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Abstract

The necessary and sufficient conditions for being able
to estimate scene structure, motion and camera calibration
from a sequence of images are very rarely satisfied in prac-
tice. What exactly can be estimated in sequences of prac-
tical importance, when such conditions are not satisfied?
In this paper we give a complete answer to this question.
For every camera motion that fails to meet the conditions,
we give explicit formulas for the ambiguities in the recon-
structed scene, motion and calibration. Such a character-
ization is crucial both for designing robust estimation al-
gorithms (that do not try to recover parameters that cannot
be recovered), and for generating novel views of the scene
by controlling the vantage point. To this end, we charac-
terize explicitly all the vantage points that give rise to a
valid Euclidean reprojection regardless of the ambiguity in
the reconstruction. We also characterize vantage points that
generate views that are altogether invariant to the ambigu-
ity. All the results are presented using simple notation that
involves no tensors nor complex projective geometry, and
should be accessible with basic background in linear alge-
bra.

1. Introduction
Reconstructing spatial properties of a scene from a num-

ber of images taken by an uncalibrated camera is a classi-
cal problem in computer vision. It is particularly important
when the camera used to acquire the images is not avail-
able for calibration, as for instance in video post-processing,
or when the calibration changes in time, as in vision-based
navigation. If we represent the scene by a number of iso-
lated points in three-dimensional space and the imaging pro-
cess by an ideal perspective projection, the problem can be
reduced to a purely geometric one, which has been subject
to the intense scrutiny of a number of researchers during
the past ten years. Their efforts have led to several impor-
tant and useful results. The problem is that conditions for
a unique Euclidean reconstruction are almost never satis-
fied in sequence of images of practical interest. In fact, they
require as a necessary condition that the camera undergoes
rotation about at least two independent axes, which is rarely

the case both in video processing and in autonomous navi-
gation [14].

In this paper we address the question of what exactly can
be done when the necessary and sufficient conditions for
unique reconstruction are not satisfied. In particular:

(i) For all the motions that do not satisfy the conditions, to
what extent can we reconstruct structure, motion and
calibration?

(ii) If the goal of the reconstruction is to produce a new view
of the scene from a different vantage point, how can we
make sure that the image generated portrays a “valid”
Euclidean scene?

On our way to answering these questions, we pause to reflect
on the nature of multilinear constraints. While constraints
involvingtwo images at a time (fundamental constraints) are
well understood and involve clean notation and geometric
interpretation, muti-linear constraints are more difficult to
work with and to interpret. It seems therefore natural to ask
the following question

(iii) Do multilinear constraints carry geometric information
on the camera system that is not contained in bilinear
ones?

1.1. Relation to previous work
The study of ambiguities in Euclidean reconstruction (i)

arises naturally in the problem of motion and structure re-
covery and self-calibration from multiple cameras. There is
a vast body of literature on this topic, which cannot be re-
viewed in the limited space allowed. Here we only com-
ment on some of the work that is most closely related to this
paper, while we refer the reader to the literature for more
details, references and appropriate credits (see for instance
[4, 8, 10, 13, 19, 20, 21] and references therein).

It has long been known that in the absence of any a pri-
ori information about motion, calibration and scene struc-
ture, reconstruction can be performed at least up to a pro-
jective transformation [6]. Utilizing additional knowledge
about the relationship between geometric entities in the im-
age (e.g., parallelism) one can stratify the different levels
of reconstructions from projective all the way to Euclidean



[3, 5, 6, 18]. At such a level of generality, the conditions on
the uniqueness and existence of solutions are restrictive and
the algorithms are computationally costly, often exhibiting
local minima [12].

The nature of the constraints among images of the same
point in different cameras has been studied extensively, and
is known to be multilinear (see for instance [7, 10, 20]). The
algebraic dependency among constraints (iii) has been es-
tablished by means of elimination [21] or other algebraic
geometric tools [9]. However, an explicit characterization
of how the information is encoded in different constraints
- which is crucial in the design of robust estimation algo-
rithms - is hard to derive by such means.

Recently, Sturm [19] has proposed a taxonomy of critical
motions, that is motions which do not allow a unique recon-
struction. However, not only the given taxonomy is by no
means intrinsic to Euclidean reconstruction (see [14]), but
also no explicit characterization of the ambiguities in the re-
constructed shape, motion and calibration has been given. A
natural continuation of these efforts involved the analysis of
cases where the motion and/or calibration were restricted ei-
ther to planar or linear motion [2, 18] and techniques were
proposed for affine reconstruction or up to one parameter
family.

