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Abstract

This paper deals with the concept of auto-calibration,
i.e. methods to calibrate a camera on-line. In particular, we
deal with minimal conditions on the intrinsic parameters
needed to make a Euclidean reconstruction, called flexible
calibration. The main theoretical results are that it is only
needed to know that one intrinsic parameter is constant.
The method is based on an initial projective reconstruc-
tion, which is upgraded to a Euclidean one. The number
of images needed increases with the complexity of the con-
straints, but the number of points needed is only the number
needed in order to obtain a projective reconstruction. The
theoretical results are exemplified in a number of experi-
ments. An algorithm, based on bundle adjustments and a
linear initialization method are presented and experiments
are performed on both synthetic and real data.

1. Introduction

One of the main goals of computer vision is to ex-
tract three-dimensional properties from a number of two-
dimensional perspective images, for an overview see [4].
One such property is the three-dimensional structure of an
object seen in several images. This problem is often called
the structure and motion problem, since both the structure
of the scene and the motion of the camera are obtained. The
classical approach, made by photogrammetrists, is to used
pre-calibrated cameras. Then it is possible to reconstructthe
object and the motion up to an unknown similarity transfor-
mation, for an overview see [2]. In contrast to the classical
approach, the uncalibrated reconstruction assumes only im-
age feature correspondences and no calibration information.
In this case it is only possible to reconstruct the object up to
an unknown projective transformation.
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During the last years there has been an intensive wave of
research on the possibility to obtain reconstructions up toan
unknown similarity transformation (often calledEuclidean
reconstructions), without using fully calibrated cameras. In
this case it is necessary to have some additional information
about either the intrinsic parameters, the extrinsic parame-
ters or the object in order to obtain the desired Euclidean
reconstruction.

One common situation is when the intrinsic parame-
ters are constant during the whole (or a part) of the im-
age sequence. Auto-calibration from the assumption of
constant intrinsic parameters is traditionally known as self-
calibration. This problem leads to the so called Kruppa
equations. These equations are highly nonlinear and dif-
ficult to solve numerically. Several attempts to solve this
problem have been made, see [11, 5]. In [6] the same prob-
lem is solved by a global optimization technique, where a
lot of smaller optimization problems have to be solved in or-
der to get a starting point for the last optimization. More re-
cent approaches to self-calibration, using more robust meth-
ods, can be found in [1] (using the more generalKruppa
constraints), [14] (using the so calledmodulus constraints)
and [15] (using the classical formulation with theabsolute
coniccombined with a robust estimation method).

During the last years, several attempts have been made to
develop auto-calibration techniques under less restrictions
on the intrinsic parameters of the camera. The first step
in this direction was made in [7] and another approach us-
ing the so calledmodulus constraintin [13], where the self-
calibration method presented in [14] is extended to allowing
changing focal length. However, the practical implications
of this result is questionable since when the focal length
varies, by zooming, the principal point varies also. In [8],
for the first time an existence proof for the possibility to do
flexible calibration was given, in the case of known skew
and aspect ratio.

The next step in the development of flexible calibration
techniques was to weaken the assumptions further. Simul-
taneously, it was shown in [9] and [12] that it is sufficient
to know the skew. In fact, it was even shown in the former



paper the more general result that it is sufficient to know
any one of the intrinsic parameters. Observe that all other
intrinsic parameters are unknown and allowed to vary be-
tween the different imaging instances.

In this, we will generalize the result on flexible calibra-
tion to the case of oneconstantintrinsic parameter. The
theoretical results are verified by experiments on both sim-
ulated and real data.

2. Problem Formulation

The image formation system (the camera) is modeled by
the equation
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(1)

HereX � �X Y Z1�T denotes object coordinates in extended
form andx � � x y1�T denotes extended image coordinates.
The scale factorλ, called thedepth, accounts for perspec-
tive effects and
R�t � represent a rigid transformation of the
object, i.e.R denotes a 3�3 rotation matrix andt a 3�1
translation vector. Finally, the parameters in thecalibra-
tion matrix , K, represent intrinsic properties of the image
formation system:f represents focal length,γ represents the
aspect ratio, s represents the skew and
x0 �y0� is called the
principal point and is interpreted as the orthogonal projec-
tion of the focal point onto the image plane. The parameters
in Randt are calledextrinsic parametersand the parame-
ters inK are called theintrinsic parameters.

In this paper we will deal with sequences of camera ma-
trices, obeying different constraints on the intrinsic param-
eters. Let

P � 
Pi � Ki � Ri � � Riti ��i�1���� �m (2)

denote a sequence ofm camera matrices. We make the fol-
lowing definitions:

Definition 2.1. A sequence of camera matrices containing
cameras modeled as in (1), with constants is called acon-
stant skew sequence. Whenγ is constant it is called an
constant aspect-ratio sequenceand when boths andγ are
constant it is called arigid image sequence.

