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Abstract

In this paper, we present a procedure for organizing real
world scenes along semantic axes. The approach is based
on the output energies of linear discriminant filters that take
into account, or not, spatial information.

We introduce three semantic axes along which pictures
are ordered. The main semantic axis computes the degree
of naturalness of a scene. Then, urban pictures are evalu-
ated according to their degree of verticalness and natural
scenes, according to their degree of openness. We observe
the emergence of typical scene categories such as beach,
mountain, skyscrapers, city center, etc., along the axes.

1 Introduction

Human observers recognize complex visual scenes in a
single glance, in spite of the numerous of objects they con-
tain, with different colors, shadows, textures, etc. To re-
solve it, the visual system automatically extracts a global
information about the main structure of the scene, ignoring
most of details and objects information [4-6].

In this paper, we introduce a computational procedure
that extracts a global structural information from complex
scenes. Common to recent studies about scene recogni-
tion [1-4,10-11] is the classification into exclusive classes.
However, when dealing with a very large database, exclu-
sive classification may increase irrelevant classification rate
as most of scenes are ambiguous in terms of category. Our
approach proposes several structural attributes that allow to
organize continuously scenes along semantic axes [7]. The
structural attributes are computed from the output energies
of linear filters. By computing a global structural attribute
for each scene (e.g. a city skyline is vertically structured, a
coast is horizontally structured), we observe that scenes be-
longing to the same category (e.g. city center, skyscraper,
forest, mountain, etc.) are grouped together whereas am-
biguous scenes in terms of category (tall buildings in a cen-

ter area; rocky valley with trees) are located between se-
mantic zones.

To explore computation of the ”main structure” of a
scene, the next sections details two kinds of optimal filters:
a global filter computed over the whole image and a spatial
variant filter.

2 Semantic Axes

This paper details two levels of semantic axes that repre-
sents attributes of the main structure of a scene:

1) The first semantic axis represents the degree of natu-
ralness of a scene. This axis goes from man-made environ-
ments to natural landscapes. Ambiguous pictures in terms
of ”artificiality” (as a farm in a field) are likely to be pro-
jected around the center of the axis.

2) The second semantic axis depends on the organization
provided by the first axis. Natural scenes are represented ac-
cording to their degree of openness, from panoramic scenes
(e.g. coast, beach) to closed environments (e.g. forest,
mountain). Degree of openness of artificial urban scenes
is estimated according to their quantity of horizontal and
vertical lines. This axis goes from vertical to horizontally
dominant scenes (from highways to tall buildings).

3 Computation of structural attributes

Main orientations and spatial frequency distributions of
the main structure of a scene are encoded in its power spec-
trum. We show that the power spectrum contains relevant
information for the evaluation of the semantic axes.

3.1 Image Power Spectrum

The power spectrum of an image is computed by taking
the squared magnitude of its Fourier Transform:

�(fx; fy) = jFTfi(x; y)gj2 (1)



where i(x; y) is the intensity distribution of the image along
the spatial variables x and y. FT is the Fourier Trans-
form, fx and fy are the spatial frequencies. Power spec-
trum, �(fx; fy), encodes the energy density for each spatial
frequency and orientations over the whole image.

3.2 Discriminant Spectral Templates

A Discriminant Spectral Template (DST) is represented
by a set of low-level features (here orientation and spa-
tial frequency distributions) encoding the structure which
is discriminant between two scene categories. For example,
panoramic scenes versus textured scenes (forests) are dis-
criminated by opposing vertical spectral components (axe
fy) versus other orientations, see Fig. 1.b.

A structural discriminant feature, u, is computed per pic-
ture by using a DST as follows:

u =

Z Z
�(fx; fy)DST (fx; fy)dfx dfy (2)

u is a weighted integral of the power spectrum of the im-
age. DST (fx; fy) is the weighted function that describes
how each spectral component contributes to the structural
attribute.

Fig. 1 shows several examples of DSTs that extract
structural attributes. The dark and white pixels correspond
respectively to the negative and positive values. These
graphical representations allow an easy understanding of
the way that scene organization is performed: as an illustra-
tion, look at the Naturalness DST (Fig 1.a). Artificial com-
ponents are represented by the dark zones describing a cross
form, but only at medium and high spatial frequencies. This
means that a scene picture will be labeled as an artificial en-
vironment whether its power spectrum mostly matches the
dark zones of the DST. The white part corresponds to a nat-
ural structure: it is composed with more oblique elements
from low to high spatial frequencies and a vertical spectral
component only at low spatial scale (the ”horizon” scenes).
Performances of the DSTs are presented in the section 4.