Several techniques have been proposed to synthesize
novel views of a reconstructed scene (ii): in [1], trilinear
constraints have been exploited to help generate reprojected
images for a calibrated camera. In the case of a partially
uncalibrated camera, such a method has to face the issues
of whether the reprojected image portrays a valid Euclidean
scene.

1.2. Outline of this paper and its contributions

As we anticipated in the previous section, the answer
to question (iii) has been established before on an alge-
braic footing – the algebraic ideals generated by trilinear
and quadrilinear constraints (as polynomials of image coor-
dinates) are necessarily contained in that generated by bi-
linear ones [9]. However, in order to give a complete ac-
count of ambiguities in 3D Euclidean reconstruction (espe-
cially for self-calibration and motion recovery), it is crucial
to know how the information on the Euclidean configura-
tion of a camera system is encoded in the multilinear con-
straints. In section 2 we give a novel, complete and rigorous
proof that unveils how the information encoded in trilinear
and quadrilinear constraints depends on that in bilinear ones.
There we also discuss the role of multilinearconstraints with
regards to singular configurations of points.

The well-known - but conservative - answer to question
(i) is that structure can at least be recovered up to a global
projective transformation of the three-dimensional space.
However, there is more to be said, as we do in section 3

for the case of constant calibration.1 There, we give ex-
plicit formulas of exact ambiguities in the reconstruction of
scene structure, camera motion and calibration with respect
to all subgroups of the Euclidean motion. In principle, one
should study ambiguities corresponding to all critical con-
figurations as given in [14]. However, it is only the ambigu-
ities that exhibit a group structure that are of practical impor-
tance in the design of estimation algorithms. In such a case,
not only can the analysis be considerably simplified but also
clean formulas for all generic ambiguities can be derived.
Such formulas are important for 3D reconstruction as well
as for synthesizing novel 2D views.

Question (ii) is then answered in section 4, where we
characterize the complete set of vantage points that generate
“valid” images of the scene regardless of generic ambigui-
ties in 3D reconstruction.

These results have great practical significance, because
they quantify precisely to what extent scene structure, cam-
era motion and calibration can be estimated in sequences for
which many of the techniques available todate do not apply.
Furthermore, the analysis clarifies the process of 2D view
synthesis from novel viewpoints. In addition to that, we give
a novel account of known results on the role of multilinear
constraints and their relationship to bilinear ones.

Granted the potential impact on applications, this paper is
mainly concerned with theory. We address neither algorith-
mic issues, nor do we perform experiments of any sort: the
validation of our statements is in the proofs. We have tried
to keep our notation as terse as possible. Our tools are bor-
rowed from linear algebra and some differential geometry,
although all the results should be accessible without back-
ground in the latter. We use the language of (Lie) groups
because that allows us to give an explicit characterization of
all the ambiguities in a concise and intuitive fashion. Tra-
ditional tools involved in the analysis of self-calibration in-
volved complex loci in projective spaces (e.g., the “absolute
conic”), which can be hard to grasp for someone not profi-
cient in algebraic geometry.

2. Dependency of multilinear constraints revis-
ited

We model the world as a collection of points in a three-
dimensional Euclidean space, which we represent in homo-
geneous coordinates as q = (q1; q2; q3; 1)

T 2 R4. The
perspective projection of the generic point onto the two-
dimensional image plane is represented by homogeneous
coordinates x 2 R3 that satisfy

�(t)x(t) = A(t)g(t)q; t 2 R (1)

where �(t) 2 R is a scalar parameter related to the dis-
tance of the pointq from the center of projection and the non-

1In fact, even in the case of time-varying calibration, in principle, the
best one can do is an affine reconstruction, not just a projective one!



singular matrixA(t) - called “calibration matrix” - describes
the intrinsic parameters of the camera. Without loss of gen-
erality we will re-scale the above equation so that the deter-
minant ofA is 1. The set of 3�3 matrices with determinant
one is called Special Linear group denoted by SL(3). The
rigid motion of the camera g(t) is represented by a transla-
tion vector p(t) 2 R3 and a rotation matrix R(t), that is an
orthogonal matrix with determinant equal to one. Such ma-
trices form a group called Special Orthogonal group and in-
dicated by SO(3); g(t) = (R(t); p(t)) belongs to SE(3),
the special Euclidean group of rigid motion in R3. The ac-
tion of g(t) on the point q is given by g(t)q = R(t)q+p(t).
In equation (1) we will assume that x(t) is measured, while
everything else is unknown.

When we consider measurements atn different times, we
organize the above equations by defining

Mi
:
= (A(ti)R(ti); A(ti)p(ti)) 2 R

3�4 (2)

which we will assume to be full-rank, that is rank(Mi) = 3
for i = 1; : : : ; n. So we have
0
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which we re-write in a more compact notation as X~� =
Mq. We call M 2 R3n�4 the motion matrix and X the im-
age matrix.