When a projective reconstruction has been obtained, the
camera matrices are known up to an unknown projective
transformation, i.e.
Pi � and 
PiH � are both valid sequences
of camera matrices for any non-singular 4� 4 matrix H.
The projective transformationH contains 15 parameters
(16 parameters defined up to scale) encoding information

about: (i) the plane at infinity (3 parameters), (ii) the ab-
solute conic (5 parameters), (iii) the origin and orientation
of the Euclidean coordinate system (6 parameters) and (iv)
the global scale (1 parameter). The global scale can not be
determined because of the speed-scale ambiguity. The ori-
gin and orientation of the Euclidean coordinate system are
internal Gauge freedoms, i.e. depends on how a coordinate
system is chosen. The plane at infinity encodes the affine
structure and is represented by its normal vector containing
4 components defined up to scale in the projective space.
Finally, the absolute conic encodes the Euclidean structure
within the affine space and is represented by a symmetric
3 �3 matrix defined up to scale. The main goal of the exis-
tence proofs that will be presented in this paper is to charac-
terize the set of projective transformationsH such that the
transformed camera matricesPiH can be factorized as

PiH � Ki �Ri � � Riti � � (3)

whereKi fulfils the desired constraints. We are now ready
to state the flexible calibration problems from constant in-
trinsic parameter more formally:

Problem 2.1. (Flexible calibration fromconstantintrinsic
parameter) Given a projective reconstruction of the scene
in the form of a sequence of camera matrices, character-
ize the subset of projective transformations H that makes
it possible to factorize PiH as in (3) with Ki representing
an intrinsic calibration matrix with one intrinsic parameter
constant.

Although this problem formulations seems similar to the
problem of flexible calibration from oneknownintrinsic pa-
rameter, see [9] it is of a more complex nature, Moreover,
it does notfollow from the solution to flexible calibration
from known intrinsic parameter that Problem 2.1 is solv-
able.

3. Constraints on the Camera Matrices

We start with a lemma giving the constraints for se-
quences of camera matrices with one constant intrinsic pa-
rameter.

Lemma 3.1. A sequence of camera matrices
Pi � with

Pi �
�
�

uT
i

vT
i ti

wT
i

�
� � (4)

normalized such that wi �wi � 1, represents a constant skew
sequence, a constant aspect ratio sequence, a camera with
constant focal length, a camera with constant x-coordinate



and y-coordinate of the principal point if and only if
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ui �wi (8)

vi �wi (9)

respectively is constant.

Proof. Insert the notations above in (1) and manipulate then
the equations �

����
uT � γ f r1 � s f r2 � x0r3 �
vT � f r2 � y0r3 �
wT � r3 �

(10)

4. Proof of Minimal Conditions

For a moment, we do not take into account the spe-
cial form of the camera matrices, (1), for cameras with a
constant intrinsic parameter, and instead work with totally
uncalibrated cameras. Then it is possible to make recon-
struction up to an unknown projective transformation. This
means that it is possible to calculate camera matricesPi ,
i � 1� � � � �m that fulfills

λixi � PiX � i � 1� � � � �m � (11)

Given one sequence of camera matrices,Pi , i � 1� � � � �m,
and a reconstruction,X, alsoPiH, i � 1� � � � �m andH�1X
is a possible choice of camera matrices and reconstruction,
whereH denotes a non-singular 4�4 matrix. The goal is
to characterize the set of projective transformationsH such
that the transformed camera matricesPiH can be factorized
asPiH � Ki �Ri � � Riti �, wherePiH fulfils the correspond-
ing constraint in Lemma 3.1.

Let MSP denote the manifold of all (possibly infinite)
sequences of camera matrices. The group consisting of all
projective transformations, i.e.GP acts on the manifoldMSP

in the following way

GP �MSP � �H � 
Pi �� 	
 
PiH � � MSP �
In the same way the groupGS of similarity transformation
acts on the manifoldMSP.

Denote byMScs, MSca, MSc f, MScx andMScy the sub-
manifold of all sequences of camera matrices that repre-
sents constant skew cameras, constant aspect-ratio cameras,

cameras with constant focal length, constantx-coordinate
of principal point and and constanty-coordinate of princi-
pal point, respectively. Note that the sequences of camera
matrices with, e.g.s� s0 form a sub-manifold ofMScs, de-
notedM s�s0

Scs , etc. In particular, an element inM s�s0

Scs will

be denoted by
Pi �s�s0
, etc.

