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tWe propose in this paper a new 3D fully parallelthinning algorithm that we believe to be the most 
on-
ise due to its simple 
hara
terization. The algorithmis indeed 
ompletely de�ned by a set of �ve patterns,three removing 
onditions and two non-removing 
on-ditions. These patterns are designed from the two fun-damental and 
ompatible 
onstraints usually expe
tedin skeleta: (1) Topology preservation and (2) Medialsurfa
e. From these two 
onstraints, the removing pat-terns (�1, �2 and �3) dete
t the non-lo
al maxima,whereas the non-removing patterns (�1 and �2) pre-vent any topology 
hange that the removing 
onditions
ould imply. We show that the three mentioned 
on-straints are respe
ted. The logi
al 
on
iseness of ourpro
edure, 
alled MB-3D, makes it to our knowledgethe easiest 3D thinning algorithm to implement. Someresults are displayed, that illustrate the relevan
e ofour approa
h. Keywords3D fully parallel thinning algorithm - Dis
rete topo-logy - Con
ise Boolean expression.1 Introdu
tionSkeletonization is a very 
ommon way to representbinary shapes with a limited amount of information.A skeleton that faithfully represents a shape is ex-pe
ted to (1) be topologi
ally equivalent to that shapeand (2) render its geometry and lo
ation. Skeleta areusually obtained through an iterative redu
tion ope-rator 
alled thinning : 
ertain types of border pointsare iteratively removed until no more points 
an bedeleted: the remaining image is 
alled the skeleton.Thinning algorithms have been an important subje
tof resear
h for years in 2D, and more re
ently in 3D.Lots of e�orts have been done to provide the simplest
hara
terization of the non-skeletal points removed byan elementary thinning iteration. In 3D, the 
hara
-terizations remain 
ompli
ated, with great number ofdeleting 
onditions and ex
eptions [10℄, [2℄, [6℄, [7℄, or

with spe
ial rules to avoid dis
onne
tion due to paral-lel removal [5℄.We present in this paper what we believe to be themost 
omputationally eÆ
ient to date Boolean expres-sion of a fully parallel 3D thinning pro
ess: the non-skeletal points are entirely 
hara
terized through a setof three Boolean removing 
onditions and two Booleanremaining 
onditions, every 
ondition being de�ned bya simple pattern, whi
h makes our algorithm straight-forward to implement. Our algorithm meets two fun-damental (yet 
ompatible) 
onstraints: (1) Topologypreservation (2) presen
e of the lo
al maxima. Con-straint (2) ensures that the skeleton is lo
ated rightat the \middle" of shapes, and renders their most sig-ni�
ant geometri
al features. The algorithm, 
alledMB-3D, is 
ompletely de�ned by two small families ofpatterns:� Patterns �1, �2 and �3 are designed to removenon lo
al maxima points for the distan
e indu
edby the 6-topology, within the 26-neighborhood.� Patterns �1 and �2 are designed to avoid dis
on-ne
tion of 18- and 26-
onne
ted points respe
tive-ly.For self-
ontainedness purposes, the following se
tionre
alls some preliminaries. In Se
tion 3, we presentour algorithm, giving the Boolean expression and thevisual representation of the patterns. Then we showthat with the two simple pattern families that de�neit, the MB-3D algorithm respe
ts the two 
onstraintsstated above. At the same time, we illustrate the pa-per with some results and dis
uss the behavior of thealgorithm.2 Theoreti
al ba
kgroundIn this se
tion we set out the mathemati
al toolsne
essary to handle the notions we are dealing with. Inthe �rst subse
tion, we present the dis
rete geometryframework, the 
ubi
 grid. Next, we dis
uss the issue
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Figure 1: Unity sized balls for the three di�erenttopologies in the 
ubi
 grid.of topology preservation, and present the way it hasbeen addressed for the 
ubi
 grid in the litterature.Finally, we introdu
e the morphologi
al operators tobe used for the de�nition of our thinning pro
edure.2.1 Dis
rete topologies in the 
ubi
 gridLet Z3 be the dis
rete spa
e. Let X � Z3 a (binary)(three-dimensional) image. Let X
 = Z3 n X denotethe ba
kground of X . We are working in the 
ubi
grid, this means that the real spa
e R3 is dis
retizedinto Z3 by means of the 
ubi
 quantization: A pointz 2 Z3 represents an elementary volume whi
h is theunit 
ube 
entered around z. In this mesh, three dif-ferent 
onne
tivity relations 
an be de�ned. Figure 1shows the di�erent topologies in the 
ubi
 grid, as de-�ned by the unity sized balls. The topology (and theindu
ed distan
e) is usually denoted using the numberof neighbors in the 
orresponding type of 
onne
tivity.Namely, a point, i.e. a 
ube in our representation, has6 (respe
tively 18, 26) neighbors in the 
onne
tivityde�ned by B6 (respe
tively B18, B26) whi
h are thepoints it shares a fa
e (respe
tively an edge, a vertex)with. Let x; y be two points of Z3. We say that x isN-adja
ent to y (N = 6, 18 or 26) if x is a N -neighborof y. Let A;B be two subsets of Z3. We say that Ais N-adja
ent to B if there exists a 2 A and b 2 Bsu
h that a is N -adja
ent to b. Let X � Z3. X is anN-
onne
ted 
omponent (N-