2.1. Constraints on multiple images
Let ~mi 2 R

3n; i = 1; : : : ; 4 denote the four columns of
the matrixM and ~Xi 2 R3n; i = 1; : : : ; n be then columns
of the matrix X. Then the coordinates x(ti) represent the
same point seen from different views only if they satisfy the
following wedge product equation:

~m1 ^ ~m2 ^ ~m3 ^ ~m4 ^ ~X1 ^ � � � ^ ~Xn = 0: (3)

This constraint, which is multilinear in the measurements
x(ti) simply expresses the fact that the columns of M and
X are linearlydependent. Constraints involvingfour images
are call quadrilinear, constraints involving three images are
called trilinear, and those involving two images are called
bilinear or fundamental. In general, the coefficients of all
the multilinear constraints are minors of the motion matrix
M . As it has been shown (see, for instance, Triggs in [20]),
constraints involving more than four frames are necessarily
dependent on quadrilinear, trilinear and bilinear ones. In this
section we go one step further to discuss how trilinear and
quadrilinear constraints are dependent on bilinear ones.

When studying the dependency among constraints, one
must distinguish between algebraic and geometric depen-
dency. Roughly speaking, algebraic dependency concerns

the conditions that a point in an image must satisfy in order
to be the correspondent of a point in another image. Vice
versa, geometric dependency is concerned with the informa-
tion that correspondingpoints give on the operator that maps
one to the other. The two notions are related but not equiva-
lent, and the latter bears important consequences when one
is to use the constraints in optimization algorithms to re-
cover structure and calibration. While the geometric depen-
dency of multilinear constraints has been established before
under the assumption of constant calibration [10], we give a
novel, simple and rigorous proof that is valid under the more
general assumption of time-varying calibration.

2.2. Algebraic vs. geometric dependency
To clarify the relation between algebraic and geometric

dependency2, note that in general we can express a multi-
linear constraint in the form:

P
j �j(M )�j(X) = 0 where

�j are some polynomials of entries of M and �j polynomi-
als of entries of the image coordinates, with M and X de-
fined as before. �j’s are called the coefficients of multilin-
ear constraints. Studying the algebraic dependency between
constraints then corresponds to fixing the coefficients�j and
asking whether there are some additional constraints among
the image coordinatesX generated by three and four views3.
This problem has been studied many researchers and an el-
egant answer can be found in [9] by explicitly characteriz-
ing the primary decomposition of the ideal (in the polyno-
mial ring of image coordinates xi’s) generated by the bilin-
ear constraints in terms of that generated by trilinear ones or
quadrilinear ones.

Geometric dependency, on the other hand, investigates
whether, given the image coordinatesX, the coefficients �j
corresponding to motion parameters in additional views can
give additional information about M . These two different
types of dependencies were previously pointed out (see for
instance the work of Heyden [10]). For both types of depen-
dencies, the answer is negative, i.e., trilinear and quadrilin-
ear constraints in general are dependent of bilinear ones. We
here give a simple but rigorous study of the geometric de-
pendency. The results will also validate the ambiguity anal-
ysis given in following sections.

Consider the case n = 3 and, for the moment, dis-
regard the internal structure of the motion matrix M 2
R9�4. Its columns can be interpreted as a basis of a
four-dimensional subspace of the nine-dimensional space.
The set of k-dimensional subspaces of an m-dimensional
space is called a Grassmannian manifold and denoted by
G(m; k). Therefore, M is an element of G(9; 4). By just

2This subsection is for the benefit of the reader already familiar with
existing work on the algebraic dependency among multilinear constraints.
The reader who is not at ease with algebraic geometry or unfamiliar with
the existing literature can skip this subsection without loss of continuity

3In other words, it addresses the dependencyamong algebraic ideals as-
sociated with the three types of multilinear constraints.



re-arranging the three blocks Mi; i = 1; : : : ; 3 into three
pairs, (M1;M2), (M1;M3) and (M2;M3), we define a map
� between G(9; 4) and three copies of G(6; 4)

� : G(9; 4) ! G(6; 4)� G(6; 4)�G(6; 4)0
@ M1

M2

M3

1
A 7!

��
M1

M2

�
;

�
M2

M3

�
;

�
M1

M3

��
:

The question of whether trilinear constraints are indepen-
dent of bilinear ones is tightly related to whether these
two representations of the motion matrix M are equivalent.
Since the coefficients in the multilinear constraints are ho-
mogeneous in the entries of each block Mi, the motion ma-
trix M is only determined up to the equivalence relation:

M �M 0 if 9�i 2 R
�;Mi = �iM

0

i ; i = 1; : : : ; n (4)

where R� = Rn f0g. Thus for multilinear constraints the
motion matrix is only well-defined as an element of the quo-
tient space G(3n; 4)= � which is of dimension (11n� 15),
4 as was already noted by Triggs [20].

