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Abstract During the last years there has been an intensive wave of
research on the possibility to obtain reconstructions wgmto
This paper deals with the concept of auto-calibration, unknown similarity transformation (often callé&liclidean
i.e. methods to calibrate a camera on-line. In particulag w  reconstruction} without using fully calibrated cameras. In
deal with minimal conditions on the intrinsic parameters this case it is necessary to have some additional informatio
needed to make a Euclidean reconstruction, called flexibleabout either the intrinsic parameters, the extrinsic param
calibration. The main theoretical results are that it is pnl  ters or the object in order to obtain the desired Euclidean
needed to know that one intrinsic parameter is constant. reconstruction.
The method is based on an initial projective reconstruc-  One common situation is when the intrinsic parame-
tion, which is upgraded to a Euclidean one. The number ters are constant during the whole (or a part) of the im-
of images needed increases with the complexity of the conage sequence. Auto-calibration from the assumption of
straints, but the number of points needed is only the numberconstant intrinsic parameters is traditionally known a6 se
needed in order to obtain a projective reconstruction. The calibration. This problem leads to the so called Kruppa
theoretical results are exemplified in a number of experi- equations. These equations are highly nonlinear and dif-
ments. An algorithm, based on bundle adjustments and aficult to solve numerically. Several attempts to solve this
linear initialization method are presented and experinsent problem have been made, see [11, 5]. In [6] the same prob-
are performed on both synthetic and real data. lem is solved by a global optimization technique, where a
lot of smaller optimization problems have to be solved in or-
der to get a starting point for the last optimization. More re
cent approachesto self-calibration, using more robugtmet
ods, can be found in [1] (using the more gendfalippa
constraint$, [14] (using the so callechodulus constrainjs
One of the main goals of computer vision is to ex- and [15] (using the classical formulation with thbsolute
tract three-dimensional properties from a number of two- coniccombined with a robust estimation method).
dimensional perspective images, for an overview see [4].  puring the last years, several attempts have been made to
One such property is the three-dimensional structure of angevelop auto-calibration techniques under less restristi
object seen in several images. This problem is often calledon the intrinsic parameters of the camera. The first step
the structure and motion problersince both the structure i, this direction was made in [7] and another approach us-
of the scene and the motion of the camera are obtained. Theng the so callednodulus constrairin [13], where the self-
classical approach, made by photogrammetrists, is to useqalibration method presented in [14] is extended to allgwin
pre-calibrated cameras. Thenitis possible to reconstiect  changing focal length. However, the practical implicasion
object and the motion up to an unknown similarity transfor- of this result is questionable since when the focal length
mation, for an overview see [2]. In contrast to the classical yaries, by zooming, the principal point varies also. In [8],
approach, the uncalibrated reconstruction assumes oRly imfor the first time an existence proof for the possibility to do

In this case it is only possible to reconstruct the objecoup t and aspect ratio.

an unknown projective transformation.

1. Introduction

The next step in the development of flexible calibration
*This work has been done within then ESPRIT Reactive LTR ptoje techniques was to weaken the assumptions further. Simul-

21914, CUMULI and the Swedish Research Council for EngingeBci- taneously, it was shown in. [9] and [12] that it_ is sufficient
ences (TFR), project 95-64-222 to know the skew. In fact, it was even shown in the former




paper the more general result that it is sufficient to know about: (i) the plane at infinity (3 parameters), (ii) the ab-
any one of the intrinsic parameters. Observe that all othersolute conic (5 parameters), (iii) the origin and oriermtati
intrinsic parameters are unknown and allowed to vary be- of the Euclidean coordinate system (6 parameters) and (iv)
tween the different imaging instances. the global scale (1 parameter). The global scale can not be
In this, we will generalize the result on flexible calibra- determined because of the speed-scale ambiguity. The ori-
tion to the case of oneonstantintrinsic parameter. The gin and orientation of the Euclidean coordinate system are
theoretical results are verified by experiments on both sim-internal Gauge freedoms, i.e. depends on how a coordinate

ulated and real data. system is chosen. The plane at infinity encodes the affine
structure and is represented by its normal vector contginin
2. Problem Formulation 4 components defined up to scale in the projective space.