) of Z3 if there does notexist any partition of X into two subsets that are notN -adja
ent. Let X � Z3 be an image. x 2 X is saidto be N-interior to X if all its N -neighbors belong toX .De�nition 1 Let dN be the distan
e indu
ed by theN-topology. Let X � Z3. A ball B is maximal inX if B � X and there does not exist a ball B0 su
hthat B � B0 � X. Let SN (X) be the 
olle
tion of the
entres of maximum balls asso
iated with dN .De�nition 2 Let X � Z3. The distan
e fun
tionasso
iated with dN on X is �N (x) = dN (x;X
).Property 1 SN (X) = fx 2 X ;8y N-adja
ent tox;�N (x) � �N (y)g: In other words, the 
olle
tion ofthe 
entres of maximal balls 
orresponds to the set oflo
al maxima of the distan
e map.

This formalism aims at giving a sound basis to thenotion of medial surfa
e. Indeed, we ensure that theskeleton lies \at the middle" of the shape if we knowthat it 
ontains the lo
al maxima of the 
orrespondingdistan
e fun
tion.2.2 Topology preservationThe topologi
al equivalen
e is a well known prop-erty. A doughnut is equivalent to a 
o�ee 
up be-
ause they have both exa
tly one \hole of the sametype" (the handle). In 2D and 3D, the topology 
anbe 
hara
terized by the so-
alled fundamental group,i.e a partition of the 
urves by the homotopi
 relation(two 
urves are homotopi
 if there exists a 
ontinuousmorphing from one to the other).To get a sound de�nition of su
h topologi
al proper-ty in our 
ubi
 grid, spe
ial 
are must be taken inthe 
hoi
e of the 
onne
tivity. In parti
ular, an ob-je
t may be 
rossed by a 
onne
ted 
omponent of theba
kground only if there is a hole through it ! In thisrespe
t, it is usually 
hosen the strongest 
onne
tivityfor the ba
kground (i.e. fa
e sharing), and a weakerone for the obje
t itself (i.e. edge or vertex sharing).The 
onne
tivity model that is used in this paper is(26,6)-
onne
tivity, whi
h means 26-
onne
tivity forthe image and 6-
onne
tivity for the ba
kground.Our thinning pro
ess works by iterative deletion ofsets of points. The 
entral notion around the 
hara
-terization of the deleted points is simpli
ity. A pointis simple if its deletion does not 
hange the topology.As in 2D, the 
omputation of simpli
ity 
an be donewithin a �nite neighborhood of the point. The most
on
ise 
hara
terization is provided by Bertrand andMalandain in [1℄:Theorem 1 (Bertrand and Malandain 94)Let X � Z3 be a binary image. Let x 2 X. Let Xx26denote the set of all the 26-neighbors of x, ex
ept xitself, that belong to X, and Xx18 the set of all the 18-neighbors of x that do not belong to X. x is simple inX for the (26,6)-
onne
tivity model if and only if thetwo following 
onditions hold:� x is 26-adja
ent to only one 26-

