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Abstract 

Many types of common objects, such as tools and 
vehicles, usually move in simple ways when they are 
wielded or driven: The natural axes of the object tend 
t o  remain aligned with the local trihedron defined b y  
the object’s trajectory. Based on this observation we 
use a model called Frenet-Serret motion which corre- 
sponds to the motion of a moving trihedron along a 
space curve. Knowing how the Frenet-Serret frame is 
changing relative to the observer gives us essential in- 
formation for understanding the object’s motion. This 
is illustrated here for four examples, involving tools (a 
wrench and a saw) and vehicles (an accelerating van, 
a turning taxi). 

I Introduction 

An object moves because it is self-propelled (e.g., 
a vehicle) or because it is wielded, pushed, or pulled 
(or thrown’) by an agent (e.g., a tool). Motion that ef- 
ficiently performs a locomotional or mechanical func- 
tion requires efficient energy transfer from the vehi- 
cle’s engine or the agent’s arm to the object, in or- 
der to efficiently overcome the constraints imposed by 
the environment in which the motion takes place (air 
resistance, friction, etc.). Assuming that an object 
has natural axes (e.g. the long axis of a stick), effi- 
cient force transfer requires simple relationships be- 
tween the natural axes of the object and the motion 
trajectory. These relationships insure that the object 
can perform its function efficiently. 

The most general model of object motion is un- 
restricted rigid motion. This type of motion is not 
common in everyday life. Usually objects are sup- 
ported, and motion takes place when an object is in 
contact with a surface, another object, or an agent. In 
these cases (tool acting on a recipient object; ground 
vehicle) the motion becomes interestingly constrained. 

We assume in this paper that the propulsive force is applied 
to the object continuously, unlike the case of a projectile where 
it is applied only initially. We will not discuss projectiles further 
here. 

In our work we consider the relationship between 
this constrained motion and the object’s geometry. To 
analyze this relationship we use two frames: the object 
frame and the frame of the motion trajectory. “Effi- 
cient” motion calls for a simple relationship between 
the object frame and the motion frame, and this rela- 
tionship remains constant during the motion. Based 
on this observation we use a model called Frenel-Serret 
motion which corresponds to the motion of a moving 
trihedron along a space curve [$I. The parameters of 
the motion are given by the curvature and torsion of 
the space curve along which the object moves. 

In practice the simple nature of the environment 
in which the object moves provides further constraints. 
A ground vehicle is moving on relatively flat terrain, 
and a tool is often actin on a planar surface. The 
motion is mostly planar &hough the plane might ro- 
tate slightly through the motion). Over a long time 
period the motion is Frenet-Serret and over a short 
time period the motion is approximately planar and 
often approximately translational. 

We use the relationship between the object frame 
and the motion frame to analyze image sequences. 
Given a sequence of images of the moving object, our 
analysis enables us to output the motion and tra- 
jectory parameters of the object. Knowing how the 
Frenet-Serret frame is changing relative to the ob- 
server gives us essential information for understanding 
the object’s motion. Our analysis can also handle con- 
straints on the motion. For example, the parameters 
of the object’s trajectory depend on its speed, mass, 
size, and on the medium through which it moves. 
These factors impose bounds on the curvature and 
torsion of the trajectory. 

In this paper we approach object motion under- 
standing through analysis of long image sequences. A 
key question in this context is how to relate short- 
sequence motion estimation to long-sequence motion 
estimation. Using the Frenet-Serret frame provides us 
with an ability to understand motion over a long time 
period. We can derive the motion parameters from 
the parameters of the trajectory and obtain motion 
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descriptions suitable for long sequence analysis. Us- 
ing these tools we can show, for example, that rotation 
becomes significant only in long sequences, and that in 
a short sequence translation is usually dominant. We 
show that using simplified scene and imaging models 
we can get adequate local estimates (short sequence, 
2-4 frames) by analyzing the images, and by observing 
these estimates over a long sequence we can accumu- 
late them to describe the object’s trajectory. Analysis 
of the trajectory parameters provides us with tools for 
understanding long-term object motion. 