We are now ready to prove that coefficients �j’s in trilin-
ear and quadrilinear constraints depend on those in bilinear
ones.

Theorem 1 (Geometric dependency) Given three (or
four) views, the coefficients of all bilinear constraints
or equivalently the corresponding fundamental matrices
uniquely determine the motion matrix M as an element in
G(9; 4)= � (or G(12; 4)= �) given that Ker(Mi)’s are
linearly independent.

Proof: It is known that between any pair of images (i; j)

the motion matrix:
�

Mi

Mj

�
2 G(6; 4), is determined by the

corresponding fundamental matrix Fij up to two scalars �i; �j :�
�iMi

�jMj

�
2 G(6; 4); �j 2 R�. Hence for the three view

case all we need to prove is that the map:

~� : (G(9; 4)= �) ! (G(6; 4)= �)3

is injective. To this end, assume ~�(M) = ~�(M 0); then we have

that, after re-scaling,

�
M 0

1

M 0

2

�
=

�
�1M1

M2

�
G1,

�
M 0

2

M 0

3

�
=�

�2M2

M3

�
G2 ,
�

M 0

1

M 0

3

�
=

�
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G3 for some�i 2R�

and Gi 2 GL(4),5 i = 1; 2; 3. This yields M1(�1G1 � G3) =
0;M2(�2G2 � G1) = 0;M3(�3G3 � G2) = 0: Therefore
there exist Ui 2 R4�4; i = 1; 2; 3 with each column of Ui is in
Ker(Mi) such that:

G3 � �1G1 = U1; G1 � �2G2 = U2; G2 � �3G3 = U3:

4The GrassmannianG(3n; 4) has dimension (3n� 4)4 = 12n� 16.
The dimension of the quotient space is n�1 smaller since the equivalence
relation has n� 1 independent scales.

5GL(4) is the general linear group of all non-degenerate4�4 real ma-
trices.

Combining these three equations, we obtain:

(1 � �1�2�3)G1 = �2�3U1 + �2U3 + U2:

The matrix on the right hand side of the equation
has a non-trivial null-space since its columns are in
spanfKer(M1);Ker(M2);Ker(M3)g which has di-
mension three. However, G1 is non-singular, and there-
fore it must be �1�2�3 = 1: This gives �1G1 � G3 =
��1(�2G2 �G1)� �1�2(�3G3 �G2): That is, the columns of
�1G1�G3 are linear combinations of columns of �2G2�G1 and
�3G3 �G2 . But Ker(Mi); i = 1; 2; 3 are linearly independent.
Thus we have �1G1 = G3; �2G2 = G1; �3G3 = G2: This
implies

0
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1

M 0

2

M 0

3

1
A =

0
@ �1M1

M2
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1
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which means that M 0 and M are the same, up to the equivalence
relation defined in equation (4). Therefore, they represent the same
element in G(9; 4)= �, which means that the map ~� is injective.

In the case of four views, in order to show that coefficients
in quadrilinear constraints also depend on bilinear ones, one only
needs to check that the obvious map from G(12; 4)= � to
(G(9; 4)= �)4 is injective. This directly follows from the above
proof of the three frame case.

Comment 1 As a consequence of the theorem, coefficients �j’s
in trilinear and quadrilinear constraints are functions of those in
bilinear ones. While the above proof shows that the map ~� can be
inverted, it does not provide an explicit characterization of the in-
verse. Such an inverse can in principle be highly non-linear and
conditioning issues need to be taken into account in the design of
estimation algorithms. We emphasize that the geometric depen-
dency does not imply that two views are sufficient for reconstruc-
tion! It claims that given n views, their geometry is characterized
by considering only combinations of pairs of them through bilin-
ear constraints, while trilinear constraints are of help only in the
case of singular configurationsof points and camera (see comment
2). For four views, the condition that Ker(Mi); i = 1; : : : ; 4 are
linearly independent is not necessary. A less conservative condi-
tion is that there exist two groups of three frames which satisfy the
condition for the three view case.

Theorem 1 requires that the one-dimensional kernels of the
matricesMi; i = 1; : : : ; n (n = 3 or 4) are linearly indepen-
dent. Note that the kernels of Mi for i = 1; 2; 3; 4 are given
by (�pTi Ri; 1)T , where the vector RT

i pi 2 R
3 is exactly

the position of the ith camera center. Hence the condition
of the theorem is satisfied if and only if the centers of pro-
jection of the cameras generate a hyper-plane of dimension
n � 1. In particular, when n = 3, the three camera centers
form a triangle, and when n = 4, the four camera centers
form a tetrahedron.