 of Xx26.� x is 6-adja
ent to only one 6-

 of Xx18.This 
hara
terization uses 
onne
ted 
omponents
ounting only, as in the 2D 
ase. It is important tonoti
e, however, that simpli
ity is a property whi
h isstri
tly individual with respe
t to a point of the 
u-bi
 grid. In general, simultaneously removing simplepoints from a shape leads to topology 
hanges. Fromthis problem arose the notion of simple sets, whi
h aresets of points that 
an be removed from a shape while



preserving the topology. Ronse �rst introdu
ed the
on
ept in [8℄ for 2D images, 
on
ept that was thengeneralised by Kong in [3℄ for higher-dimensional im-ages. In these papers, it is shown that a set is simplefor the image X if and only if it 
an be ordered in asequen
e of points fx1; : : : ; xng su
h that for every iin f1; : : : ; ng, xi is individually simple (in the formersense) with respe
t to X n fx1; : : : ; xi�1g. From thisproperty, Ronse proposed in [9℄ suÆ
ient 
onditionsthat were very eÆ
ient to prove the soundness of par-allel thinning algorithm in 2D. This result has beenextended to the 3D 
ase by Ma in [4℄. We now giveMa's result for the (26,6)-
onne
tivity. Let a unit lat-ti
e square be the set of four 
orners of a unit squareof the 
ubi
 grid, and a unit latti
e 
ube be the set ofeight 
orners of a unit 
ube of the 
ubi
 grid.Theorem 2 (Ma 94)Let X � Z3 be a binary image. An algorithm thatremoves points in parallel from a binary 3D shape Xpreserves (26,6)-
onne
tivity if the two following 
on-ditions are satis�ed:� Every subset of X that is 
ontained in a unit lat-ti
e square and that is removed by the algorithmis simple.� No 
onne
ted 
omponent of X 
ontained in a unitlatti
e 
ube is 
ompletely removed.This theorem allows to prove the soundness of a par-allel thinning algorithm by 
he
king a limited numberof 
on�gurations.2.3 Morphologi
al operatorsWe de�ne hereunder the morphologi
al operatorsneeded to provide the Boolean expression of our thin-ning pro
edure.The morphologi
al erosion of an image X by a setB � Z3, denoted X 	 B is the set of all points x ofZ3 su
h that the translated set of B by ve
tor x is
ompletely in
luded in X .The morphologi
al dilation of an image X by a setB � Z3, denoted X � B is the set of all points x ofZ3 su
h that the interse
tion of the translated set ofB by ve
tor x with X is non-empty.A pattern of Z3 is a tuple (H;M) of �nite subsets ofZ3 su
h that H \M = ;.The Hit-Or-Miss Transform (HMT) of an image X bya pattern 
 = (H;M) is the image:X ~ 
 = (X 	H) \ (X
 	M).We will say that x mat
hes 
 every time that x 2X ~ 
.If we denote BN the set of all the N -neighbors of the

origin (N = 6, 18 or 26, 
f. Figure 1), we may also de-�ne another transformation that we 
all Hit-Or-MissNeighborhood Transform (HMNT) relative to the N -neighborhood, that we denote X }N 
, and de�ne by:X }N 
 = (X ~ 
)� (BN 	 (H [M))Note that X }N 
 is a superset of X ~ 
.These notions are going to be used in the de�nition ofMB-3D. HMT 
orresponds to a 
on�guration that theneighborhood of a point must exa
tly mat
h, whereasHMNT 
orresponds to a 
on�guration that must be
ontained in the mentioned neighborhood.3 The thinning pro
edureMB-3D is an iterative parallel thinning algorithm,where ea
h iteration deletes from an image X a setof points denoted mb(X), 
orresponding to 
ertainneighborhood 
onditions. These 
onditions are basedon patterns that are shown in Table 1. Every patterna
tually 
omes with all its �=2 rotated versions aroundthe three axes Ox, Oy, and Oz.z 2 mb(X) if and only if:(1) 9i 2 f1; 2; 3g; z 2 X ~ �i (2) z 62 X }18 �1and (3) z 62 X }26 �2Let X0 = X , Xn+1 = Xn nmb(Xn).The MB-3D skeleton of X is X1.
α1 α2 α3 β1 β2

