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Robust Tracking with Spatio-Velocity Snakes: 

Kalman Filtering Approach 

Natan Peterfreund 

Center  for Engineering Systems Advanced Research (CESAR) 

Oak Ridge National Laboratory, P. O.Box 2008 

Oak Ridge TN 3'7831-6355. email: v4p@mars.epm.ornI.gov 

Abstract 

Using results from robust Kalman filtering, we present a new Kalman filter-based 

snake model for tracking of nonrigid objects in combined spatio-velocity space. The 
proposed model is the stochastic version of the velocity snake, an active contour model 

for combined tracking of position and velocity of nonrigid boundaries. The proposed 

model uses image gradient and optical flow measurements along the contour as sys- 

tem measurements. An optical-flow based measurement error is used to detect and 

reject image measurements which correspond to  image clutter or to other objects. The 

method was applied to object tracking of both rigid and nonrigid objects, resulting in 
good tracking results and robustness to image clutter, occlusions and numerical noise. 

1 

mailto:v4p@mars.epm.ornI.gov


1 

ConE 

Introduction 

derable work has been done during the past few years in boundary tracking and mo- 

tion analysis of nonrigid objects [2], [19], [Ill and [lo]. When vision systems are employed 

to track moving objects, a smooth motion of the object manifests as a nonrigid motion of 

the perspective image boundary. This property holds both for rigid and nonrigid objects. 

A common technique for visual tracking of nonrigid boundaries is the snake model: a de- 

formable contour which moves under the influence of image forces [19]. This technique is 

mainly used for boundary detection in cluttered environments. Recently a new snake model 

was proposed, the velocity snake, an active contour for real time tracking in combined spatio- 

velocity space [15], [16]. The proposed work presents a robust kalman filtering approach for 

this model. 

Boundary tracking based on deformable planar contours, known as snakes, was originally 

introduced by Terzopoulos et. al. (e.g. [19], [lo]). Snakes are deformable contours that 

move under the influence of image-gradient forces, subject to certain internal deformation 

constraints. The contour dynamics are given by the Euler-Lagrange equations of motion as- 

sociated with the contour potential. In boundary tracking problems this potential relates to 

the gradient of image-intensity. Considerable work has been done to overcome the numerical 

problems associated with the solution of the equations of motion and to improve robustness 

to image clutter and occlusions. This includes curve evolution methods [13] and model-based 

boundary representation [6], [7] [14] and [18]. Recently a new snake model was proposed for 

real-time tracking in combined spatio-velocity space [15], [16]. Unlike existing methods, this 

model uses optical-flow based velocity measurements in excess to image-gradient measure- 

ments. Treating the image sequence as continuous measurements along time, it was shown 

that the proposed model converges to a boundary moving at constant velocity. This is in 

contrast to the original snake model which was proven to be biased due to image velocity 'I 

~ 5 1 .  

Both the velocity snake model and the original one, however, do not have an evaluation 
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mechanism to detect and reject spurious measurements. These may appear in the presence 

of image clutter, occlusions or image noise. These measurements could cause for "cracks" in 

the tracking contour where parts of the contour converge to other objects in the scene. A 

mechanism for detection and evaluation of measurement importance within a probabilistic 

estimation framework, is the Kalman Filtering method. Under white Gaussian assumption 

of measurements noise, this method provides the optimal Bayes estimator [5] of state in a 

linear dynamical system. The result is given in terms of state expectation and covariance. 

Under the Gaussian assumption, this sufficient statistics can be used to detect and reject 

measurements which violate the Gaussian assumption [5]. Applications of this method can 

be found in target/multitarget point tracking [5], image motion tracking [4], and robust 

appearance-based recognition [17]. Kalman filtering versions of active contours can be found 

in [19] and [6]. These models, however, do not use image velocity measurements and do 

not have the mechanism to detect and reject spurious edges. In the following we present a 

robust Kalman filtering approach for the velocity snake proposed in [15] and 1161. As will be 

shown, this model has a natural mechanism to reject measurements which belong to other 

objects or to  image clutter. 

2 The Velocity Snake 

In this section we present the basics of the Velocity Snake proposed in [15] and [16]. This 

model results from the least squares solution to boundary-contour tracking in combined 

spatio-velocity space. 