Comment 2 (Critical surfaces and motions) Although we
have shown that the coefficients of multilinear constraints depend
on those of bilinear ones, we have assumed that the latter (or the
corresponding fundamental matrices) are uniquely determined by
the epipolar geometry. However, this is not true when all the points
lie on critical surfaces. In this case, as argued by Maybank in [15],
we may obtain up to three ambiguous solutions from the bilinear
constraints. This is one of the cases when trilinear and quadrilin-
ear constraints provide useful information. On this topic, see also
[16]. Also, when the camera is undergoing a rectilinear motion
(i.e., all optical centers are aligned), trilinear constraints provide
independent information in addition to bilinear ones. This fact has
been pointed out before; see for instance Heyden in [11].

3. Reconstruction under motion subgroups
The goal of this section is to study all “critical” motion

groups that do not allow unique reconstruction of structure,
motion and calibration. While a classification of such crit-
ical motions has been presented before (see [14]), we here
go well beyond by giving an explicit characterization of
the ambiguity in the reconstruction for each critical motion.
Such an explicit characterization is crucial in deriving the
ambiguity in the generation of novel views of a scene, which
we study in section 4.

In this section, we characterize the generic ambiguity in
the recovery of (a) structure, (b) motion and (c) calibration
corresponding to each possible critical motion. A subgroup
of SE(3) is called critical if the reconstruction is not unique
when the motion of the camera is restricted to it. For the pur-
pose of this section, we assume that the calibration matrixA
is constant.

3.1. Some preliminaries
So far the only restriction we have imposed on the con-

stant calibration matrix A is that it is non-singular and is
normalized as to have det(A) = 1. However, A can only
be determined up to an equivalence class of rotations, that
is A 2 SL(3)=SO(3).6 For more detail, please see [14].
The unrecoverable rotation in our choice of A simply corre-
sponds to a rotation of the entire camera system. We borrow
the following statement directly from [14]:

Theorem 2 (Necessary and sufficient condition for
a unique calibration) Given a set of camera motion
f(Ri; pi)g � SE(3) where none of the rotation component
Ri is of the form ebuik� with kuik = 1; k 2 Z, then the
camera calibration A as an element in SL(3)=SO(3) is
uniquely determined if and only if at least two of the axes
ui’s are linearly independent.

6Here take left cosets as elements in the quotient space. A representa-
tion of this quotient space is given, for instance, by upper-triangular matri-
ces; such a representation is commonly used in modeling calibration matri-
ces by means of physical parameters of cameras such as focal length, prin-
cipal point and pixel skew.

Although the necessity of the independence of the rotation
axes has been long known in the literature (see e.g. [13]), the
sufficiency is not proven till recent [14]. This theorem states
a very important and useful fact: the condition for a unique
calibration has nothing to do with translation (as opposed to
the results given in [19])! See [14] for the detail. Due to this
theorem, all proper continuous subgroups of SE(3) except
SO(3) are critical for self-calibration. So the first step in our
analysis consists in classifying all continuous Lie subgroups
ofSE(3). It is a well known fact that a complete list of these
groups (up to conjugation) is given by 7:

Translational Motion: (R3;+) and its subgroups

Rotational Motion: (SO(3); �) and its subgroups

Planar Motion: SE(2)

Screw Motion: (SO(2); �)� (R;+)

Planar + Elevation: SE(2) � (R;+)

We are now ready to explore to what extent scene structure,
camera motion and calibration can be reconstructed when
motion is constrained onto one of the above subgroups. In
other words, we will study the generic ambiguities of the
reconstruction problem. In what follows, we use q(t) =
(q1(t); q2(t); q3(t))T 2 R3 to denote the 3D coordinates of
the point q = (q1; q2; q3; 1)T 2 R4 with respect to the cam-
era frame at time t: q(t) = (R(t); p(t))q: To simplify nota-
tion, for any u 2 R3 we define bu to be a 3 skew-symmetric
matrix such that 8v 2 R3 the cross product u� v = buv.

3.2. Generic ambiguities in structure, motion and
calibration

Translational motion (R3 and its subgroups). The co-
ordinate transformation between different views is given by
Aq(t) = Aq(t0) + Ap(t); p(t) 2 R3: According to Theo-
rem 2, the calibrationA 2 SL(3) cannot be recovered from
pure translational motion, and therefore the corresponding
structure q and translational motion p can be recovered only
up to the unknown transformationA. We therefore have the
following

Theorem 3 (Ambiguity under R3) Consider an un-
calibrated camera described by the calibration matrix
A 2 SL(3), undergoing purely translational motionR3 (or
any of its nontrivial subgroups) and let B be an arbitrary
matrix in SL(3). If the camera motion p 2 R3 and the
scene structure q 2 R4 are unknown, then B, B�1Ap and
B�1Aq are the only generic ambiguous solutions for the
camera calibration, camera motion and the scene structure
respectively.

