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Abstract: This paper is concerned with the problem of tracking clouds structures like vortices in

meteorological images. For this purpose we characterize the deformation between two successive

occurrences, by matching their two boundary curves. Our approach is based on the computation of

the set of paths connecting the two curves to be matched. It minimizes a cost function which mea-

sures the local similarity of the two curves. These matching paths are obtained as geodesic curves

on this cost surface. Moreover our method allows to consider complex curves of arbitrary topology

since these curves are represented through an implicit function rather than through a parameter-

ization. Experimental results are given to illustrate the properties of the method in processing

synthetic and then meteorologic remotely-sensed data.
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Suivi de structures météorologiques à l’aide de chemins

géodésique

Résumé : Dans cet article nous nous intéressons au suivi de structures nuageuses telles que les

vortex dans les images météorologiques satellitaires. Pour cela, nous caractérisons la déformation

entre les deux occurrences en appariant les contours des structures.

Notre approche est basée sur le calcul d’un ensemble de chemins reliant les courbes à mettre

en correspondance. Ces chemins ou trajectoires minimisent une fonction de coût mesurant la

similarité locale des deux courbes. Ils représentent des géodésiques de la surface mesurant la

fonction de coût.

De plus, l’approche proposée permet d’apparier des courbes de topologie complexe et variable,

car les courbes sont représentées à l’aide d’une fonction implicite.

Des résultats expérimentaux sont donnés en fin d’article pour illustrer l’appariement de struc-

tures synthétiques et de structures issues d’imagerie météorologique satellitaire.
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1 Introduction

Images sequences obtained from environmental satellites platforms present a new challenge for

geosciences and computer vision. The wide range of remote sensors allow to characterize natu-

ral phenomena and infer some physical measurements used in atmospheric models. For example,

meteorologist use clouds in meteosat images as landmarks for estimating their motion and charac-

terize some subtropical phenomena. Several approaches can be used to track these phenomena:

optical flow methods [4] or a method based on pointwise tracking of moving structures like vor-

tices and fronts [1]. In this paper, we develop a new method for pointwise tracking of structures

by matching their contours. Hence, the deformation between two temporal occurrences will be

obtained through a set of trajectories provided by the matching process. Our method is based on

the computation of a set of paths connecting the two curves to be matched. Each path minimize

a cost function which measures the local similarity between the starting and ending points of the

path. In the next subsection we explain how our method differs from classical ones and define its

properties.

1.1 Related Works and Definition of our method

Several authors proposed methods based on invariant geometrical properties in order to measure

the similarity between the curves. Often these models rely on curvature information [3, 13] and

are applied in case of rigid motion or when the small deformation hypothesis is valid.

When this last assumption is no more satisfied, curvature measure is not reliable. Some other

approaches are based on a parameterization of the deformation in order to derive a similarity mea-

sure: Berroir et al [1] proposed a method based on the geometry of the surface generated by the

two curves to be matched. This method performs well as long as the surface remains smooth and

differentiable. Unfortunately this approach can not handle changes in topology nor large deforma-

tions since it uses a uniform parameterization.

In this paper we present a new method, which computes the set of paths joining the curves to

be matched, within the applicative framework of atmospheric structure matching. This applicative

framework will mainly be used to justify our different hypothesis and to present experimental re-
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4 Isaac COHEN, Isabelle HERLIN

sults at the end of the paper.

Our approach defines a set of paths starting from the first curve (the source
�

) and ending at the

second curve (the destination � ). These paths are computed by minimizing a cost function which

measures the local similarity of the curves
�

and � , and they are defined as geodesics of this cost

function surface.

In order to satisfy the requirements of our application, we consider the following approach:

� The cost function is defined through a graph surface and measures, as we previously explai-

ned, the similarity between the source and destination areas. As this function will be defined

over the whole 2D plane, computation may be achieved independently of the topology of the

curves. This surface is the graph surface on which the connecting paths are computed.

� We choose to define the source and destination curves through two level set functions. This

allows to consider a large family of curves with complex and variable topology. Moreover

the source and destination area will not be constrained to have the same topology nor to be

geometrically similar.

� Finally, matching the two curves is done through the computation of paths of minimal cost

connecting the two curves. Hence the matching is not restricted to a displacement field as it

is the case in most curves matching algorithms. Moreover, the method can handle changes

in topology which occur when a contour is splitted into several components.