Consider the closed contour ~ ( s ,  t )  = ( ~ ( s ,  t ) ,  y(s, t ) )  for some spatial parametric domain 

s E [0, 11 and time t E [ O , c o ) .  Let v, - 3. The Lagrangian energy of the 

snake, originally proposed by Terzoupulos et. al. [19], [l5], is given by 

and us, 

The first term in this equation defines the internal deformation energy with w ~ ( s )  and wp(s) 

3 



controlling tension and rigidity, respectively. The second and third terms are the kinetic 

and potential field energies of the contour. Given the image sample at time t ,  I(x,t), 
where x = (IC, y) denote the spatial coordinates, typical potential field energies are functions 

of image intensity with P = zkfl(x,t), or contrast, with P = & ~ ~ V I ( x , t ) ~ ~ ,  where V I  = 

(Iz, Iy) denotes the spatial gradient of I (x ,  a ) .  Let vb and vt denote the boundary position 

and velocity, respectively. The energy dissipation function which is used to dampen the 

Langrangian energy (2.1) is given by [15] 

where L is a real matrix. The second term represents a smoothness constraint. Assuming 

the Lagrangian (2.1) and the above dissipation function, the Euler-Lagrange equations of 

motion of the velocity snake are then given by [15] 

a a  a 
as as dS 

pvtt + YC(vt ,  v:) - .D-(-v,) - - ( w v s )  + a 2  
-(w2vs,) as2 = -VP(v(.s,t),t) (2.3) 

where the velocity control term C(vt, v:) satisfies 

Since the velocity of the object's boundary is unknown in advance, we use instead the 

apparent velocity vf of the image at the contour position. In [15] and [16] we showed that 

the contour will converge to the boundary moving at constant velocity if the initial contour 

is sufficiently close to the boundary of the moving object, and if we have the velocity of the 

object at the contour position (which could be computed via optical flow techniques). On 

the other hand, we showed that the lack of motion control in the original model, proposed 

in [19], causes a bias in the contour position. This could lead to serious tracking problems 

even in the case of non cluttered environments [15]. 

Various techniques for estimating the apparent velocity vi of the the image at the contour 

position had been proposed in [15] and [16]. These methods are based on the optical flow 

constraint equation [SI 

VI."; +I t  = 0 (2.5) 



and on integration of measurements along time [3]. 

A special case of interest of (2.3), with ut  replaced by the apparent motion v'f, is when 

L = V l ( v ( s ,  t ) ) .  In this case the snake model (2.3) degenerates to the optical flow constraint 

model [15] 
a a  a a2 

as a s  8.5 as2 PVtt  + y V I ( V I  - + It) - ,O-(-vt) - - ( w ~ v ~ )  + -(W~V,,) = -VP(v(s, t) , t)  . (2.6) 

This result is due to the constraint equation (2.5). In this model there is no need to estimate 

the image velocity because the optical flow term provides a measure of the error in velocity 

estimation. However, this scheme is more sensitive to measurements and numerical noise 

than the model given in (2.3), as instead of the velocity error, we have a projected version 

on the direction of VI. 

Next we consider the discretization of the velocity snake model in space. Consider equidis- 

tant sampling of the contour w(.s,-) along s with a sampling distance h ( h  > 0), and let 

u = [ul , . .  . , u l ~ ]  be the vector of samples with ui = o(s i , - )  denoting the i-th sample of 

~ ( s ,  -). Using finite difference approximation, 

(2-7) 2 zt,(si) z (ui+1 - ui)/h and vss(si) = (ui+l - 2u, + ui-l)/h , 

the discrete versions of (2.3) and (2.6) are then given by 

putt + yC(ut, u:) + 3DDTut + KU = -VP(u, t )  

C(Ut, U I )  = LLT(ut - U i ) ,  

C(ut,  u.2) = vqvr - ut + It). 

(2.8) 

where for (2.3) we have 

(2.9) 

(2.10) 

and for (2.6) we have 

The matrix K consists of the deformation constraints imposed by w1 and w2 in (2.3) [19], 

and D, the derivative matrix, is defined by 

-1 if i=j 

1 if j=i+l . 

0 otherwise 



3 The Kalrnan Snake Model 

Tending to minimize the difference between the contour and boundary position and velocity, 

the proposed model ( 2 3 )  provides deterministic estimation of boundary position and velocity. 

