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ABSTRACT

This paper presents an e�cient shape-based object de-
tection method based on Distance Transforms and de-
scribes its use for real-time vision on-board vehicles.
The method uses a template hierarchy to capture the
variety of object shapes; e�cient hierarchies can be
generated o�ine for given shape distributions using
stochastic optimization techniques (i.e. simulated an-
nealing). Online, matching involves a simultaneous
coarse-to-�ne approach over the shape hierarchy and
over the transformation parameters. Very large speed-
up factors are typically obtained when comparing this
approach with the equivalent brute-force formulation;
we have measured gains of several orders of magni-
tudes.

We present experimental results on the real-time
detection of tra�c signs and pedestrians from a moving
vehicle. Because of the highly time sensitive nature
of these vision tasks, we also discuss some hardware-
speci�c implementations of the proposed method as far
as SIMD parallelism is concerned.

1. INTRODUCTION

Slowly but steadily, vehicles are becoming \smarter".
Using various sensors, they can provide the driver with
relevant information about the surroundings and if de-
sired, even perform simple vehicle control tasks (e.g.
[5] [4]). The �rst products are already gearing up to
the market, see for example the IR-based night vision
system of the Cadillac DeVille car and the radar-based
"Distronic" Active Cruise Control system of the new
Mercedes-Benz S-Class car.

An important component of more advanced on-board
vision systems is the ability to detect objects. For ex-
ample, a Tra�c Sign Assistant might inform the driver

if he makes a wrong turn in a one-way street or if he is
speeding. Alternatively, a system to detect pedestrians
might reduce the accident rate by taking either passive
or active measures to deal with upcoming collisions.

In this paper, we present a shape-based method
which can be used for that purpose; it is general enough
to detect objects of arbitrary shapes. Models or other
parametrizations need not to be established explicitly,
which is an advantage when dealing with non-rigid ob-
jects such as pedestrians. Instead, the method is able
to generate an e�cient representation from example
shapes o�-line; matching proceeds on-line using a novel
variant of Distance Transform (DT) - based matching.

The outline of the paper is as follows. Section 2
reviews previous work on DTs. Section 3 presents the
proposed DT-based representation and matchingmethod.
Because of stringent speed requirements, we discuss
ways to additionally speed up the algorithmby hardware-
speci�c means (i.e. SIMD instructions). Section 5 lists
our experiments on tra�c sign and pedestrian detec-
tion. We conclude in Section 6.

2. PREVIOUS WORK ON DTS

Matching with DT is illustrated schematically in Figure
1. It involves two binary images, a segmented template
T and a segmented image I, which we'll call "feature
template" and "feature image". The "on" pixels de-
note the presence of a feature and the "o�" pixels the
absence of a feature in these binary images. What the
actual features are, does not matter for the matching
method. Typically, one uses edge- and corner-points.
The feature template is given o�-line for a particular
application, and the feature image is derived from the
image of interest by feature extraction.

Matching T and I involves computing the distance
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Figure 1: Matching using a DT

transform of the feature image I. The template T is
transformed (e.g. translated, rotated and scaled) and
positioned over the resulting DT image of I; the match-
ing measure D(T; I) is determined by the pixel values
of the DT image which lie under the "on" pixels of
the transformed template. These pixel values form a
distribution of distances of the template features to the
nearest features in the image. The lower these distances
are, the better the match between image and template
at this location. There are a number of matching mea-
sures that can be de�ned on the distance distribution.
One possibility is to use the average distance to the
nearest feature. This is the chamfer distance.

Dchamfer (T; I) �
1

jT j

X

t2T

dI(t) (1)

where jT j denotes the number of features in T and dI(t)
denotes the distance between feature t in T and the
closest feature in I. Thus, the chamfer distance con-
sists of a correlation between T and the distance image
of I, followed by a division. Other more robust (and
costly) measures reduce the e�ect of missing features
(i.e. due to occlusion or segmentation errors) by us-
ing the average truncated distance or the f-th quantile
value (the Hausdor� distance) [8] [15].