These choices will be translated within a three steps scheme based first on a specific representation

of the source and destination areas, then on the computation of a similarity measure defined through

a graph surface and, finally on the characterization of the geodesic paths.

1.2 Plan

Our approach is based on the computation of a geodesic distance map used for the definition of a

similarity measure between the two curves to be matched. For this purpose, we first describe in

sections 2.1 and 2.2 the computation of a geodesic on an arbitrary graph surface. In section 3, we

INRIA



Tracking Meteorological Structures through Curves Matching Using Geodesic Paths 5

explain how to define the graph surface associated to two curves of arbitrary topology in order to

perform a pointwise matching of the two curves. The experimental results in section 4 illustrate the

proposed method on synthetic and real images. Finally, section 5 concludes the paper and outlines

some perspectives and future applications of the method to specific environmental problems.

2 Geodesic Distance Computation

Given two points on a surface, the computation of a geodesic joining these two points can be

performed in several ways [8]. However, in this paper we consider the approach proposed by

Kimmel et al [10]. Their method is based on the propagation of two closed curves surrounding

each point. The geodesics are then derived from the traces of these propagated curves.

The following notations will be used in the next sections.

Given a graph surface � parameterized by ���������
	���������
	���� we note:

- ���
� �� � and ���

� �� 	 the partial derivatives of �������
	�� .

- ���� and ���� the partial derivatives of � with respect to � and 	 . We have, ���������� �!��"�#� and

����$�%�&!��'� ��� � .

- �( the normal to the graph surface � . We have,

�( � �����) ����* �����) ���� * � �,+-�.�'+$�/�0�1�2 �435�#6738�96

- :;�=<1� is a parameterized curve on the surface � depending on the parameter < : :4�=<1�>�
���?�=<1�@�
	A�=<1�B����=<1�,� .

- �C , the tangent to the curve :4�"<D� lying on the surface is given by:

�C � �:?EF :?E F �
����EB�
	GEB�
�HE��I
� 6E 38	 6E 3J� 6E

where ��E@�
	GE and �HE are the derivatives of the curve’s coordinates.

- :;�=< ��K,� represents the evolution of the curve :;�=<1� with respect to the parameter K . We have

:;�=< �!L���M:;�=<1� . For each value of the parameter K (underlined when fixed), we obtain a new

curve :4�=< ��K � depending of the parameter < .
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6 Isaac COHEN, Isabelle HERLIN

- �:;�=< ��K,� is the projection of the curve :4�"< ��K,� on the �����
	�� -plane.

- � �K the tangent of �:4�"< ��K,� and ��� its normal on the ������	�� -plane. We have: � �K � ����EB�
	GE,�I
��6E 3 	�6E

and

��� � �,+$	 EB����E��I
��6E 3 	�6E

.

2.1 Geodesic distance

The distance between two points on a given surface is defined through the shortest path length joi-

ning these points. This shortest path is also equivalent to the minimal geodesic [8] and is computed

by the method proposed by Kimmel et al [10]. They showed that geodesic curves are the traces

(i.e. points of constant curve parameter < ) of the curve evolving according to the equation:

�:����"< ��K,�-�
� :� K �=< ��K,�-� �( ) �C (1)

where,
� :� K �=< ��K,� represents the evolution of :4�"< ��K,� at the parameter value < , �( is the surface’s

normal and �C is the tangent to the curve :4�"< ��K � . This equation is called the equal distance contour

evolution of a curve :4�"<1� on the surface � .

The solution is difficult to handle for a general 3D surface, but restricting it to a graph surface

simplifies the computation. Indeed, Kimmel et al [10] showed that the solution may be characteri-

zed through the projection of the curve :4�"< ��K,� on the �����
	�� -plane.

In the following of this section we derive, from equation (1) the propagation equation of the

projection of the curve :4�"< ��K,� on the �����
	�� plane (the projecting curve will be noted �: �=< ��K,��� . We

will also prove that this projection scheme allows to easily derive an Eulerian formulation of the

projected curve’s propagation in order to handle curves with complex topology and to increase

accuracy and stability of the solution.