Alternatively, this problem could be treated as random parameter estimation. Under the 

assumptions of Gaussian prior probabilities of state and measurements noise, the velocity and 

state parameters of the tracking contour could be obtained by the Kalman Filtering method 

(e.g. [SI). In the following we propose a Kalman filtering approach for state estimation of 

the tracking contour. Unlike the deterministic, least-squares based, approach proposed in 

[15], this method allows systematic integration of measurements along time and the rejection 

of spurious measurements. 

Like in the deterministic model we propose two modes of estimation [15]: Batch Mode, in 

which the velocity is estimated independently of the contour dynamics, and treated as an 

input to the tracking model, and Real Time Mode, which uses the velocity measurements to 

adjust the probability distribution function of the contour parameters. 

3.1 Real Time Mode 

Consider the discrete model (2.8) with = 0. Let = [XI, 5 2 . .  . z,wlT and q = [yl, y2. . . y ~ ] ~  

denote the sampling vectors corresponding to u, with ui = [zi,yi], V = [cT,$lT and V = 

[iT,iTIT, where V denote the derivative of V with respect to t. We denote the Gaussian 

probability density with mean vector h and covariance matrix Q by N ( h ,  Q). 

The Markov process model corresponding to (2.8) (y = 0) is given by 

where OL??xlv is an N x 144 zero matrix, 12rv is 

q - N(0 ,  Q )  

( 3 4  
a 2 M  x Z M  Identity matrix, 0 2 i ~  is 2-34? 
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dimensional vector of zeroes, 

8 

and @ = [  OIWXM ] 
O M X M  

Let II = [Ilz, I&], where l lz  and lTy art diagonal matrices with the diagonal elements given 

by I z (u)  and Iy (u) ,  respectively, and aP = [PF(u), Pr(u)]'. The measurements vector, 

composed of aP(V, t )  and the optical-flow constraint equation (2.5), is given by 

Note that the second measurement vector It results from the first order approximation of 

the intensity preserving equation 

qv, t + d t )  = I(V - Vdt ,  t) .  (3.3) 

One of the major problems in gradient-based boundary tracking, is the appearance of spu- 

rious edges which could "trap" parts of the tracking contour. Mr-ithin the proposed mea- 

surements model (3.2), however, edges whose velocity measurements were found to be in- 

consistent with previous velocity estimation, are considered to be spurious. This allows for 

systematic filtering of components in V P ( V , t )  which do not correspond to the boundary 

being tracked. 

A method for solving the state estimation of (3.1), subject to measurement vectors of 

the form (3.2), is the Extended Kalman Filter (e.g. [SI). This method uses linearization 

techniques to obtain simple approximate solution, similar to the one obtained for linear 

systems, to nonlinear estimation problems. 

Using the Extended Kalman Filter, the state estimation of (3.1) satisfies 

&[;I=[ dt 
0 2 M  -LE x 2 M  -- "QT I2Ivf ] [ :'I -; [ O;q 8 P ( P , t ) + K ( V , t )  (&(V,t )  +I? V )  , 

P P 
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where, for 
r- 

we have the Kalman gain matrix 

l i ( P , t )  = L H ~ W - ~  = - [ .,]nTw-l. 

The covariance matrix L of the state estimation is given by the solution of the matrix Riccati 

equation (e.g. [SI) 

i; = F L +  LF - L H ~ W - ~ H L +  Q , 

where, for a2Pij = &aPi, we have 

(3.7) 

In the special case where L12 = O ~ M ~ ~ M ,  L2 = 12-u and W = $I1u, the random estimation 

(3.4) degenerates to the deterministic model defined by (2.8) and (2.10). The latter, however, 

lacks the qualitative means according to which the importance of a given measurement is 

evaluated and incorporated within the estimation process. 

3.2 Batch Mode 

In this section we consider the random estimation approach to the velocity snake model 

(2.3). The apparent velocity of the image at the contour is assumed to be a first-order 

Markov process. 

The first order form of the velocity snake model (2.8), with the velocity control (2.9) and 

L = Izlw, is given by 
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where the apparent velocity vector U: = [xi, yi] and xf and yf are the components of the 

apparent velocity on u in the x and y directions, respectively. We assume that the apparent 

velocity of the image at the contour obeys the differential equation 

d .  
dt 
- ut = -au; + q Q > 0, q - N(0,Q).  (3.10) 

The measurement vector corresponding to image potential and optical-flow constraint equa- 

tion, is given by 

(3.11) 

The first component in z correspond to the optical flow constraint equation (2.5). The 

second term measures the smoothness of the apparent velocity along the contour line. The 

same modeling of the measurement vector x, in the context of optical flow estimation, can be 

found in 1121. Using the Kalman Filtering equations (e.g. [SI), the estimate of the apparent 

velocity satisfies 

(3.12) 

where, by (3.7), the covariance matrix L is given by the solution of the matrix Riccati 

equation 

(3.13) i; = -2QL - L(rI*w;lrI + *TW;Q)L + Q. 

