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Abstract

In this paper, we present a procedure for organizing real
world scenes along semantic axes. The approach is based
on the output energies of linear discriminant filtersthat take
into account, or not, spatial information.

We introduce three semantic axes along which pictures
are ordered. The main semantic axis computes the degree
of naturalness of a scene. Then, urban pictures are evalu-
ated according to their degree of verticalness and natural
scenes, according to their degree of openness. We observe
the emergence of typical scene categories such as beach,
mountain, skyscrapers, city center, etc., along the axes.

1 Introduction

Human observers recognize complex visual scenesin a
single glance, in spite of the numerous of objects they con-
tain, with different colors, shadows, textures, etc. To re-
solve it, the visual system automatically extracts a global
information about the main structure of the scene, ignoring
most of details and objects information [4-6].

In this paper, we introduce a computational procedure
that extracts a global structural information from complex
scenes. Common to recent studies about scene recogni-
tion [1-4,10-11] is the classification into exclusive classes.
However, when dealing with a very large database, exclu-
sive classification may increase irrelevant classification rate
as most of scenes are ambiguous in terms of category. Our
approach proposes several structural attributes that allow to
organize continuously scenes along semantic axes[7]. The
structural attributes are computed from the output energies
of linear filters. By computing a global structural attribute
for each scene (e.g. acity skylineis vertically structured, a
coast is horizontally structured), we observe that scenes be-
longing to the same category (e.g. city center, skyscrape,
forest, mountain, etc.) are grouped together whereas am-
biguous scenesin terms of category (tall buildingsin acen-

ter area; rocky valley with trees) are located between se-
mantic zones.

To explore computation of the "main structure” of a
scene, the next sections details two kinds of optimal filters:
aglobal filter computed over the whole image and a spatial
variant filter.

2 Semantic Axes

This paper details two levels of semantic axesthat repre-
sents attributes of the main structure of a scene:

1) The first semantic axis represents the degree of natu-
ralness of a scene. This axis goes from man-made environ-
ments to natural landscapes. Ambiguous pictures in terms
of "artificiality” (asafarmin afield) are likely to be pro-
jected around the center of the axis.

2) The second semantic axis depends on the organization
provided by thefirst axis. Natural scenesarerepresented ac-
cording to their degree of openness, from panoramic scenes
(e.g. coast, beach) to closed environments (e.g. forest,
mountain). Degree of openness of artificial urban scenes
is estimated according to their quantity of horizontal and
vertical lines. This axis goes from vertical to horizontally
dominant scenes (from highways to tall buildings).

3 Computation of structural attributes

Main orientations and spatial frequency distributions of
the main structure of a scene are encoded in its power spec-
trum. We show that the power spectrum contains relevant
information for the evaluation of the semantic axes.

3.1 Image Power Spectrum

The power spectrum of an image is computed by taking
the squared magnitude of its Fourier Transform:

L(fe, fy) = |FT{i(z,y)}|* )



wherei(z,y) istheintensity distribution of theimage along
the spatial variables z and y. F'T' is the Fourier Trans-
form, f, and f, are the spatial frequencies. Power spec-
trum, T'(f,, f,), encodesthe energy density for each spatial
frequency and orientations over the whole image.

3.2 Discriminant Spectral Templates

A Discriminant Spectral Template (DST) is represented
by a set of low-level features (here orientation and spa-
tial frequency distributions) encoding the structure which
is discriminant between two scene categories. For example,
panoramic scenes versus textured scenes (forests) are dis-
criminated by opposing vertical spectral components (axe
fy) versus other orientations, see Fig. 1.b.

A structural discriminant feature, u, is computed per pic-
ture by using aDST asfollows:

v / / U(fer fy) DST(fo, f)dfe dfy, — (2)

u is aweighted integral of the power spectrum of the im-
age. DST(f., fy) is the weighted function that describes
how each spectral component contributes to the structural
attribute.

Fig. 1 shows several examples of DST's that extract
structural attributes. The dark and white pixels correspond
respectively to the negative and positive values. These
graphical representations allow an easy understanding of
the way that scene organizationis performed: asanillustra-
tion, look at the Naturalness DST (Fig 1.a). Artificial com-
ponentsare represented by the dark zones describing across
form, but only at medium and high spatial frequencies. This
meansthat a scene picturewill belabeled asan artificial en-
vironment whether its power spectrum mostly matches the
dark zones of the DST. The white part correspondsto a nat-
ural structure: it is composed with more oblique elements
from low to high spatial frequencies and a vertica spectra
component only at low spatial scale (the”horizon” scenes).
Performances of the DSTs are presented in the section 4.