INRIA
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Using the notations defined in the previous section, equation (1) can be rewritten in the follo-

wing way:

�:����"< �,K,� � ��� ���"<L�,K,�@�
	 � �=< ��K,�B�� � �=< ��K,�,�
� �( ) �C

� ��+ � �'+ � �'�1�2 �;3 � 6 3 �G6 ) ����E@��	 E��HE,�I
��6E 38	/6E 3 � 6E

(2)

where computation is performed at point :;�=< ��K,� .
As we previously explained, we have to characterize the evolution on the �����
	�� plane of the

projecting curve �: . In order to define the propagation equation, it is important to note that the

tangential component of the curve only affects the curve’s parameterization and not its shape [9].

Consequently, shape’s evolution depends only on the normal component. This normal component

is computed in the following.

Defining a propagation scheme for the projection �: along its normal ��� amounts to derive from

equation (2) a function
�

such that

��: � �=< ��K,�-� � ��� (3)

where the function
�

represents the propagation velocity of the curve �:;�=< ��K,� along its normal.

This velocity can be obtained by computing �: ���"<L�,K,��� ���
� �%��� � �
	 �=�� �&��� ���

�
��
�,+-�.�'+$� �'�1�2 �;3 � 6 38� 6 ) ����EB�
	GEB�
�HE��I

� 6E 38	 6E 38� 6E

�	 � ���
By expanding the cross product and using the expression of the normal �� , we obtain:

� � ��	 E.3 �G�HEB�'+ ��E + �#�HE,�2 �;35�#6?38�96
I
��6E 3J	/6E 3J� 6E

� ��+ 	GE@����E,�I
��6E 38	/6E

Since the curve : is lying on the surface � , we can compute the � E derivative in terms of the graph

surface derivatives � and � , using the following chain rule: � E-� �0�'��E 3J�0� 	 E��8����E.38�D	 E , and we

obtain: � � 
��� � 6E ���;3 � 6 �.3 	 6E �,�;38� 6 �.3�B� �D��E 	 E
���;3 �#6738�96� ����6E 3 	�6E �
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8 Isaac COHEN, Isabelle HERLIN

This velocity propagation can also be expressed in terms of the planar normal’s components

��� ���� ��� � +$	 EI
��6E 3 	�6E

� � 6 �
��EI

��6E 38	/6E

��
as: � � 
��� � 6 � �;38�96

� 3 � 6 3 � 6 3
� 66

�,�;3 � 6 �
�;3 � 6 38� 6 + ��� �

6
@� �

�435� 6 38� 6
or � �

I �
� 6 � 3	� � 6 +�
 ��� � 6 (4)

where
�
� �;38� 6

�;3 � 6 38� 6 ��� � �;3 � 6
�;3 � 6 38� 6 , and 
 � @� �

�;3 � 6 38� 6 .

Hence the propagation equation of the curve �: �=< ��K,� becomes:

��: ���=< ��K,���
I �

� 6 � 3� � 66 +�
 ��� � 6 ��� � (5)

This evolution scheme depends on the curve parameterization, which has to be computed at

each evolution step, through the computation of the normal components � ��� � � 6 � . However, the es-

timation of the normal components cannot be obtained with high accuracy when the curve becomes

complex and looses smoothness, since the derivatives computation is very unstable. Furthermore,

a single smooth function cannot be used for the parameterization of curves having cusps or of

complex topology. Consequently, an approach independent of the parameterization must be used

to represent the evolution of complex structures. For that purpose each curve �:;�=< ��K � will be repre-

sented as the zero set of a two dimensional function � defined on the �����
	�� -plane. This approach

is called Eulerian formulation and was introduced by Osher and Sethian [12] for crystal growth

modeling. Its major advantage is the ability to handle topological changes and singularities while

insuring stability and accuracy.