2 Related Work 

Understanding object motion is based on extract- 
ing the object’s motion parameters from an image se- 
quence. Broida and Chellappa [l] proposed a frame- 
work for motion estimation of a vehicle using Kalman 
filtering. Weng et al. [18] assumed an object that pos- 
sesses an axis of symmetry, and a constant angular 
momentum model which constrained the motion over 
a local frame subsequence to be a superposition of pre- 
cession and translation. The trajectory of the center 
of rotation can be approximated by a vector polyno- 
mial, Changing the parameters of the model with time 
allows adaptation to long-term changes in the motion 
characteristics. Their work was based on correspon- 
dence; at least eight pairs of corresponding points were 
needed. 

Accumulating the information obtained from the 
motion analysis of the sequence to achieve an esti- 
mate of the moving object’s trajectory is another step 
toward understanding object motion. (A good sur- 
vey of motion-based recognition was compiled by Ce- 
dras and Shah [5].) Bruckstein et al. 2, 31 assumed 

to recover the object’s trajectory and rotation. They 
showed that five images are enough to recover the mo- 
tion of a rod or a disk in accordance with physical 
laws. Techniques from algebraic geometry were used 
to establish the existence of solutions to the resulting 
polynomial equations. 

Engel and Rubin [ll] (and similarly Gould and 
Shah [13] used motion characteristics obtained by 
tracking representative points on an object to identify 
important events corresponding to changes in direc- 
tion, speed and acceleration in the object’s motion. 

Work has also been done on model-based track- 
ing (e.g., [15]) and on higher-level descriptions of 
object trajectories in terms of such concepts as 
stopping/starting, object interactions, and motion 
verbs [4, 14, 161. These levels of object motion de- 
scription will not be treated in this paper. 

In [6] Duric et al. tried to determine the func- 
tion of an object from its motion. Given a sequence of 
images of a known object performing some function, 
they attempted to determire what that function was. 
They showed that5he motion of an object, when com- 

a known object model (a rigid rod or d isk) and tried 
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bined with information about the object and its uses, 
provides strong constraints on the possible function 
being performed. Their flow-based analysis treated 
relatively short sequences. 

In this paper a model for object trajectory anal- 
ysis is used, and a constant relationship between the 
object frame and the motion frame is established. 

3 Motion Models 

3.1 Rigid Body Motion 

To facilitate the derivation of the motion equa- 
tions of a rigid body B we use two rectangular coor- 
dinate frames, one (Oxyz) fixed in space, the other 
(Cxlylzl) fixed in the body and moving with it. The 
position of the moving frame at any instant is given 
by the position d’, = (X, Y, Z,)* of the origin C ,  
and by the nine direction cosines of the axes of the 
moving frame with respect to the fixed frame. For a 
given position $of P in Cxlylzl  we have the position 
ij, of P in Oxyz 

where R is the matrix of the direction cosines (the 
frames are taken as right-handed so that det R = 1). 
The velocity % of P in Oxyz is given by 

$ = 3  x ($  -Ze)+&. ( 2 )  

- 
where d, is the translational velocity vector and w’ = 
(wZ wy wZ)* is the rotational velocity vector. 

3.2 Motion along a Smooth Curve 

Consider a moving frame Cxlylzl  (fixed in 
a rigid body B), which moves with C along a space 
curve I? while rotating so that the (2x1 and Cy1 axes 
coincide with, respectively, the tangent and principal 
normal of r. This means that as C moves along r 
the Czlylzl  frame coincides with the Frenet-Serret 
trihedroq at C: Ctnb. This trihedron consists of the 
tangent t ,  the principal normal 5, and the binormal 
6, which are mutually orthogonal. The geometry of 
this motion is completely defined by I?. 