In applications, a template is considered matched at
locations where the distance measure D(T; I) is below
a user-supplied threshold �

D(T; I) < � (2)

Figure 2 illustrates the matching scheme of Figure 1
for the typical case of edge features. Figure 2a-b shows
an example image and template. Figure 2c-d shows
the edge detection and DT transformation of the edge
image. The distances in the DT image are intensity-
coded; lighter colors denote larger distance values.

(a) (b)

(c) (d)

Figure 2: (a) original image (b) template (c) edge im-
age (d) DT image

The advantage of matching a template (Figure 2b)
with the DT image (Figure 2d) rather than with the
edge image (Figure 2c) is that the resulting similarity
measure will be smoother as a function of the template
transformation parameters. This enables the use of
various e�cient search algorithms to lock onto the cor-
rect solution, as will be discussed shortly. It also allows
more variability between a template and an object of
interest in the image. Matching with the unsegmented
(gradient) image, on the other hand, typically provides
strong peak responses but rapidly declining o�-peak
responses.

A number of extensions have been proposed to the
basic DT matching scheme. Some deal with hierar-
chical approaches to improve match e�ciency and use
multiple image resolutions [2]. Others use a pruning
[13] [8] or a coarse-to-�ne approach [15] in the param-
eter space of relevant template transformations. The
latter approaches take advantage of the smooth simi-
laritymeasure associated with DT-based matching; one
need not to match a template for each location, rota-
tion or other transformation. Other extensions involve
the use of a un-directed ("symmetric") similarity mea-
sure between image and a template [8] (e.g. see Fig-
ure 1). Yet other extensions deal with multiple feature
types [6] [11], consider salience measures [14], or use
probabilistic frameworks [10].



With the exception of [11], previous work on DT-
based matching has dealt with the case of matching one
template against an image, allowing certain geometri-
cal transformations (e.g. translation, rotation, a�ne).
Work by Olson [11] discusses a way to avoid matching
duplicate points across multiple templates. Like Ol-
son, we consider the more general case where we match
multiple templates. However, templates do not need to
have any point in common with other templates; the
idea is to capture shape variability by a \prototype"
template and a distance parameter. Consequently, a
di�erent search algorithm results, see next Section.

3. MATCHING MULTIPLE SHAPES

We now discuss the online and o�ine components of
the proposed method.

3.1. Matching using a template hierarchy

When matching N templates to an image, which bear
no relationship to each other, one can hope for little
performance gain compared to a method which matches
the templates separately. Fortunately, in most appli-
cations, there is an underlying structure in the tem-
plate distribution and by combining a template hier-
archy with a coarse-to-�ne search over the image, one
can do better. The idea is that at a coarse level of
search, when the image grid size of the search is large,
it would be ine�cient to match each of the N objects
separately, if they are relatively similar to each other.
Instead, one would group similar templates together
and represent them by a prototype template; matching
would be done with this prototype, rather than with
the individual templates, resulting in a (potentially sig-
ni�cant) speed-up. This grouping of templates is done
at various levels, resulting in a hierarchy, where the leaf
level contains the N templates one needs to match with
and the intermediate levels contains the prototypes.

To make matters more concrete, consider �rst the
case of a coarse-to-�ne search where one matches a sin-
gle template under translation. Assume there are L

levels of search (l = 1; :::; L), determined by the size �l
of the underlying uniform grid and the distance thresh-
old �l which determines when a template matches su�-
ciently enough to consider matching on a �ner grid (in
the neighborhood of the promising solution). Let �tol
denote the allowed tolerance on the distance measure
between template and image at a \correct" location.
Let � denote the distance along the diagonal of a unit

grid element. Then by having

�l = �tol +
1

2
��l (3)

one has the desirable property that, using un-truncated
distance measures such as the chamfer distance, one
can assure that the coarse-to-�ne approach will not
miss a solution. The second term accounts for the
(worst) case that the solution lies at the center of the
4 enclosing grid points which form a square.