The solution 0: of (3.12) and u p  = dP are used as control inputs to the velocity- snake 

model (3.9). As in the real time mode, measurements equations whose error exceeds certain 

threshold and the corresponding components in aP,  are considered to  be spurious and thus 

being ignored. 

Next we present a structure based estimation approach for image velocity. Under the 

assumption of tracking a given 3-D model, this approach allows for space dependent inte- 

gration of measurements along the contour, resulting in low variance velocity estimation. 

M'ithin the proposed model, however, we limit the application only to shallow objects. 
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Let (X, Y,  2)  represent the Cartesian coordinate system of the camera and let (2, y) represent 

the corresponding coordinates of the image plane, with the x and the y axes parallel to 

X and Y, respectively. The origin of the planar image is given by ( X ,  Y, 2)  = (0, 0 , l ) .  

Relative to the camera coordinate system ( X ,  Y, Z) ,  it was shown that the projected velocity 

w = [w,, wyIT of a point undergoing translation with a translation velocity 5" = (Tx, Ty, Tz) 

and rotation with a rotation velocity i? = (ax, i ? ~ ,  i ? ~ ) ,  satisfies (e.g. [l]) 

(3.14) 

According to  the above result the image velocity is linear in the velocity components. This 

property can allow for an analytic solution to the velocity estimation problem, if the depth 

term 2 in each of the image points is known. Under the assumption that the imaged region 

is a planar surface, i.e., k x X  + k y Y  + kzZ  = 1 for some real scalars k x , k y  and kz ,  the 

image velocity (3.14) becomes the following transformation [ 13 

(3.15) 

for some scalars al, . . . 
define the velocity parameters model as 

Let = [a1 . . . a#'. Similar to image velocity model (3.10) we 

(3.16) --li, d ,  i = --a?/+ + T a > 0, 7- - M(0,  R). 
dt ' 

Normally, the covariance matrix R is considered to be diagonal. The measurement vector 

corresponding to (3.11) is then given by 

(3.17) 

where 
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n n 
1 M  is an M dimensional vector of ones, && = [ t 2 ] i  and Jiqi = [c 3732.. In this model we do 

not have a measure of velocity smoothness since the velocity model is already smooth. The 

state estimation of (3.16) (and (3.9)) is performed by the Kalman Filtering method, similar 

to state estimation in the original model (3.9) and (3.10). 

4 Tracking in a Cluttered Environment 

The random estimation approach proposed in previous subsections provides a probabilistic 

method for detecting spurious measurements, i.e. measurements which avoids the Gaussian 

assumption of noise or belong to other targets. 

h measurement is treated as noise or spurious if the error in the measurement equation 

exceeds certain threshold. Usually this threshold corresponds to low probability of mea- 

surements values. In the following we use this method to detect snake points with spurious 

measurements of velocity and potential fields. Within the proposed framework, snake points 

ui = (xi, yi) whose velocities measurements equations exceeds certain threshold, are dis- 

carded. The corresponding components in up are replaced by zeros, the optimal estimation 

under zero mean assumption of 6’P. 

4.1 Detection Method 

Consider the Kalman Filtering problem of state estimation. Let x be the system’s state, and 

z = Hx + T,  T N M(0,  R) ,  

the measurement equation, for some measurement matrix H and noise T .  Prior to update of 

state estimation, let 2- and 
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denote the predictions of state and measurements vectors, respectively. The coveriance 

matrix of 2- is given by (e.g. [5 ] )  

S = H L - H ~ + R  (4.3) 

where L- is the covariance matrix of ?-. 

L,e t 

z i=Hix+r i  i = l  . . .  e (4-4) 

with { z }  = Uz=l{zi} denote the measurements in z with uncorrelated noise, i.e., E(rirT) = 

0, where ri and Hi are the appropriate components in the measurement noise r and the 

measurement matrix H ,  respectively. It can be shown that serial updates of state estimation 

using zi for i = 1 . . . e,  is equivalent to single update based on z (e.g. [8]). This approach 

allows for independent evaluation of each of the velocity measurements, resulting in a simple 

rejection scheme for spurious measurements. 