The subclass of transformations that preserves the prop-
erties in Lemma 3.1 is denoted byGScs, GSca, GSc f, GScx

andGScy respectively.
Again the group of similarity transformations is con-

tained inGScs, GSca, GSc f, GScx andGScy since these trans-
formations do not change the intrinsic parameters.

Theorem 4.1. Let GScs, GSca, GSc f, GScx andGScy respec-
tively denote the class of transformations in 3D-space that
preserves the conditions in Lemma3.1andGS the group of
similarity transformations in 3D-space. Then

GScs� GSca� GSc f � GScx� GScy� GS �

Moreover, the sub-manifoldsM s�s0

Scs , M
γ�γ0

Scg , M f� f 0

Sc f ,

M
x0�x0

0
Scx and M

y0�y0
0

Scy are fixed under transformations with
elements inGS, implying that it is not possible to transform
between two different values of the constant intrinsic pa-
rameter.

Proof. From the discussion above we haveGS � GS

 ,
where again�� is one of the properties in Lemma 3.1.

Assume that we have a sequence of camera matrices,

Pi � � MS

, with Pi � Ki � Ri � � Riti �. We may without
restrictions assume thats� 0, γ � 1, f � 1,x0 � 0 ory0 � 0
in Ki , since changes of coordinate systems in the images
achieves this. Now, we would like to characterize the set
of transformations,H, such thatH 
Pi � � MS

. Let �� de-
note one of the cases:s � s0, γ � γ0, f � f 0, x0 � x0

0 or
y0 � y0

0, with s0 �� 0, γ0 �� 1, f0 �� 1, x0
0 �� 0 andy0

0 �� 0
and let � denote one of the cases:s � 0, γ � 1, f � 1,
x0 � 0 ory0 � 0. Assume thatH 
Pi � � M ��S

, We now have
Pi � K�i �Ri � �Riti � andHPi � K ��i

�R�i � �R�it �i �. Combining
these equations gives

K �i �Ri � ti � �A b
c d� � K �i �RiA� tic �Rib� tid � � K̄ ��i

� R�i � t �i � �

Choosingti � 0 givesK �i RiA � K̄��i R��i . Assume thatA has
the property that for every sequence of calibration matri-
cesK �i and orthogonalRi , it is possible to factorizeK �i RiA
according toK�i RiA � K̄��i R��i , for some sequence of calibra-
tion matricesK̄ ��i and orthogonalR��i . Then alsoUAV has
this property for every pair of orthogonal matricesU and
V. Thus we might replaceA with D1 � UAV � diag
a�b�c�,
wherea, b andc denote the singular values ofA. Thus we
getK �i R��i D1 � K̄ ��i R���i and choosingR��i � I we obtain

K �i D1 � K̄ ��i R���i � (12)



The left hand side of (12) is upper triangular implying that
R���i

� I .
Constant aspect-ratio:Writing out (12) gives

�
�
a f as f ax0
0 b f by0

0 0 c

�
� �

�
�
γ0 f � s� f x�0

0 f � y�0
0 0 1

�
� (13)

implying 
a f �� 
b f � � 
γ0 f � � 
 f � � anda � γ0b. Making a
permutation ofa andb givesb � γ0a, from which it follows
thatγ0 � 1.
Constant skew:Writing out (12) in this case gives

�
�
aγ f 0 ax0

0 b f by0

0 0 c

�
� �

�
�
γ� f � s0 f x�0
0 f � y�0
0 0 1

�
� (14)

implying s0 f � 0 and thuss0 � 0.
Constant focal length:Writing out (12) again gives

�
�
aγ as ax0
0 b by0

0 0 c

�
� �

�
�
γ� f 0 s� f x�0

0 f 0 y�0
0 0 1

�
� (15)

implying b� f 0 � c andb � f 0c. Making a permutation ofb
andc givesc � f 0b, from which it follows thatf 0 � 1.
Constantx0 or y0: Writing out (12) gives immediatelyx0

0
�

0 andy0 � 0 similarly to the case of constant skew.
In all cases we have reduced property�� to property�,

i.e. we know thatγ0 � 1, s0 � 0, f 0 � 1, x0
0
� 0 or y0

0 re-
spectively. From the theorem on flexible calibration from
one known intrinsic parameter, see [9], it follows immedi-
ately thatGS

 � GS and the theorem is proven.

This theorem is valid only under the assumption that the
camera motion is sufficiently general and that an infinite
number of images covering all possible choices ofKi , Ri

and ti are available. This fact is used implicit in the for-
mulation of the theorem and in the proof, by requiring that
Pi � Ki � Ri � � Riti � can be chosen arbitrarily.

