters �j to be
estimated; in this work we use causal topologies with a unique
starting state.

3.2 Training
Training consists of setting the HMM parameters to maximize
the probability of the training sequences. Each training sequence
is paired with a value of theta. The Baum-Welch form of the
expectation-maximization (EM) algorithm is used to update the
parameters of the output probability distributions. The expec-
tation step of the Baum-Welch algorithm (also known as the
“forward/backward” algorithm) computes the probability that the
HMM was in state j at time t given the entire sequence xt de-
noted as 
tj . It is convenient to consider the HMM’s parse of the
observation sequence as being represented by 
 tj .

In training, the parameters � of the HMM are updated in the
maximization step of the EM algorithm. In particular, the param-
eters � are updated by choosing a � 0 to maximize the auxiliary
functionQ(�0 j �). �0 may contain all the parameters in�, or only
a subset if several maximization steps are required to estimate all
the parameters. As explained in the appendix, Q is the expected
value of the log probability given the parse 
tj . In the appendix
we derive the derivative of Q for HMM’s:

�Q

��0
=

X
t

X
j


tj

�
��0

P (xt j qt = j;�0)

P (xt j qt = j; �0)
(3)

The parameters� of the parameterized Gaussian HMM include
Wj , �̄j , Σj and the Markov model transition probabilities. Updat-
ing Wj and �̄j separately has the drawback that when estimating
Wj only the old value of �̄j is available, and similarly if �̄j is
estimated first. Instead, we define new variables:

Zj �
�
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�
Ωk �

�
�k
1

�
(4)

such that �̂j = ZjΩj . We then need to only update Zj in the
maximization step for the means.

To derive an update equation for Zj we maximize Q by setting
equation 3 to zero (selecting Zj as the parameters in �0) and
solving for Zj . Note that because each observation sequencek in
the training set is associated with a particular �k , we can consider
all observation sequences in the training set before updating Z j .
Accordingly we denote 
tj associated with sequence k as 
ktj .
Substituting the Gaussian distribution and the definition of �̂j =

ZjΩj into equation 3:
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#
(7)

Setting this derivative to zero and solving for Zj , we get the update
equation for Zj :

Zj =

"X
k;t


ktjxktΩT
k

#"X
k;t


ktjΩkΩT
k

#
�1

(8)

Once the means are estimated, the covariance matrices Σj are
updated in the usual way:

Σj =

X
k;t


ktjP
t

ktj

(xkt � �̂j(�k))(xkt � �̂j(�k))
T

(9)

as is the matrix of transition probabilities [16].
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3.3 Testing
In testing we are given an HMM and an input sequence. We wish to
compute the value of � and the probability that the HMM produced
the sequence. As compared to the usual HMM formulation, the
parameterized HMM’s testing procedure is complicated by the
dependence of the parse on the unknown �. Here we present only
a technique to extract the value of �, since for a given value of
� the probability of the sequence xt is easily computed by the
Viterbi algorithm or by the forward/backward algorithm.

We desire the value of � which maximizes the probability of the
observation sequence. Again an EM algorithm is appropriate: the
expectation step is the same forward/backward algorithm used in
training. The forward/backward algorithm computes the optimal
parse given a value of �. In the corresponding maximization step
we update � to maximize Q, the log probability of the sequence
given the parse 
tj.

To derive an update equation for �, we start with the derivative
in equation 3 from the previous section and select � as� 0. As with
Zj , only the means �j depend upon � yielding:

�Q

��
=

X
t

X
j


tjΣ�1
j (xi � �̂j(�))

��̂j(�)

��
(10)

Setting this derivative to zero and solving for �, we have:

� =

"X
t;j


tjW
T
j Σ�1

j Wj

#
�1 "X

t;j


tjW
T
j Σ�1

j (xt � �̄j)

#

(11)
The values of 
tj and � are iteratively updated until the change

in � is small. With the examples we have tried, less than ten
iterations are sufficient. Note that for efficiency, many of the inner
terms of the above expression may be pre-computed.

4 Results
In our first testing result we make good on the example discussed
in the introduction: “I caught a fish. It was this big.” In the second
test we show more detailed results for a pointing gesture, which
is naturally parameterized by two values.

