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Abstract

A common method for texture representation is to

use the marginal probability densities over the out-

puts of a set of multi-orientation, multi-scale filters
as a description of the texture. We propose a tech-

nique, based on Independent Components Analysis, for

choosing the set of filters that yield the most infor-

mative marginals, meaning that the product over the

marginals most closely approximates the joint proba-

bility density function of the filter outputs. The al-

gorithm is implemented using a steerable filter space.

Experiments involving both texture classification and

synthesis show that compared to Principal Components

Analysis, ICA provides superior performance for mod-

eling of natural and synthetic textures.

1 Introduction

One of the main goals of computer vision is the com-

pact representation of visual entities. Textures, the
visual objects considered in this paper, are best repre-

sented by their statistical properties. We introduce an
information-theoretic framework that provides a bet-

ter understanding of filter-based approaches to tex-

ture analysis and leads to a technique for improving

the quality of those texture representations that are

based on marginal statistics over filter outputs.

Loosely speaking, textures are characterized by two

basic properties: homogeneity and locality of repre-
sentation. In other words, the "visual flavour" of

a texture can be captured by its statistical behav-
ior within a limited size window. Suitable statistical

models for textures are stationary Markov Random

Fields (MRF), which are completely characterized by

their joint probability density function (pdf) within

a suitable neighborhood. Estimating and represent-

ing even low-dimensional joint pdf's, however, can be

an overwhelming task. The size of the representation

grows exponentially with the model dimension, as does
the mininmm number of samples required to achieve

a given estimation accuracy [8]. In fact, techniques

that attempt to completely characterize joint distri-
butions either consider very small neighborhoods [25],

measure only pairwise dependency [15], or use specific

MRF models [10], [6].

A different approach is based on the analysis of
feature vectors formed by the output of a filter

bank [18],[7],[19],[21]. With a suitable choice of the

analysis filters, we can assume that the feature vectors

capture the local visually significant texture charac-

ter. In other words, the filters map the image values in

each neighborhood onto a "perceptually relevant" sub-

space, thereby reducing the representation size while

preserving structural information.
Barring a few exceptions [25],[11] ,[28], typical filter-

based algorithms do not estimate the complete statis-

tical description of the texture features. Instead, they

build models based on the marginal statistics of the

feature components, usually represented by the chan-

nel variances or their histograms. For example, by

analyzing the directional characteristics of a texture

along a dense (ideally continuous) set of orientations
and scales, one obtains its "scale/orientation signa-

ture", which can be used for classification [21], [27].

Texture representation by marginal statistics is a

simple and attractive approach. To make efficient use

of it, though, we should understand how well a given

set of marginals represents the joint statistical descrip-
tion of a texture feature. Zhu et al. [31] pointed out

that, in general, one needs the marginal pdf's along ev-

ery possible projection direction to completely charac-

terize the joint feature vector pdf. Thus, one approach

to improving the quality of representation is to use a

large number of filters, perhaps exploiting steerable

schemes [13], [24] for computational efficiency.
In this work we follow a different route, and de-

vise a technique for finding the basis of a given filter

space which generates the most informative marginals

for a given texture, meaning that the product over



themarginaldensitiesmostcloselyapproximatesthe
joint pdf. Weshowbyexperimentaltestsof classifi-
cationandsynthesisthat byselectingsuch"optim_]"
filterbasisthequalityof therepresentationincreases
significantly.

OurbasisselectionalgorithmisbasedonIndepen-
dentComponentAnalysis(ICA)theory.ICAhasbeen
an areaof intenseresearchduringthe lastdecade,
stimulatedbyproblemsofblindsourceseparationand
deconvolution.ICAcanberegardedasatechniquefor
statisticalmodelingthatprovessuperiorto Principal
ComponentAnalysisin thecaseof non-gaussianran-
domvectors.It isanestablishednotionthat natural
irrwagesdonotbehavelikegaussianprocesses[20][3];
ourexperimentsshowthat ICAprovidesbettermod-
elsfor naturalandsynthetictextures.