However, it can be argued that only a finite number of
images are needed in order to auto-calibrate the camera.
The only requirement is that the camera motion has to be
sufficiently general. Start with a projective reconstruction
represented by a sequence of camera matrices
Pi �, with
P1 � � I � 0 �. Then the projective transformationH is of
the form

H �

�
		�
γ f s f x0 0
0 f y0 0
0 0 1 0
a b c 1

�


� � (16)

containing the unknown intrinsic parameters of the first
camera and parameters describing the location of the plane

at infinity (in total 8 parameters). The sequence of trans-
formed camera matrices
PiH � has to obey one of the con-
straints in Lemma 3.1. Assuming that only one intrinsic
parameter is constant, we obtain one polynomial constraint
for each camera (apart from the first one). Thus at least 10
images are needed to obtain a unique solution (9 equations
in 8 unknowns), i.e. one more image than in the case of a
known intrinsic parameter. In the case of rigid image planes
we have 2 polynomial constraints from each image (apart
from the first one), requiring at least 6 images to obtain a
unique solution, i.e. 2 more than in the case of Euclidean
image planes.

5. Finding a Solution using Bundle Adjust-
ments

A bundle adjustment algorithm was developed for esti-
mating all unknown parameters, from an initial estimate.
The motivation for this algorithm is as follows. Introduce
parameters for all 3D-points,X j , all unknown intrinsic pa-
rameters inKi , all rotation matricesRi and all translation
vectorsti , as in (1). Given these parameters, calculate the
coordinates of the resulting image points ˆxi � j (image num-
ber i and point numberj) from (1),

x̂i � j � f 
Ki �Ri �ti �X j � � (17)

The goal of the bundle adjustment algorithm is to minimize
the deviation of these re-projected coordinates to the actual
measured coordinates in the 2-norm, i.e.

min
Ki �Ri �ti �X j

∑
i � j


xi � j � x̂i � j �2 � (18)

This solution is actually optimal in a statistical sense, i.e.
when the measured coordinates of the image points are as-
sumed to be corrupted by Gaussian noise of zero mean and
equal standard deviation. In fact, it can be proven that the
Cramér-Rao lower bound is reached, see [10, 3]. In general,
the Gauss-Newton method is used to find the minimum, see
[2]. Other variants of this methods can also be found, e.g.
Levenberg-Marquardt, see [6].

Let m denote the number of images andn the number of
points. Denote by� the bundle of all unknown parameters,
� � �P1 � � � � �Pm�X1 � � � � �Xn�. Each such element belongs
to a non-linear manifold,M . Introduce alocal parameter-
ization � 
∆x�, around�0 � M according to

M �RN � 
�0�∆x� 	
 � 
�0�∆x� � M � (19)

where N � 10m � 3n � 1 if one intrinsic parame-
ter is constant. For convenience the local parame-
ter ∆x is divided into two parts according to∆x �
� ∆a1� � � � �∆am�∆b1 � � � � �∆bn �T , i.e. ∆ai parameterize



changes in camera matrixPi and∆b j parameterize changes
in reconstructed pointXj . Each camera matrix is written
Pi � Ki � Ri � � Riti � and changes inKi are parameterized as
fi 
�0 �∆x� � f � ∆ai 
1� etc., where the∆ai:s are restricted
differently according to the different assumptions on the
intrinsic parameters. Changes inRi are parameterized as
Ri 
�0�∆x� � exp
�∆ai 
6� ∆ai 
7� ∆ai 
8� � ��Ri and changes
in ti andX j similarly (using∆b j for X j ).

Introduce aresidual vectorY, formed by putting all de-
viations between measured and re-projected image coordi-
nates in a column vector. These residuals depend on the
measured image positionsxi j as well as on the estimated
parameters� . The sum of squared residualsf � YTY is
minimized with respect to the unknown parameters∆x, us-
ing the Gauss-Newton method as follows. A linearization
of Y 
∆x� gives

Y 
∆x� � Y 
0� � ∂Y
∂∆x


0� ∆x � (20)

We want to find∆x so thatY 
∆x� � 0, giving the update

∆x � �
ATA��1ATb� A � ∂Y
∂∆x


0� � b � Y 
0� � (21)

In practice it is useful to use the Levenberg-Marquardt
method, i.e. to addεI to ATA before taking the inverse,
whereε is a small positive number.