3.3 Learning

A supervised learning stageis used to determinethe DST
associated to each semantic axis.

In order to represent DSTs in alow dimensiona space,
we decompose it into a set of functions G, (fz, f,) that do
not need to be orthogonal. In this paper, we use gaussian
envelopesthat correspond to Gabor filters:

N
DST(fo, fy) = Y dn Gu(fas fy)° ®3

n=1

The coefficients d,, show how weighting each Gabor fil-
ter in order to build DST's. The coefficients d,, will be
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Figure 1. The left-hand column shows the 3
DSTs. The middle and right-hand columns
show h_ and h,. a) artificial vs. natural. b)
open vs. closed natural scenes. c) horizontal
vs. vertical artificial scenes.

determined by the learning stage. By replacing eg. (3) into
eg. (2), we obtain the next equation:

gn = / / (farfy) Gulfer £y dfndfy  (4)

where g,, are the output energies for the N Gabor filters
used as basis for the DST'. We can compute u for each
image from these energies as:

N
u = Z dn dn (5)
n=1

Here, we sampled the power spectrum with N = 70 Ga-
bor filters from high spatia frequencies (1/3 cycles/image)
to low spatia frequencies (1/72 cyclesimage). But no dif-
ferences are when using different reasonable values of V.

In the learning step, each image is represented by a vec-
tor of featuresx = {g,}, g» being the output energies of a
set of Gabor filters.

Several methods can be used to determine the coeffi-
cients d,,. The method presented here consists in finding
two different sets of images that can be described with un-
ambiguous semantic attributes. As an illustration, consider
the artificiality of a scene. The first group will be com-
posed of images containing only man-made structures and
the second one will contain only natural landscape images.
The DST must at best separate these two groups. The pa-
rameters of the DST, d,,, can be learnt by applying Linear
Discriminant Analysis[8, 9] which looksfor the parameters



giving the best classification rate. Two matrices are funda-
mental when applying the discriminant analysis. The co-
variance matrix: T = E[(x — m)(x — m)7]. m = E[x]
is the mean vector of features. The between-class scatter
matrix is defined as. T, = (m; —m)(m; —m)7? + (my —
m)(m, — m)”. m; and m, are the mean vectors of the
feature vectorsof the two classes. The between-class scatter
matrix measures the distance between the centers of the two
classes. The discriminant analysis determines the discrimi-
nant projection vector that maximizes the distance between
the two classes after projection . The discriminant projec-
tion vector correspondsto thevectord = {d,, } asdefinedin
the previous section. The discriminant vector is the eigen-
vector of the matrix T—' T, with the largest eigenvalue.
As only two groups per semantic axis are defined, only one
eigenvalueis different from zero. Therefore, only one dis-
criminant projection vector can be defined. The discrimi-
nant projection vector is givenby: d = T (m; — my).
Theinversion of T may beill-conditioned when the number
of examplesisnot larger enough. Inthat case we use classic
regularization techniques (principal components or adding
aperturbation to the matrix T. Thereis no differencein the
resulting organizations).

Once the learning is done, we compose DSTs using the
equation (3). After that, projection of oneimageinto the se-
mantic axis does not require the computation of any Gabor
filters. The computational steps for obtaining the structural
feature (and, therefore, the position of the image along the
semantic axis) are: 1) Prefiltering: We divided the image
intensity at each pixel by an estimation of the local vari-
ance in order to reduce illuminant variations. 2) Power
spectrum computation. 3) Sructural feature computation:
using equation (2). All this procedure requires only global
and simple computations on the image yielding to a very
efficient algorithm that gives structural information about
the scene. The left-hand side of Fig. 1 shows three global
DSTs. Thefirst one organizesimages from artificial to nat-
ural scenes. The second one organizes natural landscapes
from open to closed scenes and the third one organizes arti-
ficial areasfrom horizontally to vertically structured scenes.

3.4 SceneDiscriminant Filters

The output energy of a filter with transfer function
H(fx, f,) can be computed as:

B / / T(for fy) |H(for £)P dfodfy,  (6)

This expression is similar to eg. (2) used to compute the
structural feature u. However, as the squared magnitude of

I Reduction of the data can be performed before applying the discrimi-
nant anaysis. However such an operation does not improve the results as
the standard deviations of the Gabor energy outputs are very similar for the
configuration chosen here.