Let 17(s) denote the position of C, in the fixed 
coordinate frame Oxyz, when it has moved along I’ 
through a total arc length of s. For any position $of 
a point P on B in Ctnb, the position ij, in Oxyz is 
given by (1). If = (tl t2 tg)T, ii = (n1 722 n3)T and 
6 = (bl b2 b3)T are the unit vectors along C t ,  C n  and 
Cb, differential geometry gives us 

. + -  

(3) t = d ; ,  5 = d,, -’’ G = < x ~ ,  



where K: is the curvature of r. Also, the columns of R 
are the vectors :, ii, and 6. We have the F'renet-Serret 
formulas [17] 

-I + 4 - 1  
t = &, i i l= -x t+rb ,  b = -61 (4) 

where T is the torsion of r. From (4) and the definition 
of R, (2) can be written as 

- +  5' = dd x (& - d y )  + t (5) 

where the Darboux vector dd = ~i + K:G is !he rota- 
tional velocity vector and the unit tangent t of r is 
the translational velocity vector; the motion parame- 
ter is the arc length s. If, instead of using arc length 
as a motion parameter, time t is used, the rotational 
velocity dd and translational velocity are scaled by 
the speed v = ds/dt  of the point C. In the special 
case where r is a plane curve we have r = 0 (r is tor- 
sionless), and thus dd = ~ 6 .  We then have from (5) 

+) = WfCEi j  x (6 - i7) + wi. (6) 

3.3 Simple Motions of Objects 

Objects move in reaction to forces which are being 
applied to them. When the forces acting on an object 
are added, the resultant force F' determines the direc- 
tion of motion and the moments of the forces (or the 
torques) determine the rotation of the object. If the 
force F' is applied to the object B at the point P ,  the 
moment A4 is given by A4 = 5 x F where $ is the 
position of P relative to  a point C. has the same 
direction as the-axis of the rotation of B that results 
from applying F 

The engine of a vehicle needs to  apply force to  
the vehicle in order to  move it from one position to 
another. If the path is prespecified (as in the case 
of a ground vehicle on a road), effective application of 
the force requires that the angle between the instanta- 
neous directions of the force and the directions of the 
path elements be small. The force differential gen- 
erates torques which help turn the vehicle around the 
axis of rotation normal to  the (osculating) plane of the 
path. During a turn, the wheels rotate with different 
speeds; the greater the distance between the wheels 
the larger their difference in speed. In order to  min- 
imize this difference the distance between the wheels 
needs to  be small. Also, when forces are applied to 
the wheels the resulting torques are larger when the 
vehicle is moving along a short axis; but these torques 
need to be as small as possible to improve the han- 
dling of and minimize stresses on the vehicle. Because 
of all these factors the principal axis of inertia of the 
vehicle should be tangent to  the path of the vehicle. 
It should be pointed out that [7] the translational ve- 
locity at any point on a ground vehicle is typically 
orders of magnitude larger than its rotational velocity 

- - -. 

(around the vehicle's center of mass). The rotational 
velocity becomes significant only when the vehicle is 
observed over a significant period of time (typically 
several frames). 

In the case of a moving tool the force is used not 
only to  move the tool, but to  act on a recipient object. 
Therefore, the reqdred force depends on the task. For 
example, sawing involves continuously exerting a force 
perpendicular to  the path of the saw; tightening with 
a wrench involves continuously exerting torque around 
the axis of rotation. (Note that the force may not be 
applied to  the recipient abiect continuously; for ex- 
ample, when we swing a hammer, the force is applied 
only when the head of the hammer hits the object.) 
Developing a general theory of tool motion is a subject 
of our continuing research. 

4 Tool Motion 

We assume that the tool is (approximately) planar 
and that its velocity is composed of a translational ve- 
locity in the plane of the tool and a rotational velocity 
around an axis orthogonal to  the plane of the tool. For 
the purpose of estimating object motion from images 
we rewrite equation (2) in the following way: 

$ = d x ( 5 - d , ) + d C = w ' x  a + ?  (7) 

where T' = d', - w' x d', E (U V W)T is the trans- 
lational velocity expressed in the fixed (camera) co- 
ordinate frame Oxyz. We will later show how the 
translational velocity iC can be recovered from T'. 
4.1 

- - .  