Otherfilterselectiontechniqueshavebeenproposed
for textureanalysis,usuallybasedonenergy[5]or
classseparability[12].Perhapsclosesttoourapproach
is the entropy-basedalgorithmof Zhuet al. [31],
whichusesagreedystrategyto sequentiallyintroduce
onefilter at atime.

Thispaperis organizedasfollows.Section2 de-
scribesthefilterspacesthat weusefortextureanal-
ysis,andintroducesthefilterbasisselectionproblem.
Section3providessomenecessarybackgroundofICA,
andshowsits applicationto texturemodeling.Sec-
tion 4 describestextureclassificationandsynthesis
experimentsfrom whichwewereableto assessthe
performanceof ICA modeling.Section5hasthecon-
clusions.

2 Steerable spaces for texture analysis
Givenan imagel(x) and a set of N filters

{hi(z)}, we will say that the vector f(x) =

ill(z) = 1 * hi(x),..., fg(x) = l • hN(X)] is the fea-
ture representation of the image at point z. We will

assume that a texture is completely represented by the

joint pdf of its feature vector f(x) (which, by station-

ariety, is independent of x.) By this we mean that

two textures with the same joint distribution of their

feature vectors are "perceptually" indistinguishable.

Which filters produce meaningful feature represen-

tations of textures? Several design criteria have been

proposed. Basically, they all share the following char-

acteristics: 1) zero-DC response, to enforce invari-

ance to slow-varying illumination bias: 2) good spa-

tial/spectral concentration, to ensure energy separa-

tion while preserving locality of description. Another

useful property of analysis filter banks is steerability

[13], [14] defined as follows. Let H be the linear space

spanned by the N kernels {hi(x)}, and let g7 be a suit-

able group of domain transformations (e.g., rotations

or isotropic scaling.) We will say that H is steerable
over _ if for every kernel h(x) in H, and for every

transformation A(-) in _, the "transformed" kernel

ha(z) = h(A(x)) belongs to H. For example, assume

the filter space is steerable over the group of rotations.

Let f(x) and fR(z) be the feature vector description
of a texture and of the rotated version of the texture,

respectively (R is the rotation matrix). Then, f(z)

and fR(R-lz) are related by a linear transformation

(a matrix), which is a function of the rotation angle

only. Steerability, thus, ensures uniformity of repre-
sentation for transformed versions of the same tex-

ture. Methods exist to design exact and approximate

finite dimensional steerable filter spaces over rotations

and isotropic scaling over a finite scale range of inter-

est [24].

Joint spatial/spectral concentration is achieved, for

example, using Gabor kernels or directional deriva-

tives of gaussian kernels [19],[21]. Such filters effec-

tively capture directional texture attributes. If a N-

dimensional steerable analysis space is used, the tex-

ture signatures are completely characterized by the

joint statistics of the output of N basis filters. Note
that one can always find a set of basis filters which

are scaled/rotated versions of a prototype kernel in
the steerable space.

In this paper we study reduced representations

formed by the marginal statistics of the feature vec-
tors. Let us recall that the marginal density of the

i-th component of a random vector z, pi(zi), is the

projection of the joint pdf p(z) onto the i-th axis.

The set of marginal statistics is represented by the

outer product of the marginal pdf's: i6(z) = 1-[iPi(Zi),

which is equal to p(z) if and only if the components
of the feature vector are statistically independent. In

particular, we are concerned with the selection of the

"optimal" basis in a steerable filter space. Note that
the choice of the basis is irrelevant if the joint pdf
of the feature vector is considered. Indeed, if fl and

f_ are the feature vectors at point z, computed using
two different filter bases, then f2 = All, where ,4 is a

full-rank matrix. Thus, the joint pdf's of the feature

vectors, pl(z) and p,(z), are related to one another as

p,.(z) = pt(.4-1:)/I det(.4)l [23]. This one-to-one re-
lation, however, holds for joint pdf's only. In general,

the marginal pdf's of fl cannot be computed from the

marginal pdf's of f2. This somewhat paradoxical ob-

servation stems from the fact that marginal pdf's are

projections of a joint pdf along different directions. A

finite set of marginals does not carry enough informa-

tion in general to allow reconstructing all the other

projections.