4.1 Size gesture
To test the ability of the parameterized HMM to learn the pa-
rameterization, thirty examples of the type depicted in Figure 1
were collected using the Stereo Interactive Virtual Environment
(STIVE)[2], a research computer vision system utilizing wide
baseline stereo cameras and flesh tracking (see Figure 2). STIVE
is able to compute the three-dimensional position of the head and
hands at a frame rate of about 20Hz.

The 30 sequences averaged about 43 samples in length. The
actual value of �,which in this case is interpreted as a size in inches,
wasmeasured directly by finding the point in each sequenceduring
which the hands were stationary and then computing the distance
between the hands. The value of � varied from 7.7 inches (a small
fish) to 36.6 inches (a respectable catch).

A six state parameterized HMM was trained with fifteen se-
quences randomly selected from the pool of thirty. The topology
of the HMM was set to be causal (i.e., no transitions to previously
visited states, with no “skip states”). In this example ten iterations
were required for convergence, when the relative change in the
total log probability for the training examples was less than one
part in one thousand.

Figure 2: The Stereo Interactive Virtual Environment (STIVE)
computer vision system used to collect data in section 4.1. Using
flesh tracking techniques, STIVE computes the three-dimensional
position of the head and hands at a frame rate of about 20Hz.
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Figure 3: Parameter estimation results for the size gesture. Fifty
random choices of the test and training sets were used to compute
mean and standard deviation (error bars) on all examples. The
HMM was retrained for each choice of test and training set.

Testing was performed with the remaining fifteen sequences.
The size parameter � was extracted from each of the testing se-
quences. To evaluate the performance of the parameterized HMM,
we calculated the difference between the estimated value of � and
the value computed by direct measurement.

Figure 3 shows statistics on the parameter estimation for fifty
(random) choices of the test and training sets. The HMM was
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Figure 4: The point gesture used in section 4.2. The movement is
parameterized by the coordinates of the target � = (x; y) within
a plane in front of the user. The gesture consists of a preparation
phase, a stroke phase (shown here) and a retraction.
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Figure 5: Log probability as a function of � = (x; y) for a pointing
test sequence.

retrained for each choice of test and training set. The average
absolute error over all test trials is about 0.16 inches, demonstrat-
ing that the parameterized HMM had learned the parameterization
accurately. Also, the magnitude of theWj is greatest for the states
corresponding to the middle phase of the gesture where the vari-
ation of � maximally impacts the execution of the gesture. The
system automatically learns which segment in the gesture that is
most diagnostic of �.

4.2 Pointing gesture
In the second test, we demonstrate the application of the parame-
terized HMM technique to a gesture parameterized by more than
one variable. We also demonstrate the performance of the tech-
nique under varying amounts of noise and show the performance
in a test requiring simultaneous recognition of the gesture and the
extraction of the parameter �.

For a movement that requires a multi-dimensional parameter-
ization, we chose the pointing gesture. If pointing direction is
restricted to the hemisphere in front of the user, the movement is
naturally parameterized by a position in a plane in front of the user
(see Figure 4). Neglecting the shape of the hand we recorded the
three-dimensional position of the wrist (right hand). We used a
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Figure 6: Average error over the entire pointing test set as a
function of noise. The value of � was estimated by an direct
measurement and by a parameterized HMM retrained for each
noise condition. The average error was computed by comparing
the estimate of � to the value recovered by direct measurement in
the noise-free case.

Polhemus motion capture system to record the wrist position at a
frame rate of 30Hz.

Fifty such examples were collected, each averaging 29 time
samples (about 1 second) in length. As ground truth, we again
directly measured the value of � for each sequence: the point at
which the depth of the wrist away from the user was found to
be greatest. The position of this point in the pointing plane was
returned. The horizontal coordinate of the pointing target varied
from -22 to +27 inches, while the vertical coordinate varied from
-4 to +31 inches.

An eight state causal parameterized HMM was trained using
twenty sequencesrandomly selected from the pool of fifty. The re-
maining thirty sequenceswere used to test the ability of the model
to encode the parameterization. The average error was computed
to be about 0.37 inches (about 0.5 degrees). When the number of
training examples was cut to 5 randomly selected sequences, the
error increased to 0.82 inches (about 1.1 degrees), demonstrating
how the parameterized HMM can exploit interpolation to reduce
the amount of training data necessary. Again, the high level of
accuracy can be explained by the increase in the weights W j in
those states that are most sensitive to variation in �.