Table 1: De�nition of the MB-3D algorithm, basedon 5 
lasses of patterns.The �rst 
olle
tion (the �i family) is used in HMTs.Every pattern represents two subsets of Z3, The Hit-set 
orresponds to the grey 
ubes, whi
h are the pointswhose value is 1. The Miss-set 
orresponds to thetransparent 
ubes, whi
h are the points whose valueis 0. The dark 
ube 
orresponds to the origin. No ori-entation is given, as every pattern must be 
onsideredin all its possible orientations, indeed, the pro
edureis 
ompletely isotropi
. Note right away that �1, �2and �3 are based on the unity sized ball B6 of Fi-gure 1. Thus these patterns naturally lend themselvesto 
omputationally eÆ
ient des
ription and manipu-lation. The se
ond 
olle
tion (the �i family) is used inHMNTs, �1 is to be dete
ted in the 18-neighborhood,�2 in the 26-neighborhood. Note that no origin isne
essary here, sin
e both patterns are symmetri
al.To simplify in the following se
tions we shall say \xmat
hes �1" (resp. �2) every time that x 2 X }18 �1(resp. x 2 X }26 �2).



(1) (2)Figure 2: Two examples to illustrate the ne
essity ofpatterns �i.The thinning a
tion 
learly results from the shape ofthe �i patterns. We a
tually believe that the de�ni-tion of these patterns is a very pure 
hara
terizationof a peeling pro
ess: any point that mat
hes an �i isadja
ent to a 6-interior point, su
h that all the fa
esopposite to this interior point are on the frontier ofthe image. Still the �i are a bit greedy: some topolo-gy 
hanges would o

ur without the safety providedby the �i patterns. Figure 2 shows why the �i are ne-
essary through two examples. The bla
k points be-long to the image, the white ones to the ba
kground.(1) The square point mat
h pattern �1, but its re-moval would lead to 26-dis
onne
tion: MB-3D will notremove it sin
e �1 is 
ontained in its 18-neighborhood.(2) The two square points mat
h pattern �1, but theirsimultaneous removal would 6-
onne
t the two whitepoints, whi
h is forbidden: MB-3D will not removethem sin
e �2 is 
ontained in the 26-neighborhood ofthe bla
k square points.4 Results and behaviorSome results of our thinning algorithm 
an be seenon Figure 3. The results of MB-3D are displayed onthe left 
olumn (Images (1.a) to (4.a)). As expe
ted,there are two pixel-thi
k surfa
es. This is a naturalout
ome of the isotropy 
onstraint.In this se
tion, we establish the soundness of the pro-
edure, �rstly, by proving that the algorithm preservesthe (26,6)-topology, and se
ondly by showing that, un-der a 
ertain 
ondition whi
h is expli
ited, the skele-ton 
ontains the maxima of the d6 distan
es within the26-neighborhood. We next dis
uss the behavior of thealgorithm as it is applied to some signi�
ant shapes.4.1 Topologi
al propertiesWe prove in this se
tion that the MB-3D algorithmpreserves the (26-6)-topology of the binary shapes. Ifx 2 X , we use the two sets Xx26 and Xx18 de�ned inTheorem 1. The proof is based on �ve lemmae. Lem-mae 1 to 3 deal with the 26-topology preservation ofobje
ts, whereas Lemmae 4 and 5 deal with the 6-topology preservation of the ba
kground. Lemma 1and 4 prove that one iteration of the MB-3D algorith-m removes only simple points. Lemma 1 and Lemma 2