Finally, the absolute conic encodes the Euclidean stractur
within the affine space and is represented by a symmetric
3 x 3 matrix defined up to scale. The main goal of the exis-
tence proofs that will be presented in this paper is to charac
X terize the set of projective transformatiddssuch that the
X yf st % v transformed camera matricB#H can be factorized as
z
1

The image formation system (the camera) is modeled by
the equation

Ayl=]0 f yo| R -Rt] W

1 0 0 1 PH~K[R|-Rt] , 3)
A =K[R[ —=Rt]X=PX . whereK; fulfils the desired constraints. We are now ready
to state the flexible calibration problems from constant in-

_ T - . .
HereX =[XY Z1]' denotes object coordinates in extended trinsic parameter more formally:

form andx = [ xy1]" denotes extended image coordinates.
The scale factoh, called thedepth, accounts for perspec-  proplem 2.1. (Flexible calibration fromconstanintrinsic

tive effects andR,t) represent a rigid transformation of the  5rameter) Given a projective reconstruction of the scene
object, i.e.R denotes a X 3 rotation matrix and a 3x 1 in the form of a sequence of camera matrices, character-

translation vector. Finally, the parameters in twibra- ize the subset of projective transformations H that makes
tion matrix , K, represent intrinsic properties of the image it possible to factorize #Pl as in (3) with K representing

formation system{ represents focal lengthrepresentsthe oy intrinsic calibration matrix with one intrinsic paramest
aspect ratio, srepresents the skew aixb, yo) is called the constant.

principal point and is interpreted as the orthogonal projec-

tion of the focal point onto the image plane. The parameters  Although this problem formulations seems similar to the

in Randt are callecextrinsic parametersand the parame-  problem of flexible calibration from orlenownintrinsic pa-

ters inK are called thentrinsic parameters. rameter, see [9] it is of a more complex nature, Moreover,
In this paper we will deal with sequences of camera ma- jt does notfollow from the solution to flexible calibration

trices, obeying different constraints on the intrinsicgrar from knownintrinsic parameter that Problem 2.1 is solv-
eters. Let able.

P=PR=K[R|-Rti])i—1. . m (2) . .
3. Constraints on the Camera Matrices
denote a sequence ofcamera matrices. We make the fol-

lowin finitions: . . .
owing definitions We start with a lemma giving the constraints for se-

Definition 2.1. A sequence of camera matrices containing duences of camera matrices with one constant intrinsic pa-
cameras modeled as in (1), with constaig called acon- rameter.

stant skew sequence Wheny is constant it is called an ) )

constant aspect-ratio sequencand when botisandyare ~ Lemma 3.1. A sequence of camera matricg®) with

constant it is called &gid image sequence

ul
When a projective reconstruction has been obtained, the R= viIT t|, 4)
camera matrices are known up to an unknown projective wl
transformation, i.e(R) and(P,H) are both valid sequences
of camera matrices for any non-singulax4t matrix H. normalized such thatwy, = 1, represents a constant skew

The projective transformatioll contains 15 parameters sequence, a constant aspect ratio sequence, a camera with
(16 parameters defined up to scale) encoding informationconstant focal length, a camera with constant x-coordinate



and y-coordinate of the principal point if and only if cameras with constant focal length, constatbordinate
of principal point and and constawptcoordinate of princi-

(Ui x W) (vi X Wp) (5) pal point, respectively. Note that the sequences of camera

Vi x w; |2 matrices with, e.gs = s° form a sub-manifold ofMs.s de-
(U x wi) x (Vi x )| ©) noted M5, etc. In particular, an element M/S=S wil
|(vi x wi) |2 be denoted b{/Pl)kso, etc.
[Vi X Wi (7) The subclass of transformations that preserves the prop-
Ui Wi (8) erties in Lemma_l 3.1 is denoted Wscs Gsca Gscf, Gscx
Vi ) and Gscyrespectively.

Again the group of similarity transformations is con-

respectively is constant. tained inGses Gsca Gscr, Gsexand Gseysince these trans-
formations do not change the intrinsic parameters.