Note that this ambiguity corresponds exactly to an affine re-
construction [18].

7The completeness of this list can be shown by classifying all Lie sub-
algebras of the Lie algebra se(3) of SE(3) and then exponentiate them.



Rotational motion (SO(3)). The action of SO(3) trans-
forms the coordinates in different cameras by Aq(t) =
AR(t)q(t0); R(t) 2 SO(3). According to Theorem 2, the
calibration A can be recovered uniquely, and so can the ro-
tational motion R(t) 2 SO(3). However, it is well known
that the depth information of the structure cannot be recov-
ered at all. We summarize these facts into the following:

Theorem 4 (Ambiguity under SO(3)) Consider an un-
calibrated camera with calibration matrix A 2 SL(3)
undergoing purely rotational motion SO(3) and let � be
an arbitrary (positive) scalar. If both the camera motion
R 2 SO(3) and the scene structure q 2 R3 are unknown,
thenA, R and��q are the only generic ambiguous solutions
for the camera calibration, camera motion and the scene
structure respectively.

Planar motion (SE(2)). While the previous two cases
were of somewhat academic interest and the theorems por-
tray well-known facts, planar motion arises very often in ap-
plications. We will therefore study this case in some more
detail.

Let e1 = (1; 0; 0)T ; e2 = (0; 1; 0)T ; e3 = (0; 0; 1)T 2
R3 be the standard basis of R3. Without loss of generality,
we may assume the camera motion is on the plane normal to
e3 and is represented by the subgroup SE(2).

Let A be the unknown calibration matrix of the cam-
era. As described in section 3.1 we consider A as an el-
ement of the quotient space SL(3)=SO(3). According to
[14], any possible calibration matrix A0 2 SL(3)=SO(3)
is such that the matrix S = A�T

0 A�1
0 is in the symmet-

ric real kernel (SRKer) of the Lyapunov map for all C =
A�TRTAT ; R 2 SE(2):

L : C 3�3 ! C 3�3 ; X 7! X �CXCT : (5)

By the choice of e1; e2; e3, the real eigenvector of R is e3.
ImposingS 2 SL(3), we obtain S = A�TD(s)A�1;where
D(s) 2 R3�3 is a matrix function of s:

D(s) =

0
@ s 0 0

0 s 0
0 0 1=s2

1
A ; s 2 Rn f0g: (6)

Geometrically, this reveals that only metric information
within the plane can be recovered while the relative scale
between the plane and its normal direction cannot be deter-
mined. If we choose an erroneous matrix A0 from the set
of possible solutions for calibration, then A0B = A for
some matrix B 2 SL(3). Since A�T

0 A�1
0 is necessarily in

SRKer(L), we further have that, for some s 2 R,

A�T
0 A�1

0 = A�TD(s)A�1 ) BTB = D(s): (7)

A solution of (7) is of the form B = HD(s) with H 2
SO(3) and s 2 R. Let us define a one-parameter Lie group

GSE(2) as:

GSE(2) = fD(s) j s 2 Rn f0gg: (8)

Then the solution space of (7) is given by SO(3)GSE(2).
The groupGSE(2) can be viewed as a natural representation
of ambiguous solutions in the space SL(3)=SO(3).

Once we have a calibration matrix, sayA0, we can extract
motion from the fundamental matrix F = A�TRTAT bp0 2
R3�3 as follows: we know that A = A0B for some B =
HD(s) 2 SO(3)GSE(2). Then we define E = AT

0 FA0

and note that, for R = exp(be3�), we have that D(s) com-
mutes with R i.e., D(s)RD(s)�1 = R. Then E is an es-
sential matrix since E = H�TD�T (s)RT bpD�1(s)H�1 =

HRTHT \HD(s)p: The motion recovered from E is there-
fore (HRHT ;HD(s)p) 2 SE(3), where (R; p) 2 SE(2)
is the true motion. Note that (HRHT ;HD(s)p) is actu-
ally a planar motion (in a plane rotated by H from the origi-
nal one). The coordinate transformation in the uncalibrated
camera frame is given by Aq(t) = ARq(t0) + Ap(t): If,
instead, the matrix A0 is chosen to justify the camera cali-
bration, the coordinate transformation becomes:

A0Bq(t) = A0BRq(t0) +A0Bp(t) )