(1.a)(1)

(2) (2.a)

(3) (3.a)

(4) (4.a)Figure 3: Some results of the thinning algorithm. Theleft 
olumn 
ontains the original images. The right
olumn displays the results of MB-3D.are used to prove Lemma 3. Lemma 4 is used to proveLemma 5. Lemmae 3 and 5 prove that any pair of6-adja
ent points removed by MB-3D is a simple set.Finally, the proof is 
ompleted in Proposition 1.Lemma 1 Let x 2 X, between two 6-neighbors a andb, with a 62 X and b 2 X (
f Figure 6). If x is 26-adja
ent to more than one 26-

 of Xx26, then eitherx is 
ontained in pattern �1, or x is 
ontained in thepattern � represented on Figure 5.proofIf x is 26-adja
ent to more than one 26-

 of Xx26, then there must exist a pointy in Xx26 whi
h is not 26-adja
ent to b. y
annot be a 6-neighbor of x, but it maybe an 18-neighbor, as illustrated by 
 on Figure 5:Pattern �.Figure 6(1). In that 
ase, sin
e 
 and b are not in thesame 26-

, x mat
hes �1. If there is no su
h 
, theny is only a 26-neighbor of x, as illustrated by d onFigure 6(2). In that 
ase, x mat
hes � 2



Figure 4: Result of MB-3D on a segmented image oflung.
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(1)Figure 6: Proving Lemma 1.Corollary 1 Any point removed by one iteration ofthe algorithm ful�ls 
ondition 1 of Theorem 1.Indeed, any point that mat
hes pattern �1 or �2 isne
essarily between two 6-neighbors, one in X , theother in the ba
kground. The same holds for a pointthat mat
hes �3, and not �1. Then Lemma 1 appliesand, sin
e pattern � is a parti
ular 
ase of pattern �2,the point is 26-adja
ent to only one 26-

 of Xx26.Lemma 2 Let x 2 X. Let Y be a subset of X su
hthat Y � mb(X) and Y [ fxg is 
ontained in a unitlatti
e square. Then x 2 (X n Y ) }26 � implies x 2X }26 �2.proofLet us 
onsider x 2 (X n Y ) }26 �. If x 2 X }26 �,then x 2 X }26 �2. If not, the situation is that ofFigure 7(1), where Y � fy1; y2; y3g. Note that thethree points represented by squares belong either toY or to X
. If y1 2 X
 or y3 2 X
, then obviouslyx 2 X }26 �2. If not, fy1; y3; zg � X . It followsthat y2 may mat
h an �i only with an interior pointwithin the 
ube drawn on Figure 7(1). But forea
h of the seven possibilities, one 
an easily 
he
kthat this is not possible. Then y2 62 Y , so y2 2 X
,and the four points fx; t; y2; zgmake up a �2 pattern 2Lemma 3 Let x and y be two 6-neighbors su
h thatfx; yg � mb(X). Then x is 26-adja
ent to only one26-

 of (X n fyg)x26.
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a

x

b

yFigure 7: Proving Lemmae 2 and 3.proofUnder the premises of Lemma 3, it 
an easily be
he
ked that whatever the �i it mat
hes, x is al-ways between two 6-neighbors su
h that one belongsto X n fyg and the other to X
. Now suppose that xis 26-adja
ent to more than one 26-

 of (X n fyg)x26.From Lemma 1, x must mat
h one of the two pattern-s �1 or � within (X n fyg). But Lemma 2 shows it
annot be � sin
e x would have mat
hed �2 before theremoval of y, in 
ontradi
tion with x being removed byMB-3D. So x mat
hes �1 within (X n fyg); more pre-
isely, the situation of x is that of Figure 6(1), with
 and b in distin
t 26-