The Image Motion Field of a Wielded 
Tool 

= (N, Ny N,)T 
and let the plane intersect the z-axis at the point 
( O , O ,  20) of the Oxyz coordinate frame. If we assume 
a nondegenerate view (i.e., N, > 0) for points on the 
plane we can define p = N,Npl and q = NyNpl. 
From our assumption about rotational velocity it fol- 
lows that we have w' = (pwz qw, w z )  for some wz.  
Also, since we have assumed that the translation is in 
the plane of the tool we have G . 9  = 0, or equivalently 

Let the normal to  the plane be 

w=-up-vq. (8) 
We define scaled components of the translational ve- 
locity ZF'U E U0 and Zr'V E VO and ZC'W WO. 

Given the point r' = xi'+ yf and the nymal  di- 
n' = rection n,<+ nyX the normal motion field Tn 

nEx + n,c is given by 

% = Uo(P1 + h ( P 2  + wz(P3 (9) 
where the 'ps are nonlinear functions of p ,  q, F, and n' 
given by 

(Pl = (f +Pa: + qv)[nz + (xnx + ?/n,)Pf-l], 
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A detailed derivation of (9) can be found in [9] 
and [lo]. 

In (9) r‘ and ii are observable from images, while 
the 5-tuple ( p ,  q ,  UO, VO, w z )  is not directly observable. 
To estimate this 5-tuple we need estimates of +n . ii at 
five or more image points. 

4.2 Estimating Tool Motion from Normal 
FBOW 

If we use the spatial image gradient as the normal 
direction ii, E V I / ~ ~ V I ~ ~ . =  n, T‘+ n,.j’and M Zn 
we can obtain an approximate equation correspond- 
ing to  (9) by replacin the left hand side of (9) by 
normal flow - I t / l lVIf .  This equation involves the 
eight unknown elements of c .  For each point (zi, y;), 
i = 1,.  . . , m  of the image at which ~ ~ V I ( z ~ , y i , t ) ~ ~  is 
large we can write one such equation. If we have 
m such points, where m >> 5, we have an over- 
determined system of equations 

where the m x 3 matrix function 6, is given by 

@(P,  = [cpl(P, 4 ) ;  c p a b  q ) ;  cp3(P, dl 
(i.e., its columns are m-vectors that correspond to  val- 
ues of 4 at points (xi,yi)), and the elements of the 
m-vector b are - ( ~ I ( Q ,  yi,t)/8f)/llVI(zi, y j , f ) / ] .  

We seek the solution of the system (10) for which 
/lb-@.(Uo fi w , ) ~ I I  is minimal-.i.e., we are seeking 
the solution of (10) in the least squares sense. This is 
a separable nonlinear least squares problem; a good 
stable solution and an algorithm were given in [la]. It 
was shown that the problem is equivalent to minimiz- 
ing 

where @+ is the generalized inverse of @. ~ ( p ,  q )  is first 
minimized to  obtain optimal values @ and q of p and 
q respectively; these values are then used to obtain 
@($, q ) .  The linear least squares method is then used 
to minimize Ilb - a@,@) . (U0 VO w , ) ~ I I  and obtain 
optimal values of the motion parameters Uo, VO, and 
w,. After estimatingp,q, UO, VO, and w, we we (8) to 
obtain WO. Finally, we obtain 
q 2 ) - +  and lldll = d w z  +p2w,2 + q2w,2. 

f ( p  p l)T(l + p2  + 

We have estimated the translational velocity T’ 
and the rotational velocity w’ in the camera coordinate 
system Ozyz. We are interested in the translational 
and the rotational velocity expressed in the Fkenet- 
Serret frame Otnb. By comparing (a), (6) and (7) we 

obtain 
4 -  4 

w’ = vrcb, b = Nsgnw,, V K  = IIdII (12) 

where sgn stands for the ‘sign of’ function. Let d, = 
( X ,  Y, Zc)T be the position of C and let (xc,yc)  be 
the ima e of C (either the tip or the center of mass of 
the toolf. We have 