Given a function � such that its zero level set evolution tracks the curve �:4�=< ��K �;����� � �"!L� , we

will show in the following that its propagation is governed by the equation:� � � � * �� � * (6)

Indeed, the classical chain rule and equation � � �� K � � 	� K�� � ��:�� yield:

� �� K �
� �� � � �� K 3

� �� 	 � 	� K � �� � � ��:��
INRIA



Tracking Meteorological Structures through Curves Matching Using Geodesic Paths 9

Using equation (3) and the fact that the planar unit normal to any level set of a continuous function� can be written as ��� � �� �* �� � * , we obtain:

� �� K � �� � � � ��� � �� � � � �� �* � � *
� � * �� � * �

Finally, by replacing ��� � � ��� � � 6 � ��� �?�* �� � * � ���* �� � *�� in the velocity function
�

given by equa-

tion (4), we obtain the following evolution equation:

� � � I � � 6� 3	� �76� + 
 �?� �?� (7)

In this section we showed that the propagation of the projecting curve �: is obtained through

the level set curve � � � �&!L� with � satisfying the evolution expressed in equations (6) and (7) . This

formulation allows to model variation of the curve’s topology while insuring a good numerical

stability and accuracy. The solution of this equation will be obtained through a monotone and

conservative numerical algorithm, briefly described in the next section.

2.2 Finite Difference Approximation

The numerical scheme is derived from the one used for solving Hamilton-Jacobi type equations. In

this approach, an explicit temporal scheme is used, while the spatial gradients are derived through

the minmod method which selects the smallest slope between the forward and backward deriva-

tives.

The minmod function is defined by:

��� ���	��
 � � ���@�-� �� �
< ��� � � � � ��� � � F � F � F � F � ��� � ��� !
! � K�������� � <�� (8)

This minmod approach allows to bound the estimated slope by the data and consequently to keep

under control the total variation of the evolving solution. The spatial gradients �;� and �?� are

estimated through the following equations:

�?� � � ��� � �!���0��� ��� �"�	�#
 � �%$� �4� � ��� � �!���'�B� � �� �4� � ��� � �!���'���
RR n ˚ 3191



10 Isaac COHEN, Isabelle HERLIN

�?�9� � ��� � �!���'��� ��� ���	��
 � �%$� �4� � ���L� �!���'�@� � �� �4� � ���L� �!���'�,�
where ��� and ��� are the spatial steps, and � $� and � �� (resp. � $� and � �� ) are the forward and

backward derivatives defined by:

� $� � � �4� � 3�� � � � +��4� � � � ����
and

� �� � � �4� � � � �7+	�4� � + �G� � ���� �
Since the solution may develop discontinuous jumps or corners, the use of the above scheme

does not provide an estimation of the norm of the normal at corners. For this reason, the estimation

of the squared derivatives is obtained from an upwind conservative and monotone scheme [12, 14,

15] which is the usual scheme used in level set propagation methods [7, 11, 12]. The squared

derivative is estimated by: � 6� � � � �?� � �� � �!L� 6 3 ��� � � � $� �;�! � 6
or using the following scheme [10]:� 6� � � � �?� � $� �;�!��0+ � �� ��� 6 �

The difference between these two schemes is the value obtained when the forward and ba-

ckward derivatives do not have the same sign at a given point. In the first case, the value
F

� �� � F 6 3 F
� $� � F 6 is considered, while in the second case the maximum between

F
� �� � F 6 and

F
� $� � F 6 is taken. We found the second solution more stable.

The parameters
�
, � and 
 representing the geometry of the graph surface � in equation (7) are

computed using a central finite difference estimation of � and � :

����� � � ��� $ � � �4+ ��� � � � � ��� and ����� � � ����� � $ � + ����� � � � ��� �
These schemes are used to perform a discrete approximation of the equal distance contour

propagation described by equation (7). For the temporal variation we use a forward or explicit

scheme. This gives us the following discrete approximation of equation (7):�	� $ ��
� � �	���� 3� K
� � ��� � � �?� � $� �	��
� �!��0+ � �� �	��
� � 6

3 ���
� � � �?� �%$� � ���� �
!��'+ � �� � ��
� � 6 (9)

+ 
��
� ��� ���	��
 � � $� �	��
� � � �� ����
� � ��� �"�	�#
 � � $� �	��
� � � �� �	��
� ��� ��� 6 �
INRIA



Tracking Meteorological Structures through Curves Matching Using Geodesic Paths 11

This explicit scheme is conditionally stable, and the convergence to a stationary solution is

achieved when the time step � K and the space steps ��� and ��� satisfy the Courant-Friedrichs-Lewy

(CFL) condition [6]:

� K�� ���� � ����� � ���0� � (10)

In practice, the space steps are derived from the image size and the time step is chosen accordingly

to equation (10).