HD(s)q(t) = HRHT (HD(s)q(t0)) +HD(s)p(t):

Therefore, any point q viewed with an uncalibrated cam-
era A undergoing a motion (R; p) 2 SE(2) is not distin-
guishable from the point HD(s)q viewed with an uncali-
brated camera A0 = AD�1(s)HT undergoing a motion
(HRHT ;HD(s)p) 2 SE(2). We have therefore proven
the following

Theorem 5 (Ambiguity under SE(2)) Consider a cam-
era with unknown calibration matrix A 2 SL(3) under-
going planar motion SE(2) and let B(s) = HD(s) with
H 2 SO(3) and D(s) 2 GSE(2). If both the camera mo-
tion (R; p) 2 SE(2) and the scene structure q 2 R3 are
unknown, then AB�1(s) 2 SL(3), (HRHT ; B(s)p) 2
SE(2) andB(s)q 2 R3 are the only generic ambiguous so-
lutions for the camera calibration,camera motion and scene
structure respectively.

Comment 3 Note that the role of the matrix H 2 SO(3) is just
to rotate the overall configuration. Therefore, the only generic am-
biguity of the reconstruction is characterizedby the one parameter
Lie groupGSE(2) .

Subgroups SO(2), SO(2) � R and SE(2) � R. We
conclude our discussion on subgroups of SE(3) by studying
SO(2), SO(2)�Rand SE(2)�Rtogether. This is because
their generic ambiguities are similar to the case of SE(2),
which we have just studied. Notice that in the discussion of
the ambiguityGSE(2), we did not use the fact that the trans-
lation p has to satisfy p3 = 0. Therefore, the generic re-
construction ambiguities of SO(2)�Rand SE(2)�Rare



exactly the same as that ofSE(2). The only different case is
SO(2). It is readily seen that the ambiguity of SO(2) is the
“product” of that of SE(2) and that of SO(3) due to the fact
SO(2) = SE(2) \ SO(3). As a consequence of Theorem
4 and Theorem 5 we have:

Corollary 1 (Ambiguity under SO(2)) Consider an un-
calibrated camera with calibration matrix A 2 SL(3) un-
dergoing a motion in SO(2) and let B(s) = HD(s) with
H 2 SO(3), D(s) 2 GSE(2) and � 2 (R+; �). If both the
camera motion R 2 SO(3) and the scene structure q 2 R3

are unknown, then AB�1(s) 2 SL(3), HRHT 2 SO(3)
and � � B(s)q 2 R3 are the only generic ambiguous solu-
tions for the camera calibration, camera motion and scene
structure respectively.

From the above discussion of subgroups of SE(3) we
have seen that generic ambiguities exist for any proper sub-
group of SE(3). Therefore all subgroups of SE(3) are crit-
ical with respect to reconstruction of scene structure, mo-
tion and camera calibration. Furthermore, such ambiguities
- which have been derived above based only on bilinear con-
straints, are not resolved by multilinear constraints accord-
ing to Theorem 1.

4. Reprojection under partial reconstruction
In the previous section we have seen that, in general, it

is possible to reconstruct the calibration matrix A and the
scene’s structure q only up to a subgroup - which we call K,
the ambiguity subgroup. For instance, in the case of planar
motion, an element in K has the form D(s) given by equa-
tion (6). Therefore, after reconstruction we have

~q(K) = Kq; ~A(K) = AK�1: (9)

Now, suppose one wants to generate a novel view of the
scene, ~x from a new vantage point, which is specified
by a motion ~g 2 SE(3) and must satisfy ~�~x(K) =
~A(K)~g~q(K): In general, the reprojection ~x(K) depends

both on the ambiguity subgroupK and on the vantage point
~g and there is no guarantee that it is an image of the original
Euclidean scene.

It is only natural, then, to ask what is the set of vantage
points that generate a valid reprojection, that is an image of
the original scene q taken as if the camera A was placed at
some vantage point g(K). We discuss this issue in section
4.1. A stronger condition to require is that the reprojection
be independent (invariant) of the ambiguity K, so that we
have g(K) = ~g regardless of K; we discuss this issue in
section 4.2.