Figure 2. Spatial variant DST for Artificial ver-
sus Natural scenes. The 9 templates at the
left-hand side are the local DSTs. At the right
hand side we show the filters h_ and h.

the transfer function of afilter cannot have negative values,
the DST function cannot beimplemented by a uniquefilter.
In fact, it can be implemented by computing the difference
between the output energies of two filters 2. In such acase,
we can compute u as the difference between two energies
asu = E, — E_,where E, and E_ are respectively the
output energy of two filters with transfer functions H . and
H_. Insuch acase, we obtain:

u= / (. £y) (HoFor £) = [H-(for £,) ). dF,

This expression allows usto write the DST as:
DST = |H|* — |H_| (7)

With this expression, it is possible to obtain positive and
negative values for the DST. Severa functions H and
H_ givethe sameresulting DST'. Here, we use:

\Hoy (fo, £)I Zp Gnlfarfy)* ()
and
N
\H_(fo, £)I° =D p(=dn) Gu(fer £,)* (9)
n=0

wherep(z) = z if & > 0andp(z) = 0if z < 0. d,, arethe
components of the discriminant projection vector computed
in the learning stage. These equations give the magnitude
of the two filters. As the phase can be freely chosen, we
chose null phase filters.

2|t must be noted that although scene category discrimination is pos-
sible using an unique filter, it will yield to poorer results than using two
filters. Using more than two filters will not improve results.



Figure 3. Spatial DST for Open vs. Closed
natural scenes.

Figure 4. Spatial DST for Horizontal vs. Verti-
cal artificial scenes.

If we computethe output of thetwo filters by convolution
with the respective impulse responses o, (z, y) = i(x,y) *
hy(z,y) ando_(z,y) = i(x,y) * h_(z,y), the structural
semantic feature can be obtained as:

u= [ [lorte.)l* deay - (10)
[[1o-wP deay =, - £

The impulse responses of these two filters are Receptive
Fields that best discriminate between two groups of images
and that alow a continuous organization of scenes. Fig.
1 shows the impulse responses of both filters for the three
DSTsintroduced in this paper.

DST (see Fig. 1) computed in the Fourier domain, is
equivalent to the convolution of the image with two spa-
tial invariant filters and computing the difference of their
total output energies. The two impulse responses h ¢ (x, y)
and h_(z,y) reveal the spatial features that are discrimi-
nant between the two opposite sets of images. For artificial
VS, natural scenes we see a cross impulse response vs. an

isotropic (slightly oblique) impulse response (Fig. 1.a). For
open vs. closed natural scenes we find an horizontal edge
detector vs. an isotropic impulse response (Fig. 1.b). For
Horizontal versus vertical artificial environments, the im-
pulse responses are an horizontal vs. avertical edge detec-
tor (Fig. 1.c).

Here, we ask about the relevance of using spatia variant
filters despite of global filters. In fact, we can imagine that
for some categories of scenes, the main structural compo-
nents may vary in function of their position in the image.
Such an operation may be critical for performing compar-
ison task between similar scenes. For example, for open
natural environments, we can expect to have an horizon in
the middle center with texture at the bottom and sky at the
top. However, closed environments may present texture ev-
erywhere in the image with sometimes, oblique shapes at
the top. Spatial variant filters are expected to take these
spatial differencesinto account for improving ordering per-
formances along the axes.

Toinvestigatethis point, we divideimages (256x256 pix-
els) in 9 overlapped windows (128x128 pixels) from left to
right and from top to bottom. We compute the power spec-
trum of each window, I';( f,, f,). and we compute a struc-
tural feature which is a composition of the 9 DSTs and the

9 power spectra:

ye gi; ( [ T8 DST1s 1) dfy> ()