3.3 Learning

A supervised learning stage is used to determine the DST
associated to each semantic axis.

In order to represent DSTs in a low dimensional space,
we decompose it into a set of functions Gn(fx; fy) that do
not need to be orthogonal. In this paper, we use gaussian
envelopes that correspond to Gabor filters:

DST (fx; fy) =

NX
n=1

dnGn(fx; fy)
2 (3)

The coefficients dn show how weighting each Gabor fil-
ter in order to build DSTs. The coefficients dn will be

a)

b)

c)

Figure 1. The left-hand column shows the 3
DSTs. The middle and right-hand columns
show h

�

and h+. a) artificial vs. natural. b)
open vs. closed natural scenes. c) horizontal
vs. vertical artificial scenes.

determined by the learning stage. By replacing eq. (3) into
eq. (2), we obtain the next equation:

gn =

Z Z
�(fx; fy)Gn(fx; fy)

2 dfx dfy (4)

where gn are the output energies for the N Gabor filters
used as basis for the DST . We can compute u for each
image from these energies as:

u =

NX
n=1

dn gn (5)

Here, we sampled the power spectrum with N = 70 Ga-
bor filters from high spatial frequencies (1/3 cycles/image)
to low spatial frequencies (1/72 cycles/image). But no dif-
ferences are when using different reasonable values of N .

In the learning step, each image is represented by a vec-
tor of features x = fgng, gn being the output energies of a
set of Gabor filters.

Several methods can be used to determine the coeffi-
cients dn. The method presented here consists in finding
two different sets of images that can be described with un-
ambiguous semantic attributes. As an illustration, consider
the artificiality of a scene. The first group will be com-
posed of images containing only man-made structures and
the second one will contain only natural landscape images.
The DST must at best separate these two groups. The pa-
rameters of the DST, dn, can be learnt by applying Linear
Discriminant Analysis [8, 9] which looks for the parameters
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giving the best classification rate. Two matrices are funda-
mental when applying the discriminant analysis. The co-
variance matrix: T = E[(x �m)(x �m)T ]. m = E[x]
is the mean vector of features. The between-class scatter
matrix is defined as: Tb = (m1�m)(m1�m)T +(m2�
m)(m2 �m)T . m1 and m2 are the mean vectors of the
feature vectors of the two classes. The between-class scatter
matrix measures the distance between the centers of the two
classes. The discriminant analysis determines the discrimi-
nant projection vector that maximizes the distance between
the two classes after projection 1. The discriminant projec-
tion vector corresponds to the vectord = fdng as defined in
the previous section. The discriminant vector is the eigen-
vector of the matrix T�1Tb with the largest eigenvalue.
As only two groups per semantic axis are defined, only one
eigenvalue is different from zero. Therefore, only one dis-
criminant projection vector can be defined. The discrimi-
nant projection vector is given by: d = T

�1(m1 �m2).
The inversion ofTmay be ill-conditioned when the number
of examples is not larger enough. In that case we use classic
regularization techniques (principal components or adding
a perturbation to the matrixT. There is no difference in the
resulting organizations).

Once the learning is done, we compose DSTs using the
equation (3). After that, projection of one image into the se-
mantic axis does not require the computation of any Gabor
filters. The computational steps for obtaining the structural
feature (and, therefore, the position of the image along the
semantic axis) are: 1) Prefiltering: We divided the image
intensity at each pixel by an estimation of the local vari-
ance in order to reduce illuminant variations. 2) Power
spectrum computation. 3) Structural feature computation:
using equation (2). All this procedure requires only global
and simple computations on the image yielding to a very
efficient algorithm that gives structural information about
the scene. The left-hand side of Fig. 1 shows three global
DSTs. The first one organizes images from artificial to nat-
ural scenes. The second one organizes natural landscapes
from open to closed scenes and the third one organizes arti-
ficial areas from horizontally to vertically structured scenes.

3.4 Scene Discriminant Filters

The output energy of a filter with transfer function
H(fx; fy) can be computed as:

E =

Z Z
�(fx; fy) jH(fx; fy)j

2
dfx dfy (6)

This expression is similar to eq. (2) used to compute the
structural feature u. However, as the squared magnitude of

1Reduction of the data can be performed before applying the discrimi-
nant analysis. However such an operation does not improve the results as
the standard deviations of the Gabor energy outputs are very similar for the
configuration chosen here.