Assume,however,that a particularchoiceof basis
filtersgivesstatisticallyindependentfeaturecompo-
nents.Then,asnotedabove,themarginalscompletely
characterizethejoint pdfof thefeaturevector:from
thissetof marginals,all theothermarginalscanbe
reconstructed.Theconverseis not true: otherfilter
baseswill produce,in general,featureswith "lessin-
formative"marginalstatistics.

Unfortunately,onlyveryfewtexturescanberepre-
sentedbyindependentcomponentfeatures[3]. Still,
it isalmostalwaysthecasethatsomefilterbasespro-
duce"moreinformative"marginalsthanothers.This
intuitivenotioncanbemademorerigoroususingthe
tlteoryof IndependentComponentsAnalysis(ICA);
ICA alsoleadsto analgorithmfor selectingan"opti-
mal"filter basis.

3 Independent Component Analysis
In thissectionwereportsomeresultsofIndepen-

dentComponentAnalysistheorythat areinstrumen-
tal tothedevelopmentofthetextureclassificationand
synthesisalgorithmsdiscussedin later sections.We
referthereaderto theexcellenttutorialofCardoso[4]
for ageneraloverviewof thetheory.

Wefirst introducetheICA problemasastatistical
approximationtool,andthenbrieflyoutlineComon's
ICA algorithm,whichwehaveadoptedinourexperi-
ments.Wealsopresentasimplecasestudythatshows
theeffectivenessofICA modelingfor textureanalysis
in asteerablespace.
3.1 Problem formulation

Thetheoryof IndependentComponentAnalysisis
traditionallyassociatedwith theBlindSourceSepa-
ration (BSS)problem.In its simplestformulation,
theBSSproblemassumesthat N independent causes

(random variables) have been linearly combined by a
full rank matrix A to produce N observed variables.

The goal is to identify the mixing matrix from the ob-
servations, possibly using prior information about the
statistics of the causes if available.

ICA, however, may also be regarded as a general

estimation method [9], without explicit reference to
the BSS model. If : is a random vector with joint

pdf p(:) and full-rank covariance matrix x, ICA seeks

a full rank matrix A such that the pdf of the vector

y = A: is "best represented" by the outer product

of its marginal pdf's. The quality of the separable

approximation is measured by the contrast, which is a

deterministic function of a joint pdf. Let e(:) be the
"'model error", defined as the difference between the

t If the covariance matrix V is not full rank. we may consider

the projection of z onto the range space of t' [9].

logarithm of the density p(z) and the log-likelihood of

the separable model:

e(z) = Iogp(z) -log Hpi(z,) (1)
i

where pi (zi) are the marginal pdf's of the components

of z. The contrast [9] of p(z) is defined as the expec-
tation of the model error e(z), which is equal to the

Kullback-Leibler (KL) divergence between p(z) and

the separable model pdf:

/__ p(z) dz (2)E[e(z)] =  P(z)l°grl, P,(Z,)

= _ Hi(z,) - U(z)
i

where H(.) represents the differential entropy of its

argument: H(z) = - f___ p(z) logp(z) (terms Hi(zi)

are called marginal entropies of z.) This contrast takes
also the name of mutual information of z, and being a

KL divergence it is always positive (it vanishes if and

only if z has independent components). Intuitively,
the mutual information tells us how much we lose in

terms of average information if we neglect to consider

the statistical dependence among the components of

Z.

Other contrast functions have been proposed for

ICA. For example, if the distributions gi(zi) =

f:_ pi(_)d-; of the original independent components
in a BSS model are known, we may define the "info-

max" contrast [1] of the vector z as -H(g(z)), where

g(z) = [gt(zL),...,gx(zN)]. However, in the case of
texture descriptors we don't know the distributions

gi(zi), and mutual information is a more appropriate
criterion. Thus, we define the ICA problem as follows:

ICA problem: find a full-rank matrix A

such that y = Az has minimal mutual infor-

mation.

Note that the solution to the ICA problem is not

unique: if A minimizes the mutual information of Az,
so do all matrices obtained by permuting the rows of

.4 or by pre-multiplying A by a diagonal matrix.
If z is jointly gaussian, its mutual information is

null if and only if its covariance matrix is diagonal.