Parameterized HMMs examine the entire sequence to recover
�. For classes of movement in which there is systematic varia-
tion throughout the extent of the sequence, parameterized HMMs
should perform more robustly than techniques that rely on query-
ing a single point in time. To show this ability, we added various
amounts of Gaussian noise to both the training and test sets, and
then estimated � using the direct measurement procedure outlined
above and again with the parameterized HMM testing EM pro-
cedure. The parameterized HMM was retrained for each noise
condition. For both cases the average error in parameter estima-
tion was computed by comparing the estimated value with the
value as measured directly with no noise present. The average
error, shown in Figure 6, indicates that the parameterized HMM
is more robust to noise than the ad hoc technique.

One concern in the use of EM for optimization is that while
each EM iteration will increase the probability of the observations,
there is no guarantee that EM will find the global maximum of
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Figure 7: Recognition results are shown by the log probability of the windowed sequence beginning at each frame number. The true
positive sequencesare labeled by the value of � recovered by the EM testing algorithm and the error computed by comparing the extracted
value with the actual value computed by direct measurement. (a) Maximum likelihood estimate. (b) Maximum a posterior estimate, for
which a uniform prior probability on � was determined by the bounds of the training set. The MAP estimate was computed by simply
throwing out sequences for which the estimate of � is unreasonable. This post-processing step is equivalent to establishing a prior on �
in the framework presented in the appendix.

the probability surface. To show that this is not a problem in
practice for the point gesture testing EM, we computed the log
probability of a testing sequence for all values of �. This log
probability surface, shown in Figure 5, is unimodal, such that for
any reasonable initial value of � the testing EM will converge on the
maximum corresponding to the correct value of �. The probability
surfaces of the other test sequences are similarly unimodal.

The peak of the probability surface shown in Figure 5 appears to
be a superposition of a mode onto a larger surrounding mode. An
examination of the parses recovered at various values of � shows
that points outside of the central peak correspond to parses that are
governed almost completely by the Markov model. Equivalently,
all state output probabilities are near zero. At points belonging
to the peak, however, the state output probabilities are significant
and the parse takes a form similar to that of the training sequences.

Lastly, we demonstrate recognition performance of the pointing
parameterized HMM. A one minute sequence was collected that
contained a variety of movements including six points distributed
throughout. To simultaneously detect the gesture and recover �,
we used a 30 sample (one sec) window on the sequence. Figure 7
shows the log probability as a function of time and the value of �
recovered for a number of recovered pointing gestures. All of the
pointing gestures were recovered.

5 Non-linear dependencies
When the parameter of interest is a measure of Euclidean distance
or coordinates in Euclidean space, the linear model of section 3.1
is appropriate. For situations in which the feature vector is not
linear in � at each state of the HMM, there are at least three courses
of action: (1) find an analytical function f(�) for which the de-
pendenceis linear, and use the new parameters f(�) in the place of
�, (2) find some intermediate parameterization that is linear in the

feature space and then use some other technique to map to the final
parameterization, and (3) use a more general modeling technique,
such as neural networks or radial basis function networks.

The first option, for example, would be suited to a model of
the pointing motion in which the pointing target is not confined
to a limited area in front of the user. In such a case, the target
is better represented in spherical coordinates. This is easily done
analytically.

The second option involves finding an intermediate parameter-
ization that is linear in the feature space. For example, a musical
conductor might convey a dynamic by sweeping out a distance
with his or her arm. It may be adequate to model the motion using
a parameterized HMM with the distance as the parameter, and then
external to the HMM capture some nonlinearity in the mapping
from this distance to the intended dynamic by a simple learned
function on �. This technique requires a fine knowledge of how
the actual physical movement conveys the quantity of interest.

The last option, employing more general modeling techniques,
is naturally suited to situations in which the parameterization is
nonlinear and no analytical form of the parameterization is known.
For example, when the parameterization is derived from a user’s
subjective rating it may be difficult or impossible to represent the
feature’s dependence on � analytically, especially without some
insight as to how the user subjectively rates the motion.

With a more complex model of the dependence on � (e.g., a
neural network), it may not be possible to solve for � analytically
to obtain an update rule for the training or testing EM algorithms.
In such a case we may perform gradient descent to maximize
Q in the maximization step of the EM algorithm (which would
then be called a “generalized expectation-maximization” (GEM)
algorithm). In [21] we use neural networks and GEM algorithms
to model the subjective quality of a motion.
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6 Conclusion
A new method for the representation and recognition of parame-
terized gesture is presented. The basic idea is to parameterize the
underlying output probabilities of the states of an HMM. Because
the parameterization is explicit and analytic (here we use a linear
relation) the dependence on the parameter � can be learned within
the standard EM formulation.