Now consider the case where the above L-level search
is combined with a L-level template hierarchy. Match-
ing can be seen as traversing the tree structure of tem-
plates. Each node corresponds to matching a (proto-
type) template p with the image at node-speci�c lo-
cations. For the locations where the distance measure
between template and image is below a user-supplied
threshold �p, one computes new interest locations for
the children nodes (generated by sampling the local
neighborhood with a �ner grid) and adds the children
nodes to the list of nodes to be processed. The match-
ing process starts at the root, the interest locations lie
initially on a uniform grid over relevant regions in the
image. The tree can be traversed in breadth-�rst or
depth-�rst fashion. In the experiments, we use depth-
�rst traversal, which has the advantage that one needs
to maintain only L� 1 sets of interest locations.

Let p be the template corresponding to the node
currently processed during the traversal and let C =
ft1; :::; tcg be the set of templates corresponding to its
children nodes. Let �p be the maximum distance be-
tween p and the elements of C.

�p = max
ti2C

D(p; ti) (4)

Then by having

�p = �tol + �p +
1

2
��l (5)

one has the desirable property that, using untruncated
distance measures such as the chamfer distance, one
can assure that the coarse-to-�ne approach using the
template hierarchy will not miss a solution. The thresh-
olds one obtains by Equation (5) are quite conserva-
tive, in practice one can use lower thresholds to speed
up matching, at the cost of possibly missing a solution
(see Experiments).

3.2. Constructing the template hierarchy

Here we discuss a way to automatically generate the
template hierarchy from the available example tem-
plates. The proposed algorithm uses a bottom-up ap-
proach and applies a \K-means"-like algorithm at each



level of the hierarchy. The input to the algorithm is
a set of templates t1; :::; tN, their dissimilarity matrix
(see below) and the desired partition size K. The out-
put is the K-partition and the prototype templates
p1; :::;pK for each of the K groups S1; :::; SK. The
K-way clustering is achieved by iterative optimization.
Starting with an initial (random) partition, templates
are moved back and forth between groups while the
following objective function E is minimized

E =
KX

k=1

max
ti2Sk

D(ti;p
�

k) (6)

Here, D(ti;p�k) denotes the distance measure between
the i-th element of group k and the prototype for that
group at the current iteration. The distance measure is
the same as the one used for matching (e.g. chamfer or
Hausdor� distance). EntryD(i; j) is the ijth member of
the dissimilarity matrix, which can be computed fully
before grouping or only on demand.

One way of choosing the prototype p�k is to select
the template with the smallest maximum distance to
the other templates. Clearly, a low E-value is desir-
able since it implies a tight grouping; this lowers the
distance threshold that needs to be used during match-
ing (by Equation 5) which in turn likely decreases the
number of locations which one needs to consider during
matching. We use simulated annealing [9] to perform
the minimization of E.

Simulated annealing is a well-known stochastic op-
timization technique where during the initial stages of
the search procedure, moves can be accepted which in-
crease the objective function. The idea is to do enough
exploration of the search space, before resorting to greedy
moves, in order to avoid local minima. Candidate moves
are accepted according to probability p

p =
1

1 + e
�E

T

(7)

where T is the temperature parameter which is ad-
justed according to a certain \cooling" schedule (we
use an exponential schedule [9]).

Since the template hierarchy is constructed o�-line,
it is worth spending a substantial e�ort to devise an
e�cent template hierarchy (in the sense of minimizing
E), because this results in on-line computational gains.

4. HARDWARE-SPECIFIC

OPTIMIZATIONS

Many general-purpose processors come nowadays equipped
with special Single-Instruction Multiple Data (SIMD)

instruction sets. For example, Intel's Pentium II MMX
technology allows concurrent byte-wise operations on
64-bit registers. In order to fully exploit the capabil-
ities of our on-board processor, we implemented the
two main speed bottlenecks of our method in MMX.
Here is pseudo-C-code for the original (sequential) im-
plementation of the computationally-intensive chamfer
transform (with x-y kernel, forward pass, image width
W, image height H), adjusted from [1]:

for (int i=1; i<H-1; ++i)

for (int j=1; j<W-1; ++j)

D[i][j] = min(D[i][j],

min(D[i][j-1]+x,

min(D[i-1][j]+x,

min(D[i-1][j-1]+y, D[i-1][j+1]+y))));

and here is the equivalent SIMD pseudo code (assum-
ing we have K-byte registers Rx, Ry and R1-R5, and
R[i] denotes the i-th byte of register R; disregarding
boundary conditions):