In order to use equation (9) for computing the geodesic distance map of a curve :;�=<1� on a given

surface � we have to define an initial estimate ��� such that the initial curve : is represented through

a level set of ��� . This implicit representation of the curve must satisfy the following requirement :

the function ��� has to be smooth, negative in the interior of � � �� �&!L� and positive otherwise. This

initial estimate can be obtained in several ways according to the data. If the areas we are trying to

match have to be extracted from an image, one can use a level set approach [11] and consider this

solution as an implicit representation of the area of interest. On the other hand, if the curves have

already been extracted we can use a signed Euclidean distance. This distance is derived from an

Euclidean distance map [2] in such a way that points lying in the interior of � � � �"!L� have negative

values. The initial estimate is consequently defined by:

���H�����
	���� �� �
+ 
 ������	�� ��� �����
	���� interior of � � �� �&!L�
! ��� �����
	���� � � �� �"!L�
 �����
	�� ��� �����
	���� exterior of � � �� �&!L�

(11)

Given a graph surface � and an initial estimate ��� (eq. (11)) on this surface, equation (9)

characterizes the distance map on the graph surface � of the area which boundary is defined by� � �� �&!L� . In the next section we describe how we use this distance map for matching two given

curves.

3 Curves Matching

Curves matching consists in defining a point to point correspondence between two curves. Most of

the methods used in computer vision rely on geometrical constraints or deformation measure [1, 3,

RR n ˚ 3191



12 Isaac COHEN, Isabelle HERLIN

13]. In both approaches a good representation of the curves is needed in order to derive geometrical

properties or local similarity measures. These methods usually break down in the interesting cases:

when a curve contains corners and cusps, or when a curve cannot be parameterized by a single

smooth function or finally when the two curves to be matched have not the same topology.

In this section we present a method based on the computation of a set of paths connecting the

two curves. These curves may have several connected components and different topologies. These

two curves are defined as a source area
�

and a destination area � . Matching the source and

destination areas is done through the computation of paths connecting these regions. These paths

are defined on a graph surface and minimize a cost function which measures the similarity between

these two areas. This approach is particularly attractive in the absence of a reliable geometrical

information and henceforth allows to match curves which undergo a large deformation or curves

with a complex and variable topology. These are the main properties of the proposed approach

since we do not require any parameterization of the curves nor any geometrical information.

The source and destination areas are defined as level sets of two bivariate functions ��� and ��� .
In order to match these two areas by making use of the geodesic distance map we have to define :

� a graph surface on which the geodesic distance map of each area will be computed,

� a cost function measuring the similarity between these two areas,

� a set of paths minimizing the cost function and connecting the two areas.

These three steps are described in the following subsections.

3.1 Definition of a graph surface

Given two functions ��� and ��� characterizing respectively the source and destination areas (see

equation (11)) we compute two distance maps ��� and ��� on the graph surface � by solving the

propagation equation (9). These maps are defined by the equations:

��� ��� �����
	A���4�����
	����	� (12)

and,

�
�>��� ������	A��� ������	��,��� (13)

INRIA



Tracking Meteorological Structures through Curves Matching Using Geodesic Paths 13

where � and � are respectively the solutions of equation (9) with initial estimate � � and ��� . The �
and � functions represent the distance maps on the graph surface � of the source and destination

areas. The graph surface has to be the same for the computation of � and � in order to define a

similarity measure based on the two distance maps ��� and ��� . Furthermore, in the equal distance

curve evolution model given by equation (7), the initial estimate has to be on the considered graph

surface � . In order to satisfy these two requirements we define the surface � with the following

graph:

������	A��������
	������%�����
	�� ��� � � F ��� F � F ��� F ��� (14)

This surface defines the graph surface � such that, the two curves � � and ��� are zero level set and

on which the distance maps � � and �
� are computed. At each point of the �����
	�� -plane, the � �
and ��� maps represent the geodesic distance to the source and destination area respectively.