4.1. Valid Euclidean reprojection
In order to characterize the vantage points - specified

by motions ~g - that produce a valid reprojection we must

find ~g such that: ~A(K)~g~q(K) = Ag(K)q for some
g(K) 2 SE(3). Since the reprojected image ~x is ~�~x(K) =
~A(K)~g~q(K) = Ag(K)q, the characterization of all such

motions ~g is given by the following Lie group:

R(K) = f~g 2 SE(3) j K�1~gK � SE(3)g: (10)

We call R(K) the reprojection group for a given ambiguity
group K. For each of the generic ambiguities we studied in
section 3, the corresponding reprojection group is given by
the following

Theorem 6 The reprojection groups corresponding to each
of the ambiguity groupsK studied in section 3 are given by:
1. R(K) = (R3;+) for K = SL(3) (ambiguity of
(R3;+)).
2. R(K) = SO(2) for K = GSE(2) � (R+; �) (ambiguity
of SO(2)).
3. R(K) = SE(2) � R for K = GSE(2) (ambiguity of
SE(2); SO(2) �R; SE(2)�R).
4. R(K) = SE(3) for K = I (ambiguity of SE(3)).

Even though the reprojected image is, in general, not unique,
the family of all such images are still parameterized by the
same ambiguity groupK. For a motion outside of the group
R(K), i.e., for a ~g 2 SE(3) n R(K), the action of the
ambiguity group K on a reprojected image cannot simply
be represented as moving the camera: it will have to be a
more general non-Euclidean transformation of the shape of
the scene. However, the family of all such non-Euclidean
shapes are minimally parameterized by the quotient space
SE(3)=R(K).

Comment 4 [Choice of a “basis” for reprojection] Note that
in order to specify the viewpoint it is not just sufficient to choose
the motion ~g for, in general, g(K) 6= ~g. Therefore, an imag-
inary “visual-effect operator” will have to adjust the viewpoint
g(K) acting on the parameters in K . The ambiguity subgroups
derived in section 3 are one-parameter groups (for the most impor-
tant cases) and therefore the choice is restricted to one parameter.
In a projective framework (such as [6]), the user has to specify a
projective basis of three-dimensional space, that is 15 parameters.
This is usually done by specifying the three-dimensional position
of 5 points in space.

4.2. Invariant reprojection
In order for the view taken from ~g to be unique, we must

have

~�~x = ~A(K)~g~q(K) = AK�1~gKq (11)

independent ofK. Equivalentlywe must haveK�1~gK = ~g
whereK is the ambiguity generated by the motion on a sub-
group G of SE(3). The set of ~g that satisfy this condition
is a group N (K), the so called normalizer of K in SE(3).
Therefore, all we have to do is to characterize the normaliz-
ers for the ambiguity subgroups studied in section 3.



Theorem 7 The set of viewpoints that are invariant to re-
projection is given by the normalizer of the ambiguity sub-
group. For each of the motion subgroups analyzed in sec-
tion 3 the corresponding normalizer of the ambiguity group
is given by:
1. N (K) = I for K = SL(3) (ambiguity of (R3;+)).
2. N (K) = SO(2) for K = GSE(2) � (R+; �) (ambiguity
of SO(2)).
3. N (K) = SO(2) for K = GSE(2) (ambiguity of
SE(2); SO(2) �R; SE(2)�R).
4. N (K) = SE(3) for K = I (ambiguity of SE(3)).

For motions in every subgroup, the reprojection performed
under any viewpoint determined by the groups above is
unique.

5. Conclusions
When the necessary and sufficient conditions for a unique

reconstruction of scene structure, camera motion and cali-
bration are not satisfied, it is still possible to retrieve a recon-
struction up to a global subgroup action (on the entire con-
figuration of the camera system). We characterize such sub-
groups explicitly for all possible motion groups of the cam-
era. The reconstructed structure can then be re-projected to
generate novel views of the scene. We characterize the “ba-
sis” of the reprojection corresponding to each subgroup, and
also the motions that generate a unique reprojection. We
achieve the goal by using results from two view analysis
[14]. This is possible because the coefficients of multilin-
ear constraints are geometrically dependent of those of bi-
linear constraints. Therefore, the only advantage in consid-
ering multilinear constraints is in the presence of singular
surfaces and rectilinear motions. Our future research agenda
involves the design of optimal algorithms to recover all (and
only!) the parameters that can be estimated from the data
based upon their generic ambiguities. The reconstruction
and reprojection problem studied in this paper is for a con-
stant calibration matrix. We will present generalized results
for the time-varying case in future work.
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using multilinear forms. In G. Sommer and J. Koenderink,
editors, Algebraic Frames for the Perception-Action Cycle,
pages 54–65. Springer-Verlag, 1997.

[11] A. Heyden. Reduced multilinear constraints – theory and ex-
periments. In International Journal of Computer Vision, vol.
30, no. 2, pages 5-26, 1998.

[12] Q.-T. Luong and O. Faugeras. Self-calibration of a moving
camera from point correspondences and fundamental matri-
ces. IJCV, 22(3):261–89, 1997.

[13] Q.-T. Luong and T. Vieville. Canonical representations for
the geometries of multiple projective views. ECCV, pages
589–599, 1994.
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