Proof. Insert the notations above in (1) and manipulate then

Theorem 4.1. Let , and respec-
the equations GScs GSca GScf GScx gScy p

tively denote the class of transformations in 3D-space that
preserves the conditions in Lemi@d and Gs the group of
similarity transformations in 3D-space. Then

GScs: gSca: GScf = GScx: GScyZ Gs .

—+£0
m  Moreover, the sub-manifoldsissy, Msyff, M=,

u' = yfry+sfro+xors,
VI = fra+yors, (10)

WT=r3 .

M % and Mgy, are fixed under transformations with

4. Proof of Minimal Conditions elements inGs, implying that it is not possible to transform
between two different values of the constant intrinsic pa-

For a moment, we do not take into account the spe- f@meter.
cial form of the camera matrices, (1), for cameras with a proof. From the discussion above we haw C Gs.,
constant intrinsic parameter, and instead work with tptall where agaime is one of the properties in Lemma 3.1.
uncalibrated cameras. Then it is possible to make recon-  Assume that we have a sequence of camera matrices,
struction up to an unknown projective transformation. This (P) € Ms.e, With B = Ki[R | — Rt ]. We may without
means that it is possible to calculate camera maties restrictions assume that= 0,y=1, f =1,x9=0o0ryp =0
i =1,...,mthat fulfills in Ki, since changes of coordinate systems in the images
achieves this. Now, we would like to characterize the set
of transformationst, such thaH (R) € Ma,.. Letxx de-
note one of the cases= <, y=V°, f = 0, xo =3 or
Yo=Y, withso#0, Y #1, fo #1,x3 # 0 andy] # 0
and letx denote one of the cases.=0,y=1, f =1,
%o =0 oryp = 0. Assume thail (R) € MZ,, We now have
P =K[R | —Rti]andHP ~ K*[R | — Rt/ ]. Combining
these equations gives

)\iXi:RX, i:l,...,m. (11)

Given one sequence of camera matridds = 1,...,m,
and a reconstructiorX, alsoPH, i =1,... ,mandH1X
is a possible choice of camera matrices and reconstruction
whereH denotes a non-singulard4 matrix. The goal is
to characterize the set of projective transformatidrnsuch
that the transformed camera matriédd can be factorized
asPH ~ K[ R | —Rit; ], whereRH fulfils the correspond- K [R|ti] [/é g] =K'[RA+tc|Rb+td] ~K*[R |t] .
ing constraint in Lemma 3.1.

Let Msp denote the manifold of all (possibly infinite) _
sequences of camera matrices. The group consisting of allChoosingi = 0 giveskRA ~ K{*R. Assume thaA has
projective transformations, i.6p acts on the manifolafsp ~ the property that for every sequence of calibration matri-

in the following way cesK" and orthogonakR,, it is possible to factoriz&*RA
according t&*RA ~ K**R!', for some sequence of calibra-
Gp x Mspd (H,(R)) — (PH) € Msp . tion matricesK;** and orthogonaR!. Then alsdJAV has

this property for every pair of orthogonal matriddsand
In the same way the groug@s of similarity transformation V. Thus we might replaca with D; = UAV = diag(a, b, ),
acts on the manifolé/sp. wherea, b andc denote the singular values Af Thus we
Denote byMscs Msca Msci, Mscx and Mscy the sub-  getK*R'D1 ~ K*R"” and choosing®’ = | we obtain
manifold of all sequences of camera matrices that repre- . S
sents constant skew cameras, constant aspect-ratio camera KDy ~ KR . (12)



The left hand side of (12) is upper triangular implying that at infinity (in total 8 parameters). The sequence of trans-

Hllzl.

Constant aspect-ratio: Writing out (12) gives

af asf ax Y St X
0 bf bp|~|0 f (13)
0 0 ¢ 0 0 1

implying (af)/(bf) = (\°f')(f') anda = y’b. Making a
permutation of andb givesb = yPa, from which it follows

thaty® = 1.

Constant skew: Writing out (12) in this case gives
ayf 0 ax vy Lf
0 bf byl ~ ' ¥ (14)
0 0 c 0 0 1

implying°f = 0 and thus® = 0.
Constant focal length: Writing out (12) again gives

ay as ax YO §f X
0 b by|~|0 0y (15)
0 0 c 0 0 1

implying b/ f® = c andb = f%. Making a permutation df
andc givesc = %, from which it follows thatf® = 1.
Constantxg or yo: Writing out (12) gives immediateb58 =
0 andyp = 0 similarly to the case of constant skew.