Principal Component Analysis (PCA, also known as

Karhunen-Lo_ve transform) is a technique to diago-

nalize a vector eovariance by an orthonormal matrix,

and therefore solves the ICA problem for gaussian vec-

tors. |n the general non-gaussian case, however, diag-
onal covariance is not sufficient to ensure the mini-

mal mutual information condition; hence, more work

is needed.



It can be shown[9] that, if z has been "pre-
whitened" to unit covariance (by PCA followed by

axis rescaling), the ICA problem is solved by an 6r-
thonormal linear transformation that minimizes the

sum of the marginal entropies of the transformed vec-
tor. This fact has a nice counterpart in the context of

BSS. Since the gaussian distribution has the highest

entropy for a given variance, we may argue that the

demixing matrix is the one that produces marginals

as "far from gaussian" as possible. This observation

agrees with intuition: indeed, as suggested by the cen-
tral limit theorem, linear mixing of independent causes

produces gaussian-like distributions.

3t2 Comon's ICA algorithm

ICA algorithms try to minimize the contrast of

a vector without explicitly computing its joint pdf.

Comon [9] proposed an efficient technique based on
higher-order statistics. In fact, Comon's algorithm
minimizes a different contrast than mutual informa-

tion; the relation between the two contrast functions

can be highlighted using Edgeworth functional ex-

pansions [17]. An intuitive justification of higher-
order methods is based on the fact that all the cross-

cumulants of an independent component vector are

null [17]. Thus, one may try to minimize mutual in-

formation by actually minimizing the n-th order de-

pendence among the vector components. For exam-

ple, Comon's technique finds an orthonormal matrix
A that minimizes the sum of the squared fourth-order

cross-cumulants of y = Az, provided that z has been

pre-whitened. It can be shown that this is equivalent

to maximizing the sum of the squared marginal kur-

tosis (fourth-order cumulants) of y.

It is a well known fact that gaussian distributions

have zero kurtosis [17]: Comon's algorithm does push
the vector components away from gaussianity. Lep-

tokurtic, heavy tailed exponential-like distributions

are characteristic of "sparse codes" [22], and are of-

ten used to model the output of wavelet filter banks

for image coding [20]. Platykurtic distributions are

also often observed in texture analysis.

Comon's design algorithm is based on Jacobi it-

erations. Its complexity is (9(N 4) (including pre-

whitening,) and it always converges to a (possibly lo-

cal) minimum of the contrast. Due to these desirable

properties, we have selected Comon's technique for our

experinaents.

3.3 A case study

In this section we present a simple example that

shows the effectiveness of ICA-based modeling for tex-

ture analysis. The two textures of Figure I (a),(b) are

analyzed in the steerable space spanned by the two

(0 ° - 90 °) filters of Figure 1 (c),(d) (upper row). Tex-
ture A is a mosaic of patches filled at random with

either a constant signal, horizontal or vertical sinu-

soidal gratings, or the sum thereof. Texture B is a

mosaic of patches filled with either horizontal or verti-

cal sinusoidal gratings. The 0° (90 °) filter removes the

horizontal (vertical) grating component completely.

Our goal is to find two filters in the steerable

space that best describe each texture by means of

the marginal statistics of their outputs. Figure 1

(c),(d) (lower row) show the filtered versions of the

two textures using the 0° -900 filters. Figure 1 (e),(f)

show the joint pdf's of the filter outputs, measured

by a Parzen window estimator. In both cases the
two channels are uncorrelated with identical variance

(as proved by the axial symmetries of their pdf's.)
However, only the channels of Texture A are statisti-

cally independent. Thus, the outer product of their

marginal densities reproduces the joint pdf of Tex-

ture A exactly, as shown in Figure 1 (g). In the case of

Texture B, though, the separable model yields a very

poor approximation of the joint pdf (compare Figure 1

(h) and (f)). As a matter of fact, the marginal pdf's
of the 0° - 900 channels of Texture B and Texture A

are identical: based on such marginal descriptions, the
two textures look the same! Note also that PCA can-

not help us finding better bases, since the channels of
both textures are already uncorrelated.