3.2 Definition of a similarity measure

In our model, we define the matching of two curves through the definition of paths with minimal

cost connecting these two curves. This amounts to characterize for each point
� � on the first curve

a path starting at
� � , ending at an unknown point

� � of the second curve and having a minimal

cost. Computing such a path amounts to search for an optimal path ����� � among all the paths �����
starting at

� � , ending on a point
� � of the second curve and minimizing a given cost function� �����
	�� . The path ���	� � is then defined by:


 � � �	� ���� �-� ��� �
��� �


 � ���� ��� (15)


 � ����L� measures the cost along the path ����� , measured by:


 � ����G�-�
� ���
� �

� �����
	�� 
 < (16)

where
� � is the first point of the area � attained by the path ����� .

The cost function � has to characterize the similarity between the two curves. Furthermore,

the matching between the source and destination area has to be symmetric in the sense that the

source and the destination area may be inverted without changing the matching paths. This means

that if �� � �� � denotes the optimal path connecting the points
� � and

� � , we have the property:

RR n ˚ 3191



14 Isaac COHEN, Isabelle HERLIN

�� ������ � �� ������ . Fulfilling such a property restricts the choice of the cost function � , since it must

define a similarity measure which depends only on the source and destination areas independently

of the order in which they are considered. For this purpose we consider the cost function given by

equation : � �����
	���� �4������	��.3 �������
	�� (17)

where � and � are the bivariate functions defining the distance maps � � and �
� . This function

allows to compute at each point of the plane the minimal distance on the surface � defined by

equation (14) to the nearest region
�

or � .

A more elaborate model should also take into account the geometrical properties of the curves.

For example, we can use the curvature information in a small neighborhood of the source and

destination areas. Within these neighborhoods curvature information is relevant since only small

deformation occurs and the curvature measure may be used to strengthen the similarity measure.

3.3 Characterizing the matching paths

Defining the matching paths connecting the two areas amounts to characterize for each point
� � on

the first curve the path � �	� � (eq. (15)) connecting this point to an unknown point
� � on the second

curve. Such an approach is not straightforward, since we have to compute all paths connecting

the point
� � to the destination area � and then select the one of minimal cost. It is numerically

expensive and one has to store all the paths before selecting the one of minimal cost value. Instead,

we use a property of the graph surfaces � � and ��� which relates the equal distance contour to

minimal paths: the minimal paths are orthogonal to equal distance contours. Given a starting point
� � , this property defines a robust method for characterizing the path of minimal cost connecting

this point to a point belonging to the destination area. Such a path is characterized through its

tangent vector. Since the equal distance contours are level sets of the map � ��3 ��� , the tangent

vector is defined by the gradient of the cost function:� � � � � 3 � �
This approach gives a reliable path construction scheme: given a point

� � on the source area, move

this point in the opposite direction of the gradient of � until reaching a point on the destination area.
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Figure 1: A plot of the curves to be matched. The source area is plotted in boldface while the two

circles represent the destination area.

The result is the minimal cost path connecting the two areas and starting at
� � . This path ���"<D� is

defined by the parameterized curve �.�=<1� such that: ���&!L�-� � � , �����1��� � � and
� �� < �%+ � � �
� 3 �����

where
� � � � � �� �"! � is given and

� � � � � �� �"! � is unknown.

4 Experimental Results

The proposed method is applied to synthetic data in order to test our method and real data obtai-

ned from a meteorological satellite. The first set of experimental results is given to illustrate our

approach. In this case, the curves are quite simple so that the reader can figure out how the method

is used. The second type of results concerns the matching of curves extracted from real Meteosat

data. We will show a two frame tracking of a cloud structure in a sequence of images depicting a

tropical storm.

The different experimental results given in this paper illustrate the properties of the proposed

method such as complex shape deformation and matching curves based on geodesic computation.

The considered data cannot be processed with the classical methods proposed by several authors [1,

3, 13]. However, matching structures undergoing a small deformation gave results comparable to

the methods described in the papers [3] and [1].
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Figure 2: A level set plot of the cost function � measuring the similarity between the ellipse and

the circles.

4.1 Synthetic data

In the first synthetical example, we match an ellipse into two smaller circles. This first example is

given to illustrate how the model handle curves with different topology. Figure 1 shows the curves

to be matched: an ellipse into two circles. The graph surface representing the cost function which

is used for path computation is displayed in figure 2.