In all cases we have reduced properiyto propertysx,
i.e. we know that? =1,s° =0, fO=1,xJ =0 oryj re-

formed camera matric§®H) has to obey one of the con-
straints in Lemma 3.1. Assuming that only one intrinsic
parameter is constant, we obtain one polynomial constraint
for each camera (apart from the first one). Thus at least 10
images are needed to obtain a unigue solution (9 equations
in 8 unknowns), i.e. one more image than in the case of a
known intrinsic parameter. In the case of rigid image planes
we have 2 polynomial constraints from each image (apart
from the first one), requiring at least 6 images to obtain a
unigue solution, i.e. 2 more than in the case of Euclidean
image planes.

5. Finding a Solution using Bundle Adjust-
ments

A bundle adjustment algorithm was developed for esti-
mating all unknown parameters, from an initial estimate.
The motivation for this algorithm is as follows. Introduce
parameters for all 3D-pointX j, all unknown intrinsic pa-
rameters inK;, all rotation matriced}} and all translation
vectorstj, as in (1). Given these parameters, calculate the
coordinates of the resulting image pointg (image num-
beri and point numbey) from (1),

)A(i’j:f(Ki,Rj,ti,XJ) . (17)
The goal of the bundle adjustment algorithm is to minimize
the deviation of these re-projected coordinates to theahctu

spectively. From the theorem on flexible calibration from measured coordinates in the 2-norm, i.e.

one known intrinsic parameter, see [9], it follows immedi-

ately thatGs.e C Gsand the theorem is proven. [ ]

This theorem is valid only under the assumption that the

min (Xiyj —)A(i7j)2 .

18
Ki,Riti X ] (18)

number of images covering all possible choiceKafR;

andt; are available. This fact is used implicit in the for-

when the measured coordinates of the image points are as-
sumed to be corrupted by Gaussian noise of zero mean and

mulation of the theorem and in the proof, by requiring that €dual standard deviation. In fact, it can be proven that the

P =Ki[Ri | —Rit; ] can be chosen arbitrarily.

Cramér-Rao lower bound is reached, see [10, 3]. In general,

However, it can be argued that only a finite number of the Gauss-Newton method is used to find the minimum, see

images are needed in order to auto-calibrate the cameral2]- Other variants of this methods can also be found, e.g.
The only requirement is that the camera motion has to bel-€venberg-Marquardt, see [6].

sufficiently general. Start with a projective reconstromti
represented by a sequence of camera mattiBgs with
Pi~[1]0]. Then the projective transformatidth is of
the form

yf sf % O
_10 f w O

H=1lo o0 1 o ° (16)
a b c¢c 1

Let mdenote the number of images amthe number of
points. Denote byn the bundle of all unknown parameters,
m = {P,...,Pm,X1,...,Xn}. Each such element belongs
to a non-linear manifold. Introduce docal parameter-
ization m(Ax), aroundmg € M according to

M x RN 5 (mo,AX) — m(mo,AX) € M, (19)
where N = 10m+ 3n+ 1 if one intrinsic parame-
ter is constant. For convenience the local parame-

containing the unknown intrinsic parameters of the first ter Ax is divided into two parts according téx =

camera and parameters describing the location of the plané Aay,...,Aam,Aby, ... ,Ab, |7,

i.e. Aa; parameterize



changes in camera matrix andAb; parameterize changes
in reconstructed poink;. Each camera matrix is written !
P =K[R | —Rt ] and changes iK; are parameterized as
fi(mo,Ax) = f + Aa;(1) etc., where thé\g;:s are restricted
differently according to the different assumptions on the f\
intrinsic parameters. Changes Ry are parameterized as T +H
Ri(mo, Ax) = exp([ Aa;(6) Aai(7) Aai(8) | x)R; and changes
inti andX; similarly (usingAb; for X;). ‘
Introduce aesidual vectorY, formed by putting all de- ar
viations between measured and re-projected image coordi- |
nates in a column vector. These residuals depend on the
measured image positions as well as on the estimated - - - - - .
parametersn. The sum of squared residudis= Y'Y is
minimized with respect to the unknown paramei&xsus-
ing the Gauss-Newton method as follows. A linearization  Figure 1. The estimated skew for aspect free cam-