The detection/rejection scheme of xi is based on probability evaluation of having zi, assuming 

it is the realization of the predicted measurement it: = Hii-. A measurement is rejected if 

this probability is less then a given detection threshold (e.g. [SI). The covariance matrix of 

it: is given by 

Si = HdL-HT + Ri (4.5) 

where Ri = E ( ~ i r r ) .  Assuming each of the new measurements zi, conditioned upon previous 

measurements vector 2, is normally distributed, we have 

P(xil2) = X ( 2 ; ,  Si) i = 1..  .e .  

The validation region i2i of each measurement zi is defined as (e.g. [5 ] )  

(4-6) 

The value of -yi relates to probability of detection PL according to 
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Within the proposed detection approach, a measurement 2,. is discarded if it doesn’t belong to 

the validation region S t a .  In the following we present the detection method for the Real Time 

model. As will be shown, the prediction of state and measurements at the i’th point of the 

snake, depends only on the snake dynamics and on the values of measurements at this point. 

No other measurements affects these predictions. This will allow for independent detection 

and evaluation of importance for each of the snake points. The method for detecting spurious 

measurements in the Batch Mode model follows directly from the above scheme. 

4.2 Real Time Model 

Consider the system model (3.1) and (3.2). \lTe assume that the elements of It = [I t l . .  . ITt,v] 

are uncorrelated, i.e., W = oI,v for some o > 0, so that the validation of each measurement 

Iti could be done separately. 
A 

Let V = [V, VI denote the system state, V = [p, VI the estimated state, and L the 

corresponding covariance matrix. The measurements with uncorrelated noise components, 

corresponding to  (4.4), are given by 

where I T i  is the i’th row of IT. The discrete approximation of the state prediction V- and 

the corresponding covariance matrix L- are, by (3.1), 

where F and Q are given in (3.8) and At is the sampling distance. Using (4.8), the prediction 

of velocity measurements and the associated variances are given by 

(4.10) 
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It can be shown that both izT and Si are only functions of the velocity and potential field 

at the i'th sample ui = (xa,yi) of the snake position. No other components corresponding 

to dP and It affect these equations. Using the independence property of ,2: and Si, each 

measurement zi is assumed to have the Gaussian distribution (4.6). The rejection/detection 

decision of the scalar measurement z; is done by evaluating the Mahalanovis distance in 

(4.7). Since the components in dP corresponding to zi use the same gradient information 

of image intensity, these components are ignored and replaced by zeroes if zi is declared as 

spurious. The zero value is the optimal estimator under zero mean assumption of dP.  

5 Experimental Results 

VEg'e demonstrated the performance of the proposed contour model by applying it to real image 

sequences with both rigid (mobile robot) and non-rigid (human body, waving hand) objects. 

The initial contour lines were generated manually, forming a rough polygonal approximation 

to the object's boundary. This task could be done automatically via ATR -based methods 

followed by rough boundary approximation, as the boundary need not be determined exactly. 

Prior to the calculation of image gradients and velocities, the image sequences were smoothed, 

both in space and time, by a Gaussian filter. In the proposed examples we used a fixed 

Gaussian filter with n = 2, both in space and time. Spatial derivatives of the images were 

calculated by applying a simple 3 x 3 Sobel operator. 

The discretization in time of the differential equations was based on the implicit differencing 

approximat ion 

Xn+l= Xn + -%n+lAi 

where X ,  and X n  are the state and the time-derivative of state at time step n. .This scheme 

was found to derive the most stable results. In the simulations we used the sampling interval 

at = 1. 

Contour parameters: We used the contour models with a spatial sampling distance h = 5 
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(pixels) and with y = p = 2. The deformation parameters u.1 and w2 were set to constant 

values. More complex techniques define the values of w1 and ~ U ; Z  to be nonlinear functions of 

the distance between nearby points [Ill. In our model, however, we found the velocity control 

to have similar smoothness effects, making these extensions unnecessary. The potential 

energy function P = -IIVl(x)ll and its directional derivatives were computed using a simple 

3 x 3 Sobel operator. These operations were made only in the vicinity of the contour. 

Image sequences: The tracking schemes were demonstrated on the following image se- 

quences: 

A. Multiple Target Scene (Figure 5.1): Lab. scene with multiple moving objects including 

a mobile robot and a walking woman. In parts of the image sequence the woman body 

occludes the mobile robot. The scene is composed of 90 images sampled at video rate. 