Ry = [y, ..., y]; Rx = [x, ..., x];

for (int i=1; i<H-1; ++i)

for (int j=1; j<W-K-1; j+=K) {

R0 = [D[i-1][j-1], ..., D[i-1][j-1+K-1]];

R0 = SIMD_add(R0, Ry);

R1 = [D[i-1][j+1], ..., D[i-1][j+1+K-1]];

R1 = SIMD_add(R1, Ry);

R2 = [D[i-1][j] , ..., D[i-1][j+K-1]];

R2 = SIMD_add(R2, Rx);

R3 = [ D[i][j] , ..., D[i][j+K-1]];

R3 = SIMD_add(R3, Rx);

R4 = SIMD_min(R0,

SIMD_min(R1,

SIMD_min(R2, R3)));

R5[0] = D[i][j-1];

for (int k=1; k<K, ++k)

R5[k] = min(R5[k-1], R4[k]);

[ D[i][j] , ..., D[i][j+K-1] ] = R5;

}

The number of addition and comparison operations in
the inner loop for the SIMD case is 7+K�1, the equiv-
alent number for the sequential formulation is 8 � K
(actual program pro�ling showed a speed-up of factor
4 for the case of MMX, with K=8).

The other main computational bottleneck is the
correlation between templates and the (chamfer) im-
ages. Since SIMD correlation is well known, we do not
list it here (the measured speed-up for MMX was also
factor 4).



5. EXPERIMENTS

To illustrate the proposed matching method, we ap-
plied it to the detection of tra�c signs and pedestrians
and performed experiments o�-line as well as on-board
our demo vehicle, see Figure 3. Subsequent references
to processing speed involve a 450 MHz dual-Pentium
II processor with MMX.

In both sets of experiments we used a three-level
template hierarchy, which during matching was tra-
versed in a depth-�rst order. We used oriented edges
as features; the orientations were discretized in 8 val-
ues (\feature types"). To improve e�ciency, the tem-
plate points were pre-sorted according to their feature
type. Similarly, 8 distance images were derived from
the scene image, so that correlation took place between
corresponding types [6]. An increase in computational
e�ciency was obtained by subsampling the template
points, based on the level of the corresponding node
in the hierarchy. We used a point sampling rate of
8,4,1 for the three levels from top to bottom, respec-
tively. The spatial grid sizes on which templates were
matched with the image were � = 8; 4; 1, respectively.

Because of real-time requirements, we ended up us-
ing the chamfer distance measure (i.e. Equation 1).
To alleviate e�ects of missing data, we imposed a (rel-
atively low) maximumvalue on the chamfer image pix-
els. Independently of the distance measure used, we
found that having essentially only one edge segmenta-
tion threshold was not always appropriate. A restric-
tive value would result in su�cient edges to guide the
search at the coarser level of the hierarchy, but match-
ing at the �ner level would su�er. Setting the edge
threshold to include all edges needed for a �ne-level
match would be computationally intensive and degrade
the underlying coarse-to-�ne concept. We explored two
approaches to this issue. The �rst involved using mul-
tiple edge thresholds and multiple sets of distance im-
ages based on the level of the hierarchy where matching
was conducted (we used two edge thresholds, for leaf
and non-leaf level matching, respectively). The other
solution involved using a normalized (un-thresholded)
gradient image when matching at the leaf level.

5.1. Tra�c signs

Our �rst application was the detection of circular and
triangular (up/down) tra�c signs, as seen on highways
and secondary roads (e.g. see [3]). In these experiments
we did not consider signs which are signi�cantly tilted
and/or skewed in the image; only scale and transla-

Figure 3: on-board camera and display

tion were explicitly accounted for. We used templates
for circles and triangles with radii in the range of 7-18
pixels (the images are of size 360 by 288 pixels). This
lead to a total of 36 templates, for which a template
tree was speci�ed \manually" as in Figure 4. In order
to optimize for speed, we chose to scale the templates
(o�-line), rather than scale the image (on-line).