Figure 2. Spatial variant DST for Artificial ver-
sus Natural scenes. The 9 templates at the
left-hand side are the local DSTs. At the right
hand side we show the filters h

�

and h+.

the transfer function of a filter cannot have negative values,
theDST function cannot be implemented by a unique filter.
In fact, it can be implemented by computing the difference
between the output energies of two filters 2. In such a case,
we can compute u as the difference between two energies
as u = E+ � E

�

, where E+ and E
�

are respectively the
output energy of two filters with transfer functions H+ and
H
�

. In such a case, we obtain:

u =

Z Z
�(fx; fy) (jH+(fx; fy)j

2
� jH

�

(fx; fy)j
2
)dfx dfy

This expression allows us to write the DST as:

DST = jH+j
2
� jH

�

j
2 (7)

With this expression, it is possible to obtain positive and
negative values for the DST . Several functions H+ and
H
�

give the same resulting DST . Here, we use:

jH+(fx; fy)j
2
=

NX
n=0

p(dn)Gn(fx; fy)
2 (8)

and

jH
�

(fx; fy)j
2
=

NX
n=0

p(�dn)Gn(fx; fy)
2 (9)

where p(x) = x if x > 0 and p(x) = 0 if x < 0. dn are the
components of the discriminant projection vector computed
in the learning stage. These equations give the magnitude
of the two filters. As the phase can be freely chosen, we
chose null phase filters.

2It must be noted that although scene category discrimination is pos-
sible using an unique filter, it will yield to poorer results than using two
filters. Using more than two filters will not improve results.
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Figure 3. Spatial DST for Open vs. Closed
natural scenes.

Figure 4. Spatial DST for Horizontal vs. Verti-
cal artificial scenes.

If we compute the output of the two filters by convolution
with the respective impulse responses o+(x; y) = i(x; y) �
h+(x; y) and o

�

(x; y) = i(x; y) � h
�

(x; y), the structural
semantic feature can be obtained as:

u =

Z Z
jo+(x; y)j

2
dx dy � (10)

Z Z
jo
�

(x; y)j2 dx dy = E+ �E
�

The impulse responses of these two filters are Receptive
Fields that best discriminate between two groups of images
and that allow a continuous organization of scenes. Fig.
1 shows the impulse responses of both filters for the three
DSTs introduced in this paper.
DST (see Fig. 1) computed in the Fourier domain, is

equivalent to the convolution of the image with two spa-
tial invariant filters and computing the difference of their
total output energies. The two impulse responses h+(x; y)
and h

�

(x; y) reveal the spatial features that are discrimi-
nant between the two opposite sets of images. For artificial
vs. natural scenes we see a cross impulse response vs. an

isotropic (slightly oblique) impulse response (Fig. 1.a). For
open vs. closed natural scenes we find an horizontal edge
detector vs. an isotropic impulse response (Fig. 1.b). For
Horizontal versus vertical artificial environments, the im-
pulse responses are an horizontal vs. a vertical edge detec-
tor (Fig. 1.c).

Here, we ask about the relevance of using spatial variant
filters despite of global filters. In fact, we can imagine that
for some categories of scenes, the main structural compo-
nents may vary in function of their position in the image.
Such an operation may be critical for performing compar-
ison task between similar scenes. For example, for open
natural environments, we can expect to have an horizon in
the middle center with texture at the bottom and sky at the
top. However, closed environments may present texture ev-
erywhere in the image with sometimes, oblique shapes at
the top. Spatial variant filters are expected to take these
spatial differences into account for improving ordering per-
formances along the axes.

To investigate this point, we divide images (256x256 pix-
els) in 9 overlapped windows (128x128 pixels) from left to
right and from top to bottom. We compute the power spec-
trum of each window, �i(fx; fy), and we compute a struc-
tural feature which is a composition of the 9 DSTs and the
9 power spectra:

u =
9X

i=1

�Z Z
�i(fx; fy)DSTi(fx; fy)dfx dfy

�
(11)

The 9 DSTi are obtained by the same learning proce-
dure as for the global DST. Differences in the shapes of
the 9 DSTs will reveal different statistics of the discrimi-
nant orientations and spatial frequencies. Figure 2, 3 and 4
show the 9 DSTs. It must be emphasized that both Global
DST and Spatial DST compute eventually an unique seman-
tic feature. We can look at the impulse responses of the two
discriminant filters H+ and H