The 9 DST; are obtained by the same learning proce-
dure as for the global DST. Differences in the shapes of
the 9 DSTs will revea different statistics of the discrimi-
nant orientations and spatial frequencies. Figure 2, 3 and 4
show the 9 DSTs. It must be emphasized that both Global
DST and Spatial DST compute eventually an unigque seman-
tic feature. We can look at the impulse responses of the two
discriminant filters H, and H_ for each DST;. The first
observation is that the DSTs vary only from top to bottom
whatever the semantic axis. This means that spatia variant
filters depend only on the vertical spatial variable y and not
on z. Thisisan expected result as both artificial and natura
environments have a layered structure from top to bottom
(main structures, object attributes and positions differ from
top to bottom but not from left to right). Another interesting
result is that when discriminating between artificial and nat-
ura scenes, the 9 DSTs are highly similar. In that case, the
spatial arrangement of dominant orientations carries very
low information for making the difference between artificia
and natural scenes. A global measure of dominant orienta-
tions over the image gives enough structural information to
resolve this categorization. On the contrary, computations
of degree of openness (Fig. 3) and degree of verticalness
(Fig. 4) isimproved by spatially variant filters.
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Figure 5. Organization of a sample of real-world scenes pictures along the semantic axes. From top
to bottom: Artificial to natural scenes, open to closed natural scenes and horizontally to vertically
expanded artificial scenes (at the middle of this axis are enclosed urban areas).

4 Semantic Ordering Procedure

In this section, we project scenes never learnt along the
three semantic axes and provide elements of comparison
between the Global DST and the spatially variant DST.
We worked with gray-level pictures of 256x256 pixels size
(from the Corel image database, Web pictures and personal
pictures). The image database contains 2600 images (1500
natural scenes, 800 artificial scenesand 300 scenes contain-
ing both natural and artificial elements).

4.1 Orderingalongthe Artificial to Natural axis

The classification rate (obtained by cross-validation) for
artificial and natural scenes is similar, using Global DST
(92%) or Spatial DST (91%). Thetop line of Fig. 5displays
asample of images revealing the organization along the Ar-
tificial to Natural axis (using the Spatial DST). Ambiguous
images containing both man-made and natural structures
are mainly located around the center of the axis.

4.2 Ordering along the Open to closed axis

This semantic axis organizes natural scenes from
panoramic areas to closed and bounded natural environ-
ments. The classification rate is 94% with Global DST and
97% with Spatial Variant DST.

The middle line of Fig. 5 shows the continuous organi-
zation along the natural semantic axis (using 1500 natural
scenes). We observe an interesting ordering: from open

Figure 6. Similar natural scenes, using Global
DST (a,c) and spatial DST (b,d).

scenes with panoramic views (coast, beach, desert), pro-
gressively filled in with mountains (valley, mountain), until
textural scenes (forest, waterfalls). Of course, some scenes
categories may be mixed aong the axis (coastline, desert
and beach zones may overlap), but the addition of color in-
formation definitively disambiguates the semantic status of
the scene 3.

3Performances using DST and color information is detailed in a
manuscript in preparation by the two authors.



Figure 7. Similar artificial scenes, using
Global DST (a,c) and spatial DST (b,d).

In order to compare performances of the two structural
DST, we evaluated the ability to retrieve similar images to
a given prototype. Results are shown on Fig. 6, using a
beach and a valley as prototypes (left-hand side). When
using the Global DST, the retrieved images have the same
degree of openness but the boundary elements can change.
When using the spatial variant DST, the retrieved images
look slightly more similar.

4.3 Orderingalongthe horizontal to vertical axis

This axis organizes artificial scenes along the horizontal
to vertical axis (Fig. 5, bottom). Both Global DST and spa-
tial variant DST give the same performances (98%) when
classifying prototypical urbanimagesin horizontal- vs. ver-
tical structured scenes. Three semantic zones emerge: high-
ways scenes, center and city street zones, then city buildings
and skyscrapers. Fig. 7 shows a sample of performances of
both structural features in a retrieving task. Both results
show very good performances knowing that images are re-
trieved by a unique structural feature (either Global DST,
either Spatial DST).

5 Conclusion

In this paper, we introduced three semantic axes and
computation of origina filters (Discriminant Spectral Tem-
plates), optimum for the task at hand. Even if it is obvi-
ous that a few more axes would alow a precise classifica-
tion, we observe that only two structural attributes, degree
of naturalness and degree of openness of a scene, allow the
emergence of semantic categories. Moreover, this proce-
dureisvery efficient for providing alow cost computational

method, as once DSTs are built, computation of image co-
ordinates along the axes needs only few operations. Finally,
we observe that performances are almost equivalent for the
global and the spatially variant filters, highlighting the rele-
vance of acoarse and global encoding of the main structure
of the scene for its recognition.
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