+ 

From (13) we obtain the unit vector in the tangent 
direction by normalizing vi/&. Finally, we obtain 
the unit vector in the normal direction using 

(14) 
- +  

i i i b x t .  
Equations ( l a ) ,  (13) and (14) define the Frenet-Serret 
frame Otnb expressed in the camera coordinate sys- 
tem. Equation (12) gives us the curvature K. up to 
an unknown factor w (linear velocity). We conclude 
that the Frenet-Serret motion can be recovered up to  
the speed w; note that tlie translational velocity vi/& 
does not help here because of the unknown depth 20. 

Finally, we need to recover the orientation of the 
tool coordinate frame (its long and short axes) in the 
Otnb frame. We find the long and the short axes of 
the tool as the principal axes of the set of tool points. 
The long axis 1 of the tool and the origin 0 of the 
fixed (camera) coordinate frame Ozyz define a plane 
II, . Since the image I’ of 1 lies in this plane we can find 
Pil using I‘ in place of 1. Because we have assumed 
a nondegenerate view we have two cases: (i) if the 
tangent vector lies in I I l  the motion is along I; (ii) if 
the normal vector ii lies in I l l  the motion is orthogonal 
to  1. 

We check if the vector lies in the plane IIl using 
the following simple algorithm. Let P; = ( z ~  y1 f ) T  

and pi = (22 y2 f )T  be the positions of two endpoints 
on the image I’ of 1.. The normal of the plane IIl 
is given by 

If the vector ’t lies in the plane II1 we have I?n x i  R! 0. 
So to find out the relative orientation of the tool frame 
and the Otnb frame we only need to  find which one 
of the inner products lGn and I& .iil is smaller. 
(Note that while one of the vectors i and 21 lies in the 
plane I& the other vector is not always orthogonal to 

fin ‘$1 x p i .  

n, .) 

5 Vehicle Motion 

We assume that the motion of the vehicle is planar 
and that it has a small rotational velocity around the 
axis orthogonal to the plane of motion. The transla- 
tional velocity is dominant and at any time t the mo- 
tion can be approximated by pure translational mo- 
tion. 
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5.1 The Image Motion Field of a Moving 
Vehicle 

Given the point r' = xi'+ yj'and the normal di- 
rection n,?+ ny$ the (approximate) normal motion 
field for points on a vehicle under weak perspective 
Fn . n' = nxx + nyG is given by 

$ .  ii = n,juz;' + n, j l /~; '  - (n,x + n,y)WZF1 
(15) 

Let 

nx f UZ,1 

-nxx - n,y wz,1 a =  ( nyf  ) ]  c =  ( vz,1 ) 
Using these expression we can write (15) as - 6 = 
aTc. The column vector a is formed of observable 
quantities only, while each element of the column vec- 
tor c contains quantities which are not directly ob- 
servable from the images. To estimate c ,  the scaled 
translational velocity Z T ~ F  = Z;'(U v w ) ~ ,  we 
need estimates of 9 ii at three or more image points. 

5.2 Estimating Vehicle Motion from Nor- 
mal Flow 

Similarly to our method in Section 4.2 we use lin- 
ear least squares to estimate parameter vector c from 
the normal flow. 

In the case of a moving vehicle the paramet,ers 
of interest are the vehicle's trajectory and its rate of 
approach. The rate of approach 

W 
2, 

U = -  

(measured in sec-') is equivalent to the inverse of 
the tame to collasaon and-corresponds to the rate with 
which an object is approaching the camera (or reced- 
ing from it). The rate v = O.l/sec means that every 
second the object travels 0.1 of the distance between 
the observer and its current position. A negative rate 
of approach means that the object is going away from 
the camera. 