-
T

of Y (Ax) gives eras (solid curve), constant aspect ratio (dashed
curve), rigid image planes (solid horizontal line)
oY and constant skew (dotted horizontal line).
Y (BX) % Y (0) + ~—(0) AX . (20) w( izontal line)
0AX
We want to findAx so thatY (Ax) = 0, giving the update camera positions were chosen at random approximately
1000 units away. Also the orientation were chosen at ran-
Ax=—(ATA)"ATH, A= a_Y(o), b=Y(0) , (21) dom. The intrinsic parameters were chosen as follows:
0AX f = 1000+ N(0,50), s= 0, y = 1, (Xo,¥0) = (0,0) +

In practice it is useful to use the Levenberg-Marquardt (N(0,10),N(0,10)), where N(0,0) denotes a stochastic
method, i.e. to addl to ATA before taking the inverse, Vvariable with mean zero and standard deviat@n The

wheree is a small positive number. magnitude of the calculated image coordinates are approx-
A method to find initial values, proposed by Pollefeys imatively 500 pixels. Finally, a stochastic error of startia
in [12], is based on (16), originating from [7], [1]. This deviation 1 pixel has been added to the image coordinates.
method is based on the assumptions that, generally, the prinExperiments have been performed on these simulated data
cipal point, skew and aspect ratio can be guessed fairly acPY starting close to the simulated values of the structude an
curately, e.gs= 1, y= 1, and principal point located in Motion and applying the bundle adjustment algorithm in the
the centre of the image. Starting from (3), inserting (16) cases Euclideanimage planes{0, y= 1), non-skew cam-
and eliminatingR by multiplying with the transpose gives ~€ras ¢=0), aspect-free camerag< 1), rigid image planes,
(considering the first & 3 block) constant skew cameras and constant aspect ratio cameras.
In Figure 1 the obtained skew in each camera is plotted. In
Table 1 the RMS (root mean square) of the errors are shown
in all six cases. Note that the RMS in the images, i.e. the
error between the re-projected and the given image coordi-
and adding the assumptions made above on the intrinsic panates, decreases when more parameters are allowed to vary,
rameters This equations contains 6 linear equations in the %yt are similar for known and constant parameters. Note
unknownshi, Aifi, fi, a, b, ¢ a”fj‘?‘z +b?+c% Thuswe can  gisg that the estimates of the aspect ratio and skew are very
solve fornandf; using a quasi-linear method, when atleast gccurate, especially when they are assumed to be constant.

(22)

T T
KiK] ~PT [KlKl Kan ]R

nK]  nn'

three images are available. Moreover, the errors in focal length are rather small com-
pared to the variation of the focal length and the error in the
6. Experiments principal point is only a few pixels.

Real data: We have tested the algorithms on real image
Experiments have been performed on both simulated anddata. Figure 2 shows one of 42 images of a scene contain-
real data in order to show the applicability of the presented ing point markers and some curves and silhouettes. The im-
flexible calibration techniques and to compare the differen ages have been taken by the same camera without zooming
constraints to each-other. or focusing. Firstly a projective reconstruction was made
Simulated data: An experiment was performed with 27 using iterative factorization followed by projective bued
points in 26 images. The points were positioned regu- adjustment. Secondly, Pollefeys method was used to calcu-
larly with coordinates between500 and+500 units. The  late initial Euclidean structure and motion assuming known



_ | image Af Ay As A Ay sic parameter or even from the knowledge that only one
Eip | 0.891 1.735 n.a n.a. 1.534 1478 intrinsic parameter is constant, called flexible calitmati
ns | 0878 1.964 8.805 na. 2.040 2214 We have also presented an algorithm that auto-calibrate the

af 0.880 2.002 n.a. 7.723 2.155 1.663 : . -
qp | 0891 1709 0000 0000 1490 1506 camera from thesg assumptions and shown the applicability
on both real and simulated data.

cs | 0.878 2168 8.960 0.000 2.136 2.412
ca | 0.880 2.711 0.000 8.378 2.906 2.094
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