A method to find initial values, proposed by Pollefeys
in [12], is based on (16), originating from [7], [1]. This
method is based on the assumptions that, generally, the prin-
cipal point, skew and aspect ratio can be guessed fairly ac-
curately, e.g.s � 1, γ � 1, and principal point located in
the centre of the image. Starting from (3), inserting (16)
and eliminatingRi by multiplying with the transpose gives
(considering the first 3�3 block)

K1KT
1 � PT

i

�
K1KT

1 K1nT

nKT
1 nnT � Pi � (22)

and adding the assumptions made above on the intrinsic pa-
rameters This equations contains 6 linear equations in the 7
unknownsλi , λi fi , fi , a, b, c anda2 � b2� c2. Thus we can
solve forn and fi using a quasi-linear method, when at least
three images are available.

6. Experiments

Experiments have been performed on both simulated and
real data in order to show the applicability of the presented
flexible calibration techniques and to compare the different
constraints to each-other.
Simulated data: An experiment was performed with 27
points in 26 images. The points were positioned regu-
larly with coordinates between�500 and�500 units. The
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Figure 1. The estimated skew for aspect free cam-
eras (solid curve), constant aspect ratio (dashed
curve), rigid image planes (solid horizontal line)
and constant skew (dotted horizontal line).

camera positions were chosen at random approximately
1000 units away. Also the orientation were chosen at ran-
dom. The intrinsic parameters were chosen as follows:
f � 1000� N
0�50�, s � 0, γ � 1, 
x0 �y0� � 
0�0� �

N
0�10� �N
0�10��, where N
0�σ� denotes a stochastic
variable with mean zero and standard deviationσ. The
magnitude of the calculated image coordinates are approx-
imatively 500 pixels. Finally, a stochastic error of standard
deviation 1 pixel has been added to the image coordinates.
Experiments have been performed on these simulated data
by starting close to the simulated values of the structure and
motion and applying the bundle adjustment algorithm in the
cases Euclidean image planes (s� 0, γ � 1), non-skew cam-
eras (s� 0), aspect-free cameras (γ � 1), rigid image planes,
constant skew cameras and constant aspect ratio cameras.
In Figure 1 the obtained skew in each camera is plotted. In
Table 1 the RMS (root mean square) of the errors are shown
in all six cases. Note that the RMS in the images, i.e. the
error between the re-projected and the given image coordi-
nates, decreases when more parameters are allowed to vary,
but are similar for known and constant parameters. Note
also that the estimates of the aspect ratio and skew are very
accurate, especially when they are assumed to be constant.
Moreover, the errors in focal length are rather small com-
pared to the variation of the focal length and the error in the
principal point is only a few pixels.

Real data: We have tested the algorithms on real image
data. Figure 2 shows one of 42 images of a scene contain-
ing point markers and some curves and silhouettes. The im-
ages have been taken by the same camera without zooming
or focusing. Firstly a projective reconstruction was made
using iterative factorization followed by projective bundle
adjustment. Secondly, Pollefeys method was used to calcu-
late initial Euclidean structure and motion assuming known



image ∆ f ∆γ ∆s ∆x0 ∆y0

Eip 0.891 1.735 n.a. n.a. 1.534 1.478
ns 0.878 1.964 8.805 n.a. 2.040 2.214
af 0.880 2.002 n.a. 7.723 2.155 1.663
rip 0.891 1.709 0.000 0.000 1.490 1.506
cs 0.878 2.168 8.960 0.000 2.136 2.412
ca 0.880 2.711 0.000 8.378 2.906 2.094

�10�4 �10�4

Table 1. Root mean square errors of the re-
projected coordinates and the estimated intrinsic
parameters for Euclidean image planes (Eip), non-
skew cameras (ns), aspect-free cameras (af), rigid
image planes (rip), constant skew cameras (cs)
and constant aspect ratio cameras (ca).
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Figure 2. One of 42 images used in the experiment.
Histogram of re-projected residuals. Estimated fo-
cal lengths and principal point coordinates for the
42 images.

skew, aspect ratio and principal point. This result was then
used as initial values to the bundle adjustment routine in
the case of non-skew cameras. In Figure 2 is also shown a
histogram of errors between estimated point positions and
re-projected point positions. In the same figure are shown
the two focal lengths (fx and fy) and the coordinates of the
principal point (x0 andy0) for the image sequence. Note
that the magnitude of the errors is a few pixels and that the
focal lengths and the coordinates of the principal point are
in reality constant.

7. Conclusions

In this paper we have shown that it is possible to auto-
calibrate a camera from the knowledge of only one intrin-

sic parameter or even from the knowledge that only one
intrinsic parameter is constant, called flexible calibration.
We have also presented an algorithm that auto-calibrate the
camera from these assumptions and shown the applicability
on both real and simulated data.
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