The paths are represented in figure 3 where the blue points represent the starting points and

the black ones are those located on the destination area. In this example we have a point to point

matching which allows to deform one initial implicit contour into another. However, some points

of the ellipse are not matched to a point on one of the circles, while every point of destination area

i.e. the circles; are matched to a point located on the source area. This is due to the fact that there

is none one-to-one function deforming the ellipse to the two circles.

In this example, and the following ones, we sample the source area uniformly and these points

represent the source points from which the paths are computed. Although some paths are not

drawn, they can be computed provided an initial point is given, since the cost function is available

on the complete plan.

INRIA



Tracking Meteorological Structures through Curves Matching Using Geodesic Paths 17

Figure 3: A plot of the paths matching the ellipse to the circles. The blue points represent the

starting points of the paths and the black ones the ending points.

Figure 4: An example of matching curves with very large deformation. The circle go through a

large deformation which yields the boldface curve.

A second example is illustrated in Figure 4. This figure shows the synthetic deformation of

a circle into a complex shape. In this example, the circle undergoes a large deformation and
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Figure 5: A plot of the paths joining the source area (blue points) to the destination area (black

points).
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geometrical information like curvature is not reliable for defining a similarity measure between the

two curves. Even, a method based on the surface generated by the two curves is not able to provide

the paths matching the curves. Indeed, this surface has singularities since the destination area is

not star shaped relatively to the source area, which means that linear paths starting from the source

area do not span the complete destination area. This notion of relative star shaped curves, is one of

the limitations encountered by classical matching methods which define curve matching through

lines joining the two curves or minimal surfaces defined by the two contours at � � ! and � � � . In

the proposed approach, we do not encounter this problem since the paths connecting the source and

destination area are curves defined through the gradient of the cost function � (eq. (17)). We can

see in figure 5 that the paths joining the two curves do not cross one each each other. However, we

observe that some paths accumulate near some regions of minimal cost since the path construction

scheme is based on a gradient descent approach (see section 3.3) which characterizes such paths.

Such regions do occur when a large deformation is needed to deform one curve into another one

or when the topology of the curves is different.

4.2 Meteorological images

The last experiments were led on a Meteosat temporal sequence image of an atmospheric depres-

sion in the tropics. The Meteosat satellite have a 30 minutes acquisition’s frequency. In some

situations, this temporal sampling is not sufficient to characterize the structures evolution and a

model have to be considered. For example, in the tropics clouds structures aggregate and disag-

gregate rapidly. Figure 6 shows two frames of such a sequence. In order to track this structure

in a model we have to take into account that the structure deforms rapidly and its topology varies

in time. The method proposed in this paper defines a new approach for curve deformation and

matching using geodesic distance maps.

Figure 6 shows the result of segmentation by a snake model [5] of the two structures of interest

in the Meteosat images. These two curves are considered as a source and destination area for

computing the similarity function and the matching paths. These paths are plotted in figure 7. We

can observe that they are smooth and do not cross one to each other even near regions of minimal
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Figure 6: An extraction of clouds boundaries using a snake model in a Meteosat temporal image

sequence (courtesy of LMD). These two images represent a merging of two clouds structures into

one cloud.
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Figure 7: A plot of the paths joining the destination and source areas.

cost as we can see in figure 8 which displays a zoom of such a region. Moreover the matching

paths are locally smooth and the global deformation of a structure into another one is also smooth.

5 Conclusion and future research

In this paper we presented a new approach for curves matching. This approach is based on the

computation of paths of minimal cost connecting the two curves represented as a source and des-

tination area. These paths lye on a graph surface measuring the similarity between the source and

destination areas. This approach is particularly attractive in the absence of a reliable geometrical

information and henceforth allows to match curves which undergo a large deformation or curves

with a complex and variable topology. The section describing the experimental results shows that

this model handle easily large deformation or topology changes. A more elaborate model is un-

RR n ˚ 3191



22 Isaac COHEN, Isabelle HERLIN

Figure 8: A zoom of a region of minimal cost where the paths connecting the two areas accumu-

late. We can observe that the paths do not cross one to each other and the obtained matching is

consistent.
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der study in order to take into account the curvature information in a small neighborhood of the

source and destination areas. Within these neighborhoods curvature information is relevant since

only small deformation occurs and the curvature measure may be used to strengthen the similarity

measure.
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