We did extensive tests on the tra�c sign detection
application. O�-line, we used a database of 1000 tra�c
sign images, taken during both day- (sunny, rainy) and
night-time conditions. We obtained high single-image
detection rates, typically, of over 95%, when allowing
solutions to deviate by 2 pixels and by radius 1 from the
values obtained by a human. At this rate, there were
one or two detections per image which were not traf-
�c signs, on average. These false positives were over-
whelmingly rejected in a subsequent veri�cation phase,
where a RBF network was used as pictograph classi-
�er (the latter could distinguish about 10 pictographs).
See Figure 5. The tra�c signs that were not detected,
were either tilted or otherwise, re
ected di�cult envi-
ronmental conditions (e.g. rain drops, partial occlusion
by window wiper, direct sunlight into camera). Under
the latter conditions, detection rates could decrease by
as much as 15%, to 80%. We spent many hours testing
our system on the road. The tra�c sign detection (and
recognition) system currently runs at 10-15 Hz.

5.2. Pedestrians

Our second application involves the detection of pedes-
trians. Not surprisingly, it is the more challenging
task of the two; it involves a much larger variety of
shapes that needed to be accounted for and the pedes-
trian contours are less pronounced in the images. Note
that with a few exceptions (e.g. [12] much of the pre-
vious work on \Looking at People" [7] has involved
a static camera; initial segmentation was possible by
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Figure 4: A hierarchy for tra�c sign shapes (hard-
coded)

Figure 5: Tra�c sign detection (and recognition)

background subtraction. Furthermore, it is di�cult for
a user to hard-code the shape hierarchy; it needs to
be constructed automatically from examples. We com-
piled a database of about 1000 pedestrian shapes, nor-
malized for scale. Using 5 scales (range 70-102 pixels)
we obtained a pedestrian hierarchy of about 5500 tem-
plates, following the method described in Section 3.2.
See Figure 6 for a partial view. Observe how the shape
similarity increases towards the leaf level.

Our preliminary experiments on a database of 700
pedestrian images (distinct from the sequences used for
training) resulted in a detection rate of about 75-85%
per image, when requiring the number of false positives
to be two or less per image. See Figure 7 for a few de-
tection results. The last two images of Figure 7 were
some of the IR-images we started recording; as seen

Figure 6: A hierarchy for pedestrian shapes (partial
view)

they provide good segmentation opportunities. Figure
8 shows examples of false positives; typically they are
found on trees or windows. Using the 
at-world as-
sumption and knowledge about camera geometry, we
have set region of interests for the template in the hier-
archy, so that the erroneous template positions shown
in Figure 8 can be a-priori be excluded, speeding up
matching greatly. The current pedestrian system runs
at 1-5 Hz, the �rst road trials are currently underway.

In general, given image width W , image height H,
and K templates, a brute-force matching algorithm
would requireW�H�K correlations between template
and image. In the presented hierarchical approach both
factors W � H and K are pruned (by a coarse-to-�ne
approach in image space and in template space). It
is not possible to provide an analytical expression for
the speed-up, because it depends on the actual image
data and template distribution. Nevertheless, for this
pedestrian application, we measured speed-ups of three
orders of magnitude.

6. CONCLUSIONS AND FUTURE WORK

We proposed a method for shape-based object detec-
tion using Distance Transforms, which takes a com-
bined coarse-to-�ne approach in shape and parameter
space, incorporating a multi-stage segmentation tech-
nique as well. An indication of the e�ciency of the
method was the signi�cant speed up obtained by com-
paring the method to an equivalent brute-force method.



Figure 7: Pedestrian detection results

Figure 8: False positives

We also demonstrated that it allows to perform some
challenging tasks in (near) real-time, involving object
detection from a moving vehicle. Naturally, some lim-
itations exist. For example, even with a multi-stage
edge thresholding technique, matching remains depen-
dent on a reasonable contour segmentation. Further-
more, although we dealt with a sizeable amount of
shape variation when considering pedestrian shapes,
this method might be not the most appropriate to de-
tect pedestrians very close to the camera when shape
variations become even larger. Nevertheless, the pro-
posed method operated quite successfully in our vehi-
cle, and with further work (e.g. temporal integration
of results, integration with stereo/IR) we hope to come
close to the demanding performance rates that might
be required for actual deployment of such a system.
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