�

for each DSTi. The first
observation is that the DSTs vary only from top to bottom
whatever the semantic axis. This means that spatial variant
filters depend only on the vertical spatial variable y and not
on x. This is an expected result as both artificial and natural
environments have a layered structure from top to bottom
(main structures, object attributes and positions differ from
top to bottom but not from left to right). Another interesting
result is that when discriminating between artificial and nat-
ural scenes, the 9 DSTs are highly similar. In that case, the
spatial arrangement of dominant orientations carries very
low information for making the difference between artificial
and natural scenes. A global measure of dominant orienta-
tions over the image gives enough structural information to
resolve this categorization. On the contrary, computations
of degree of openness (Fig. 3) and degree of verticalness
(Fig. 4) is improved by spatially variant filters.
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Artificial... ... Natural

Open ... ... Closed

Horizontal expanded... ... Enclosed ... ... Vertical expanded

Figure 5. Organization of a sample of real-world scenes pictures along the semantic axes. From top
to bottom: Artificial to natural scenes, open to closed natural scenes and horizontally to vertically
expanded artificial scenes (at the middle of this axis are enclosed urban areas).

4 Semantic Ordering Procedure

In this section, we project scenes never learnt along the
three semantic axes and provide elements of comparison
between the Global DST and the spatially variant DST.
We worked with gray-level pictures of 256x256 pixels size
(from the Corel image database, Web pictures and personal
pictures). The image database contains 2600 images (1500
natural scenes, 800 artificial scenes and 300 scenes contain-
ing both natural and artificial elements).

4.1 Ordering along the Artificial to Natural axis

The classification rate (obtained by cross-validation) for
artificial and natural scenes is similar, using Global DST
(92%) or Spatial DST (91%). The top line of Fig. 5 displays
a sample of images revealing the organization along the Ar-
tificial to Natural axis (using the Spatial DST). Ambiguous
images containing both man-made and natural structures
are mainly located around the center of the axis.

4.2 Ordering along the Open to closed axis

This semantic axis organizes natural scenes from
panoramic areas to closed and bounded natural environ-
ments. The classification rate is 94% with Global DST and
97% with Spatial Variant DST.

The middle line of Fig. 5 shows the continuous organi-
zation along the natural semantic axis (using 1500 natural
scenes). We observe an interesting ordering: from open

a)

b)

c)

d)

Figure 6. Similar natural scenes, using Global
DST (a,c) and spatial DST (b,d).

scenes with panoramic views (coast, beach, desert), pro-
gressively filled in with mountains (valley, mountain), until
textural scenes (forest, waterfalls). Of course, some scenes
categories may be mixed along the axis (coastline, desert
and beach zones may overlap), but the addition of color in-
formation definitively disambiguates the semantic status of
the scene 3.

3Performances using DST and color information is detailed in a
manuscript in preparation by the two authors.
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a)

b)

c)

d)

Figure 7. Similar artificial scenes, using
Global DST (a,c) and spatial DST (b,d).

In order to compare performances of the two structural
DST, we evaluated the ability to retrieve similar images to
a given prototype. Results are shown on Fig. 6, using a
beach and a valley as prototypes (left-hand side). When
using the Global DST, the retrieved images have the same
degree of openness but the boundary elements can change.
When using the spatial variant DST, the retrieved images
look slightly more similar.

4.3 Ordering along the horizontal to vertical axis

This axis organizes artificial scenes along the horizontal
to vertical axis (Fig. 5, bottom). Both Global DST and spa-
tial variant DST give the same performances (98%) when
classifying prototypical urban images in horizontal- vs. ver-
tical structured scenes. Three semantic zones emerge: high-
ways scenes, center and city street zones, then city buildings
and skyscrapers. Fig. 7 shows a sample of performances of
both structural features in a retrieving task. Both results
show very good performances knowing that images are re-
trieved by a unique structural feature (either Global DST,
either Spatial DST).

5 Conclusion

In this paper, we introduced three semantic axes and
computation of original filters (Discriminant Spectral Tem-
plates), optimum for the task at hand. Even if it is obvi-
ous that a few more axes would allow a precise classifica-
tion, we observe that only two structural attributes, degree
of naturalness and degree of openness of a scene, allow the
emergence of semantic categories. Moreover, this proce-
dure is very efficient for providing a low cost computational

method, as once DSTs are built, computation of image co-
ordinates along the axes needs only few operations. Finally,
we observe that performances are almost equivalent for the
global and the spatially variant filters, highlighting the rele-
vance of a coarse and global encoding of the main structure
of the scene for its recognition.
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