s. Sin
e x does not mat
h�1 within X , y as a removed point, is part of �1, asshown on Figure 7(2). Besides, e and f must bothbelong to X
. But then, y 
ould not have mat
hed an�i pattern, whi
h is in 
ontradi
tion with its removalby MB-3D 2Lemma 4 Let x 2 X, between two 6-neighbors a andb, with a 62 X and b 2 X. If x is 6-adja
ent to morethan one 6-

 of Xx18, then x is 
ontained in pattern�1.proofSee Figure 8(1). If there exists 
 62 X su
h that a and
 belong to two distin
t 6-

s of Xx18, then point d su
hthat d 6= x, d 6-adja
ent to both a and 
 must belongto X . So x mat
hes pattern �1 2Corollary 2 Any point removed by one iteration ofthe algorithm ful�ls 
ondition 2 of Theorem 1.Lemma 5 Let x and y be two 6-neighbors su
h thatfx; yg � mb(X). Then x is 6-adja
ent to only one6-

 of (X n fyg)x18.proofThe premises of Lemma 5 (identi
al to those of Lem-ma 3), implies that x is between two 6-neighbors su
hthat one belongs to X nfyg and the other to X
. Nowsuppose that x is 6-adja
ent to more than one 6-

 of(X n fyg)x18. From Lemma 4, x must mat
h �1 within
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yFigure 8: Proving Lemmae 4 and 5.(X n fyg). See Figure 8(2), where a and y belong todistin
t 6-

s of (X n fyg)x18. If b and 
 both belong toX , then y 
ould not have mat
hed an �i pattern, so bor 
 belong to X
. Let us suppose it is b. Sin
e x isremoved, it does not mat
h pattern �2, and so d 2 X
.Sin
e x does not mat
h pattern �1, e 2 X
 also, and�nally a and y belong to the same 6-

. That leads toa 
ontradi
tion 2We may now give the main proposition.Proposition 1 The MB-3D algorithm preserves the(26,6) topology.proofAs mentioned earlier, Lemma 1 and Lemma 4 provethat one iteration of the MB-3D algorithm removesonly simple points. Now let fx1; x2g be a pair of 6-adja
ent points, simultaneously removed by MB-3D.Lemma 3 and Lemma 5 prove that fx1; x2g is a sim-ple set. More generally, let Y be a set of points su
hthat Y � mb(X) and Y is 
ontained in a unit lat-ti
e square. Let x 2 Y su
h that x is not simple in(X n (Y n fxg)). Then Lemmae 1 and 4, show that xmat
hes pattern �1 or �, but the latter is forbiden byLemma 2. Then x mat
hes �1 within (X n (Y n fxg)).Now let us 
onsider fx1; x2g � mb(X) a pair of 18-adja
ent, not 6-adja
ent points. It is easy to see thatif x1 62 X }18 �1, then x1 62 (X n fx2g) }18 �1. Sox1 is simple in (X n fx2g), and then fx1; x2g is asimple set. Let fx1; x2; x3g � mb(X) be a tripletof points 
ontained in a unit latti
e square su
h thatx1 and x2 are 6-adja
ent. Then fx1; x2g is simple,and it is easy to see that if x3 62 X }18 �1, thenx3 62 (X n fx1; x2g) }18 �1, so fx1; x2; x3g is a simpleset. Let fx1; x2; x3; x4g � mb(X) be the four 
ornersof a unit latti
e square. fx1; x2; x3g is a simple set, andif x4 62 X}18�1, then x4 62 (X nfx1; x2; x3g)}18�1, sofx1; x2; x3; x4g is a simple set. Thus we have provedthat any set 
ontained within a unit latti
e square is asimple set. At last, it is obvious that an iteration of theMB-3D algorithm 
annot entirely remove a 
onne
ted
omponent 
ontained in a unit latti
e 
ube, sin
e no�i �ts into this elementary 
ube. So we have provedthat MB-3D is a parallel redu
tion operator that ful-