If we run the ICA algorithm separately on each tex-

ture (by analyzing the output of the two filters) we
find that the 0° - 90 ° kernels are indeed the correct

choice for Texture A, while the 450 - 1350 kernels of

Figure 1 (i) (upper row), obtained by multiplying the

outputs of the 0° - 90 ° filters by a 450 rotation matrix,

are more appropriate for Texture B. Figure 1 (j) shows
the outer product of the corresponding marginal pdf's,

after rotation back to the original 0 ° - 90 ° space. By

comparing Figure 1 (f), (h) and (j) it is clear that ICA
has dramatically increased the quality of the separable

approximat ion.

4 Experimental tests

4.1 Supervised classification

In this section we use ICA pdf modeling in a test

of supervised texture discrimination. For the sake of

simplicity, we perform training and classification on
the same data set, formed by the /x" = 8 textures

of Figure 2 (chosen from the MIT VisTex database).
Each texture is modeled by the marginal pdf's over the
selected channels in a fixed steerable space, together

with the corresponding ICA matrix. The marginal



(a)
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(b)

(c) (d)

(e) (f)

(g) (h)
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Figure 1: A case study (see text.) (a).(b): Textures
A and B. (c),(d): The 0° - 90 ° kernels (upper row),

and the filtered versions of the two textures (lower

row.) (e),(f): The joint channel pdf's of the two tex-

tures. (g),(h): The separable approximations of the
joint pdf's using the 0°-90 ° filters. (i): The 45°-1350

kernels (upper row), and the filtered version of texture

B (lower row.) (j) The separable approximation of the

joint pdf of texture B using the 450 - 135 ° filters.

densities are estimated and represented by 50-bins his-

tograms.
An image formed by the mosaic of all textures is

classified pixel-wise using a Bayesian technique [2]. A

simple heuristic iterative procedure, inspired by the

"Perceptually Organized Expectation Maximization"

algorithm of Weiss and Adelson [30], estimates pos-

terior class probabilities from the conditional likeli-

hoods, enforcing local spatial coherence. The experi-

ment proceeds as follows:

• Training: for each texture model,

1. filter the training image with a fixed filter

bank;

2. compute the ICA matrix from the output of

the filters;

3. multiply the output vectors by the ICA ma-
trix and compute the channel histograms.

• Classification: apply the fixed filter bank to the

test image. For each texture model,

1. multiply the filter output vectors by the
model ICA matrix, and use the corre-

sponding channel histograms to compute the

marginal likelihoods;

2. the likelihood of each pixel given the model

is equal to the product of the marginal like-

lihoods, times the absolute value of the de-
terminant of the ICA matrix.

Compute the posterior class probabilities and per-

form pixel-wise Bayesian classification.

For our experiment we have chosen a steerable pyra-

mid filter bank [29] with just two orientations and

three scales (N = 6 filters overall). For each train-

ing texture (size 256 x 256 pixels), Comon's Matlab
implementation of ICA required 27 seconds of compu-
tation time on a Power Macintosh G3 266 MHz. The

results, in terms of percentage of correctly classified

pixels for each texture, are shown by the solid line

plot of figure 2. If PCA is used instead of ICA, we
obtain the correct classification rates shown by dot-

dashed line; the classification performances of the sys-

tem without transformation (i.e., using the original

filters) are shown by the dotted line. ICA pdf model-

ing consistently yields the highest correct classification
rates.

We have observed that the performance gain pro-

vided by PCA and ICA modeling relative to the nomi-

nal feature vector representation decreases if the num-
ber of orientations in the steerable filter bank is in-

creased. This should not come as a surprise: many

marginal statistics can provide sufficient information

even if they are not statistically independent; however,
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Figure 2: Supervised classification test (see text). The

system is trained and tested on the eight textures

shown above. The plots represent the percentage of
correct classification for each texture. Solid line: us-

ing ICA transformation. Dot-dashed line: using PCA
transformation. Dotted line: without transformation.

the benefit comes at the price of increased representa-
tion size.

4.2 Texture synthesis

Synthesis-by-analysis algorithms [16],[26],[31],[28]

create new textures which "look like" a given proto-

type. This is equivalent to sampling a random process

whose statistical description has been estimated from

a given sample.