The direction of motion c G T/Zc  gives us the 
tangent vector = c/11c11 of the Frenet-Serret frame. 
If the direction of motion changes over time we can use 
the Frenet-Serret formulas (4) to recover the (scaled) 
curvature W K  of the trajectory. Given the tangent di- 
rection i o  at time t and the tangent direction at 
time t + At we have 

3 

3 4 tl - t o  no = w K n  M ~ 

At ' 

\ 
Tl-k unit vector in the direction & at timet is the nor- 
mal vector of the Otnb frame and the scaled curvature 

is given by W K  = Il i ioll .  Finally, we obtain 

G = Z x i i .  (17) 
Equations (16) and (17) give us the normal to the 
plane of motion and the rotational velocity of turning 
(yaw) W' = v d .  

Figure 1: An experiment using a wrench: frames 30 
and 100. Top images: the input images. Bottom im- 
ages: results of flow computation. 

0 

Figure 2: Results of experiments on the wrench se- 
quence: the graph shows rotational velocity in radi- 
ans/sec. 

6 Experiments 

In the following section we show two examples for 
each of the domains we have discussed: tools and ve- 
hicles. As was mentioned before, tools usually oper- 
ate by planar motion, advancing along a line (drill) 
or moving in a plane (sawing). In our examples we 
show two types of motion: rotation with negligible 
translation, and relatively small rotation 'and domi- 
nant translation. In Section 6.1 we will analyze saw 
and wrench examples. 

A ground vehicle's motion usually takes place on 
terrain that has a small slope and on a road with a lim- 
ited rate of turn. This results in small values of pitch 
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200 250 50 100 150 

Figure 3: Results of experiments on the wrench se- 
quence. The solid line corresponds to the orientation 
(in radians) of the instantaneous direction of trans- 
lation of the centroid of the wrench, and the dashed 
line corresponds to the orientation (in radians) of the 
principal axis of the wrench. 

and yaw, i.e. in locally planar, translational motion. 
Long sequences are needed to  detect basic maneuvers 
such as turning or lane changing. In Section 6.2 we 
analyze two examples: an accelerating van (essentially 
linear motion) and a turning taxi. 

Figure 4: An experiment using a saw: frames 30 and 
100. Top images: the input images. Bottom images: 

. results of flow computation. 

6.1 Motions of Tools 

We tested our motion analysis algorithm under 
full perspective on two image sequences of tools in 
motion. The first sequence, shown in Figure 1, was 
a 200-image sequence of the movement of a wrench 
tightening a bolt. 

The motion of the wrench was a rotation (to turn 
the bolt) around an axis approximately orthogonal to  

The rotational velocity is 
shown in Figure' 2; it is given in radians/sec and it cor- 
responds to the scaled curvature V K .  Figure 3 shows 

I the plane of thz image. 

0 20 40 BO 80 1W 120 140 180 180 200 
-04' ' ' " ' ' ' " 

Figure 5: Results of experiments on the saw sequence. 
U ,  V ,  W are the scaled (by an unknown distance 2;') 
components of the relative translational velocity. 

0 

Figure 6: Results of experiments on the saw sequence. 
The solid l im corresponds to  the orientation (in ra- 
dians) of the instantaneous direction of motion of the 
saw, and the dashed line corresponds to  the orienta- 
tion (in radians) of the principal axis of the saw. 

the orientation of the principal axis of the wrench and 
the instantaneous translational velocity vector of its 
centroid (obtained using (13)), both measured in ra- 
dians. As we see, the translational velocity vector re- 
mains approximately orthogonal to  the principal axis 
throughout the motion sequence. The Frenet-Serret 
frame has its binormal in the direction of the neg- 
ative z-axis, its tangent in the image plane and or- 
thogonal to  the principal axis of the wrench, and its 
normal ii in the image plane and oriented from the 
centroid of the wrench toward the bolt. 

We also tested our motion analysis algorithm on a 
200-image sequence of a saw doing a periodic motion. 
Figure 4 presents part of the sequence. Flow results 
are given below each image. The motion of the saw 
was pure translation (IlGll = 0). As can be seen from 
Figure 5 the motion is mostly fronto-parallel (the z 
component of the translational velocity is small). The 
motion is periodic in the direction of the principal axis 
of inertia. It is a simple case of a (periodic) straight 
line motion with the Frenet-Serret frame correspond- 
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Figure 7: Frames 5, 25, and 45 of the van sequence. 
The normal flow results are shown below the corre- 
sponding image frames. 