B. Office Scene (Figure 5.3): An office scene with the author waving his hand under nonuni- 

form lighting conditions. The scene includes image clutter such as shadows, shelves, books 

and a computer monitor. The sequence is composed of 60 images sampled at video rate. 

Tracking results: The results of tracking the mobile robot in the Multiple Target Scene 

are shown in Figure l(a)-(i). These images correspond, respectively, to frame number 5 ,  7, 

10, 14, 17, 20, 22, 25 and 50, in the image sequence. This example demonstrate boundary 

tracking of a rigid object (mobile robot) under the occlusion of a walking woman. In this 

example we used the Batch Mode tracking model (3.9) with the structured velocity model 

(3.15)-(3.17). The detection threshold of spurious measurements was set to 3;‘ = 1. In the 

following figures we used the symbol ’*’ to mark the points which were detected as spurious. 

The position of contour points in previous frame are ploted with ’.’. The contour position 

before occlusion is shown in Figure l(a). In the presence of occlusion, e.g., figures 5.1(b)-(f), 

it can be seen that nearly all occluded points were detected as spurious. In figures 5.l(b)-(c) 

it can be seen that while some of the snake points were detected to be occluded (on the right 

side of the robot), the contour keeps tracking the unoccluded parts (on the left part of the 

robot). This can also be seen in figures 5.l(d)-(f) where the contour starts tracking the un 

occluded right side of the robot while the left side is detected to be occluded. In couple of 
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places, however, the tracking scheme does not detect the occlusions (figures 5.l(e)-(f) on the 

low left part), but the system managed to converge back to the object after the occlusion 

ends (figures 5.1 (g)- (h) ) . 

In figures 5.2(a)-(b) we show the results of tracking the mobile robot with the Batch Mode 

model and detection threshold yi = 4, and in 5.2(c)-(d), the results with no detection 

threshold. It is shown that the performance of tracking declines as the detection threshold 

increases. In this case, spurious measurements, which violate the Gaussian assumption, 

cause for bias in the estimation of position and velocity. The results of tracking with the 

Kalman Snake of Terzopoulos [19] are shown in figures 5.2(e)-(f). In this case, it is shown 

that the lack of velocity information causes the tracking contour to switch to the occluding 

object. 

The results of tracking the waving hand with the Real Time mode model and with detection 

threshold 3;’ = 1, are shown in figures 5.3(a)-(e). The images correspond, respectively, to 

frame number 3,18,30,40 and 50, in the image sequence. It can be seen that most of the 

points detected to be spurious belong to regions with image-clutter edges. The results of 

tracking with the original Kalman Snake model [19] are shown in figure 5.3(f)-(g). 

Concluding Remarks 

Using latest results in active contour models, we have described a new Kalman filtering 

approach for the velocity snake: an active contour model for visual tracking in combined 

spatio-velocity space. The proposed model uses image gradient and optical flow measure- 

ments along the contour, as system measurements. This model, which generalizes the least 

squares approach proposed in the original snake model of Terzopoulos [19], and, lately, in the 

velocity snake proposed by the author [15], allows for systematic integration and evaluation 

of importance of image measurements. The stochastic means, according to which the impor- 

tance of a new measurement is evaluated, allows the detection of image measurements which 

belong to  other objects. These measurements are then ignored. As optical-flow components 



. 
Figure 5.1: Tracking results of the mobile robot with the Batch Mode model and with the 

structured velocit,y (3.15)-( 3.17). 
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Figure 5.2 Tracking results of the mobile robot: (a)-(b). Batch Mode model with detection 

threshold fi/; = 4, (c)-(d). Batch Mode model with no detection threshold, (e)-(f) The 

Kalman Snake model [ 191. 18 



Figure 5.3: Tracking results of the waving hand: (a)-(e). Real Time model with detection 

threshold n/i = 1, (f)-(g). The Kalman Snake model [19] 

19 



of object velocity are space dependent, a model based image velocity was introduced. This 

model allows for velocity and position prediction in the presence of occlusions. In our case, 

however, it is limited to shallow objects. The new model was tested on a real data, resulting 

in good tracking performance and robustness to occlusions and image clutter. This result 

could be further improved by incorporating higher level models of shape within the snake 

and velocity models. These problems are the subject of current research. 
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