�ls 
onditions (1) and (2) of Theorem 2. Then MB-3Dpreserves (26,6)-topology 24.2 Non-topologi
al propertiesAs we have seen in Se
tion 2.1, geometry preser-vation is related to the notion of medial surfa
e. Inthe 
ubi
 grid, there exist three 
anoni
al distan
es,namely d6, d18 and d26, leading to three di�erent lo
almaxima sets. A fully parallel thinning algorithm hasto favor the 6-distan
e, sin
e a removed point mustbe a 6-
ontour point (i.e. have a 6-neighbor in theba
kground). Let k = 6, 18 or 26. We de�ne the(6; k)�medial surfa
e as the following set:Sk6 (X) = fx 2 X ;8y k-adja
ent to x;�6(x) � �6(y)gNote that the 
ase k = 6 
orresponds to the setS6(X) de�ned in Se
tion 2.1. In order to get a faithfulshape representation featuring some noise immunity,the MB-3D algorithm is based on the (6; 26)�medialsurfa
e, i.e. S266 (X).We illustrate the sele
tive a
tion of the �i by apply-ing the MB-3D to a parallelepiped, �rstly restri
ted topattern �1, se
ondly to the two patterns �1 and �2,and �nally the 
omplete algorithm. Results 
an beseen on Figure 9. We see that di�erent skeleta are ob-tained a

ording to the medial surfa
e they are builton. The skeleton (b) (resp. (
), (d)) is based on themedial surfa
e S6(X) (resp. S186 (X), S266 (X)). Thusthe MB algorithm 
an lead to di�erent skeleta by therestri
tion to 
ertain �i patterns. This 
an be veryuseful for the versatile representation of 
omplex 3Dobje
ts.As every removed point is adja
en-t to a 6-interior point, it 
an be for-mally shown that the skeleton 
ontainsthe set S266 (X) de�ned above, as longas the points are examined in the orderindu
ed by the distan
e fun
tion. Thisis what appends with usual images.Nevertheless, there are ex
eptions, 
or- Figure 10:Ill-
onstru
ted2D image.responding to ill-
onstru
ted images. These imagesare the 3D equivalent of the better known patholog-
(a) (b) (c) (d)

Figure 9: Di�erent 
hoi
es of the medial surfa
e lead-ing to di�erent skeleta.



(1) (2)Figure 11: Ill-
onstru
ted patterns.i
al images in 2D, of whi
h we give an example onFigure 10. These images 
orrespond to a 
on�gura-tion that would \prote
t" a pie
e of surfa
e, prevent-ing a thi
k volume from being thinned. In 3D, animage is ill-
onstru
ted if it 
ontains one of the twopatterns shown on Figure 11 (at least one of the twosquare points does not belong to X). Note that it
orresponds to one-pixel holes mat
hing �1 or �2.The last, but not least, property of MB-3D to beemphasized on is its 
omputational eÆ
ien
y. Firstly,the 
on
iseness of the Boolean de�nitions of the pro-
edure leads to a 
ompa
t 
omputational des
ription,whi
h means eÆ
ien
y in the 
omputation of one itera-tion. Se
ondly, the full parallelism of the algorithmimplies that the overall number of iterations neededto a
hieve the 
omputation of the skeleton equals theradius of the largest 6-ball 
ontained as many itera-tions.5 Con
lusionA new thinning algorithm for 3D digital pi
tureshas been proposed. We have given in Table 1 its 
om-plete expression. Compared to the other algorithmswe know of, MB-3D seems to be the most 
on
ise andthen the simplest to implement. Indeed, the points re-moved by the �i patterns are those that are adja
entto a 6-interior point, and for whi
h every fa
e oppo-site to this interior point is a frontier fa
e. With thisvery short 
hara
terization, the �i patterns allow toobtain the medial surfa
e through a fully parallel andisotropi
 pro
edure while preserving 
onne
tivity, ex-
ept in a few 
ases, taken 
are of by the even simpler�i patterns. Although the de�nition of the thinningalgorithm is mu
h shorter than all other algorithmswe are aware of, the results prove to be satisfying.A
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