A simple and effective synthesis technique has been

proposed by Heeger and Bergen [16]. First, the pro-

totype texture is analyzed by a filter bank which in-

cludes the "identity" filter, and the marginal channel

histograms are recorded. Then, a random image is

generated, and its channel histograms (computed by

the same filter bank) are iteratively adjusted to match

those of the prototype texture. The algorithm usually

converges to a texture that has the same channel his-

tograms as the prototype: the two textures are there-

fore identical on the grounds of marginal statistical

description.

We have adopted such an algorithm as a testbed for

our experiments because it represents the ideal "'Tur-

ing test" to validate texture models based on marginal
channel statistics. Our only addition to Heeger and

Bergen's model is the multiplication of the channel
vectors at the output of the filter bank by the ICA

matrix computed for the prototype texture, as in the

scheme of section 4.1. After the channel histograms

have been adjusted to match those of the prototype

texture, the channel vectors are multiplied by the in-

verse of the ICA matrix. Note that the presence of

the ICA matrix requires that all the channels be kept

to the same sampling rate.

Heeger and Bergen use steerable pyramid analysis

filter banks [29], and synthesize samples that success-

fully reproduce some unstructured characteristics of

the prototype texture. Such simple marginal statistics

modeling, though, fails to capture more complex spa-

tial structures, such as elongated patterns. A simple

way to boost the performance of Heeger and Bergen's

scheme is to enrich the filter space with the shifted
versions of the filters. In other words, for each fil-

ter h(z) we add the filters hn(z) = h(z + n) with

n belonging to a suitable neighborhood of the origin.

The feature representation thus "looks around" over

a larger neighborhood of each point. This new infor-

mation comes at no cost: the output of filter h"(x)

at point z0 is equal to the output of filter h(n) at

point z0 + n. Shifted filters, though, are useless if the

marginals statistical description is built directly from

their output: by stationariety, the marginal pdfof a fil-

ter output does not change if the filter is shifted. The
contribution of the shifted filters becomes relevant if

a different basis of the steerable space is chosen, that

is, if the output of the filters is multiplied by the ICA
matrix.

We show in figures 3 and 4 examples of synthesis

from the prototype textures "Crosses on clouds" and

"Squares". For the "Crosses on clouds" texture we
have used a steerable pyramid filter bank which com-

prised both odd-symmetric and even-symmetric ker-
nels at two orientations and four scales (overall N = 16

filters). For the "Squares" texture we have used odd-

symmetric kernels at two orientations and three scales,
shifted over five different positions (overall N = 30

filters). These prototype textures are highly non-
gaussian, which makes PCA modeling inadequate (see

figure 3(c) and 4(c)). ICA modeling proves superior in
both cases. In particular, for the "Crosses on clouds"

texture, ICA does a good job at separating the low-

pass, isotropic components (the "clouds") from the

line-shaped, oriented crees (the "'crosses".) In the case
of the "Squares" texture, ICA is able to extract the lo-

cal structure by correctly combining the shifted filters

outputs.

5 Conclusions

We have presented an algorithm that chooses the

basis filters in a steerable space in such a way as to

yield the most informative marginals for texture repre-
sentation. The method is based on the minimization of

the mutual channel information via Independent Com-



(a) (b)

(c) (d)

Figure 3: Examples of texture synthesis. (a) The pro-

totype texture "Crosses on clouds" is synthesized us-

mg Heeger and Bergen's technique (b) with no channel

transformation, (c) with PCA transformation and (d)
with [CA transformation.

(a) (b)

(,-) (4)

Figure" l: Examples of textur,' svnfh¢'si._ for the pro-

totype texture "'Squares" (s,',. ,'apt ioa of figure (3)).

ponent Analysis. The experimental results show the

superiority of ICA modeling with respect to PCA for

natural and synthetic textures and small dimensional

filter spaces.

An interesting open problem, which we are cur-

rently investigating, is subspace selection based on
information-theoretic criteria. We expect that by

choosing a small number of highly informative chan-

nels, one may obtain reduced size representations that

maintain good discrimination properties.
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