Figure 8: Results of experiments on the van sequence. 
U ,  V ,  W are the scaled (by an unknown distance Z;') 
components of the relative translational velocity . 

ing to the principal axes of the saw; 
the longest axis, and 6 to the shortest axis. 

These graphs show that the motion components 
have a simple behavior; before they reach their ex- 
t'remal values they can be approximated by straight 
lines, indicating constant relative accelerations. 

corresponds to 

6.2 Motions of Vehicles 

Here we also used two image sequences, and we 
used the algorithms for weak perspective. In the first 
experiment we used an image sequence of a van taken 
from another vehicle following the van. The sequence 
consisted of 56 frames (slightly less than two seconds). 
Figure 7 shows frames 5, 15, 25, and 35 as well as the 
corresponding normal flow on the van. Figure 8 shows 
estimated values of UZ;', VZ;', and WZ;'. These 
values correspond to the relative translation of the van 
and the vehicle carrying the camera (observer coordi- 
nate system). Because of our choice of the coordinate 
system the rate of approach v corresponds to the neg- 
ative of WZ;', i.e. v = -WZ;'. The graph shows 

Figure 9: A taxi sequence: frames 1 and 21. TOP 
images: the input images. Bottom images: results df 
flow computation. 

02; 

0 

Figure 10: Results of experiments on the taxi se- 
quence. U ,  V I  W are the scaled (by an unknown dis- 
tance Z;') components of the relative translational 
velocity . 

that there is an impending collision (rate of approach 
greater than 1 sec-l). Around the 20th frame the rate 
of approach becomes zero (as do all the velocity com- 
ponents) and after that it becoines negative because 
the van starts pulling away from the vehicle carrying 
the camera. 

In the second experiment we used an image se- 
quence of a turning taxi taken by a stationary camera. 
The sequence consisted of 21 frames. Figure 9 shows 
frames 1,9,15 and 21 as well as the corresponding nor- 
mal flow on the vehicles. Figure 10 shows estimated 
values of UZ-',  VZ;', and WZ;'. These values cor- 
respond to the relative translation of the taxi. The 
graph shows that there is a large W component in the 
turn (the taxi is receding), and that the turn is to the 
right (negative U ,  positive V ) .  
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7 Conclusions 

Many types of common objects, such as tools and 
vehicles, usually move in simple ways when they are 
wielded or driven: The natural axes of the object tend 
to remain aligned with the local trihedron defined by 
the object’s trajectory. In this paper we have con- 
sidered the relationship between this constrained mo- 
tion and the object’s geometry. To analyze this rela- 
tionship we have used two frames: the object frame 
and the frame of the motion trajectory. Assuming a 
constant relationship between the object frame and 
the motion frame during the motion, we have used 
Frenet-Serret motion as a motion model. Using the 
Ekenet-Serret frame has provided us with an ability to 
understand motion over a long time period. 

We have derived equations for understanding the 
motions of tools and vehicles under full and weak per- 
spective. We have recovered descriptions of an ob- 
ject’s motion and the space curve along which the 
object moves, using relatively long image sequences. 
The motion and trajectory parameters provide a low- 
level description for understanding the motions of ve- 
hicles. For understanding tools in motion one needs 
additional knowledge about the tool and the context. 
This is a direction for further research. 

It is the need for efficient force transfer that im- 
poses a simple and constant relationship between the 
natural axes of the object and the motion trajectory. 
We have used this functional constraint in analyzing 
the motions of tools and ground vehicles. Expand- 
ing this analysis to other classes of objects (e.g. air 
vehicles), as well as expanding the vocabulary that de- 
scribes the behavior of tools and vehicles (sharp turn, 
skid, etc.) [16], are other directions for future research. 
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