The method is interesting from two perspectives. First, as a
gesture or activity recognition technique it is immediately appli-
cable to scenarios where inputs to be recognized vary smoothly
with some meaningful parameter(s). One possible application is
advanced human-computer interfaces where the quantity indicat-
ing gestures need to be identified and the quantities measured.
Also, the technique may be applied to the task of gait recognition,
where one would like to ignore the “intensity” of the walk.

Second, the parameterized technique presented is domain inde-
pendent and is applicable to any sequence parsing problem where
some context or style ([?]) spans an entire sequence.

As mentioned in the the discussion of non-linear models, it is
possible to use non-analytic mappings between � and the param-
eters of the output distribution. As long as the mapping is smooth
one should be able to do a gradient-based generalized EM max-
imization step. Investigating this approach is one of our current
efforts.
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A Appendix: Expectation-maximization
algorithm for hidden Markov models

In this section we show the derivation of equation 3. We begin by
explaining the expectation-maximization (EM) algorithm [3].

EM algorithms are appropriate when there is reason to believe
that in addition to the observable data there are unobservable
(hidden) data, such that if the hidden data were known, the task
of fitting the model would be easier. In the case of HMMs the
observable data is the observation sequence x t, and the hidden
data is the state qt at each time step t. In what follows we denote
the entire observation sequence asx and the entire state sequence
as q.

EM algorithms are iterative: the value of the hidden data is
computed given the value of some parameters to a model of the
hidden and observable data (the “expectation” step), then given
this guess at the hidden data, an updated value of the parameters is
computed (“maximization”). These two steps are alternated until
the change in the overall probability of the observed and hidden
data is small (or, equivalently, the change in the parameters is
small).

Particular EM algorithms are derived by considering the auxil-
iary function Q(�0 j �), where � denotes the current value of the
parameters of the model, and �0 denotes the updated value of the
parameters. We would like to estimate the values of �0 . Q is the
expected value of the log probability of the observable and hidden
data together given the observables and �:

Q(�
0 j �)=Eq

�
logP (x;q; �0) j x; �

�
(12)

=

X
q

P (q j x; �) logP (x;q; �0) (13)
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This is the “expectation step”. The proof of the convergence of the
EM algorithm shows that if during each EM iteration �0 is chosen
to increase the value of Q (i.e. Q(�0 j �)�Q(� j �) > 0), then
the likelihood of the observed data P (x j �) increases as well.
The proof holds under fairly weak assumptions on the form of the
distributions involved. Choosing �0 to increase Q is called the
“maximization” step.

Note that if the prior P (�) is unknown then we replace
P (x;q; �0)withP (x;q j �0). In particular, the usual HMM
formulation neglects priors onP (�). In the work presented in this
paper, however, the prior on � may be estimated from the training
set, and furthermore may improve recognition rates, as shown in
the results presented in Figure 7.

The parameters � of an HMM include the transition probabil-
ities aij and the parameters of the output probability distribution
associated with each state:

Q(�
0 j �) = Eq

"
log
Y
t

aqt�1qtP (xt j qt; �
0

)x; �

#
(14)

The expectation is carried out using the Markov property. Q(�0 j
�)

=Eq

"X
t

logaqt�1qt +

X
t

logP (xt j qt; �
0

) j x; �

#
(15)

=

X
t

Eq
�

logaqt�1qt + logP (xt j qt; �
0

)

��x; �� (16)

=

X
t;j

P (qt = j j x; �)

"X
i

P (qt�1 = i j x; �) logaij

+ logP (xt j qt = j;�
0

)

�
(17)

In the case of HMM’s the “forward/backward” algorithm is an
efficient ( O(TN), T the length of the sequence, N the number
of states ) algorithm for computing P (qt = j j x; �).

In the “maximization” step, we compute �0 to increase Q.
Taking the derivative of equation 17 and writing P (qt = j j x; �)
as 
tj we arrive at:

�Q

��0
=

X
t

X
j


tj

�
��0

P (xt j qt = j;�0)

P (xt j qt = j; �0)
(18)

which we set to zero and solve for�0. In the case of the usual HMM
formulation, the familiar Baum-Welch algorithm is obtained.
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