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abstract

In this paper we present a new method for estimating con-
fidence and curvature of 3-D curvilinear structures. The
gradient structure tensor (GST) models shift-invariance.
The eigenstructure of the tensor allows estimation of lo-
cal dimensionality, orientation, and the corresponding con-
fidence value. Local rotational invariance, which occurs
often in images, causes a lower confidence estimate. This
underestimation can be corrected for by a parabolic defor-
mation of the data, in such a way that it becomes transla-
tional invariant. We show that the optimal deformation can
be found analytically and yields a local curvature estimate
as a valuable by-product. We tested our new method on syn-
thetic images and applied it to the detection of channels in
3-D seismic data.

1 Introduction

Translation invariant structures in 3-D images can have
three different dimensionalities. Isotrope structures (3-D)
with translation invariance in all orientations, plane-like
structures (2-D) with translation invariance in a plane, and
line-like structures (1-D) with translation invariance along
one orientation.

A mathematical model for translation invariant struc-
tures is given by the structure tensor. The eigenvectors
of the tensor yield a robust estimator for local orientation
[1, 2, 3]. In addition, the eigenvalues contain information
about the resemblance of the translation invariant model to
the image. This information can be interpreted as a confi-
dence measure for the orientation estimation.

A lack of smoothness or deviation of the local structure
to translation invariance leads to a decrease of the confi-
dence measure. Curved lines occur more often in practice
then straight lines. We must note that the method works on
individual lines as well as on bundles of lines. We apply

a local coordinate transform in such a way that the curved
line becomes translation invariant, i.e. straight. The struc-
ture tensor defined on the transformed area is expressed in
the original coordinates. This yields a curvature corrected
confidence measure. Maximization of this confidence mea-
sure occurs for a local parabolic transformation that ”clos-
est resembles” the local structure. From the parameters of
the optimal model we obtain an estimate of local curvature.
This method was successfully applied in 2-D [4] and now
extended to 3-D.

We apply the curvature corrected estimates to the detec-
tion of channels in a seismic volume. The occurrence of
sedimentary structures are important clues for the geologi-
cal model of a region. A channel is a curvilinear sedimen-
tary structure that is characterized by its meandering mor-
phology.

In section 2 we summarize the traditional analysis of 3-
D structures using the gradient structure tensor. The theory
of [4] is extended to 3-D line-like structures in section 3.
Section 4 shows the results of a test of robustness of the new
estimators on synthetic images and in section 5 the channel
detection application is presented.

2 The Gradient Structure Tensor

For a local neighborhood f(x, y, z) the Gradient Structure
Tensor (GST) is given by eq.(1), derivative notation by in-
dexes.

TGS =


 f2

x fxfy fxfz

fxfy f2
y fyfz

fxfz fyfz f2
z


 (1)

Where (.) indicates some weighted local average. In [5]
a closed-form analytical solution for the eigenvalues and
eigenvectors of TGS is presented. Furthermore, they show
that the eigenvalues can be used define local dimensionality



measures.

Cplane =
λ1 − λ2

λ1 + λ2
, Cline =

λ2 − λ3

λ2 + λ3
(2)

These measures can differentiate between the following lo-
cal structures.

Isotrope: λ1 ≈ λ2 ≈ λ3 Cplane ≈ 0 Cline ≈ 0
Plane-like: λ1 � λ2 ≈ λ3 Cplane ≈ 1 Cline ≈ 0
Line-like: λ1 ≈ λ2 � λ3 Cplane ≈ 0 Cline ≈ 1

The orientation of the eigenvectors can be used as a robust
estimate of the local orientation.

3 The GST in parabolic coordinates
for 3-D line bundles

In the previous section we stated that for line-like struc-
tures the eigenvalues of the structure tensor relate as λ1 ≈
λ2 � λ3. For the simplest line-like structure, a straight
line, Cline = 1. However for a slightly bend line the third
eigenvalue will increase, causing a decrease of the value of
Cline, indicating a worser fit of the line-model. In this sec-
tion we will improve this fit by incorporating curvature into
the model.

We use the orthonormal set of eigenvalues of TGS to
define the local axes u, v, w in such way that

λ1 = f2
u , λ2 = f2

v , λ3 = f2
w (3)

The tangent to a line bundle is given by the third eigen-
vector of the GST, which we defined as the w-axis in
eq.(3). For curved lines with a circle-symmetric cross-
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Figure 1: The transform to parabolic coordinates u ′v′w′

straightens circular bended line bundles

section (spaghetti) the ’bend-plane’ is the vw-plane. This
is not the case for less symmetrical cross-sections. There-
fore the curve has two degrees of freedom (κ1, κ2), which
are the curvatures in resp. the uw-plane and the vw-plane.
The total curvature κ along the line is thus

κ =
√

κ2
1 + κ2

2 (4)

The coordinate transform to straighten curved line bundles
is given by

u′ = u − 1
2κ1w

2

v′ = v − 1
2κ2w

2

w′ = w

u = u′ + 1
2κ1w

′2

v = v′ + 1
2κ2w

′2

w = w′
(5)

The derivatives of f expressed in the new straightened co-
ordinates u′, v′, w′, using the inverse coordinate transform
from eq.(5), are given in eq.(6).

fu′ = uu′fu + vu′fv + wu′fw = fu

fv′ = uv′fu + vv′fv + wv′fw = fv

fw′ = uw′fu + vw′fv + ww′fw

= κ1wfu + κ2wfv + fw

(6)

We now consider a curved line bundle through the origin of
the uvw-space with its rotation center in the uv-plane, see
fig.1. Applying the traditional GST method to the u ′v′w′-
space for arbitrary κ1, κ2, we get the parabolic gradient
structure tensor (PGST) in eq.(7)

TPGS =




f2
u′ fu′fv′ fu′fw′

fu′fv′ f2
v′ fv′fw′

fu′fw′ fv′fw′ f2
w′


 =


f2

u 0 0
0 f2

v 0
0 0 Q + f2

w − K


 (7)

with the abbreviations

Q ≡ (κ1 − κ10)2a + (κ1 − κ10)(κ2 − κ20)b

+ (κ2 − κ20)2c

κ10 ≡ be − 2cd

4ac − b2

κ20 ≡ bd − 2ae

4ac − b2

K ≡ aκ2
10 + bκ10κ20 + cκ2

20

a ≡ w2f2
u , b ≡ 2w2fufv , c ≡ w2f2

v

d ≡ 2wfufw , e ≡ 2wfvfw

Due to the symmetry f(u, v, w) = f(u, v,−w), we get

fu′fw′ = κ1wf2
u + κ2wfufv + fufw = 0

fv′fw′ = κ1wfufv + κ2wf2
v + fvfw = 0

fu′fv′ = fufv = 0

The last equation requires mirror symmetry with respect to
some axis in the uv-plane. The eigenvalues of TPGS are

λ1 = f2
u , λ2 = f2

v , λ3 = Q + f2
w − K. (8)
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We see that the third eigenvalue can be minimized by choos-
ing κ1 = κ10 and κ2 = κ20, causing Cline to maximized.
Therefore we interpret κ10 and κ20 as the actual curvatures.
In the limit κ1 → 0, κ2 → 0, we return to the traditional
analysis where λ3 = f2

w. Substituting κ1 = κ10, κ2 = κ20,
the tensor gets the ”curvature corrected” eigenvalues

λ1 = f2
u , λ2 = f2

v , λ3 = f2
w − K (9)

4 Test results

To measure the robustness of the new estimators for con-
fidence and curvature, we created an 3-D image of a torus
and added different levels of Gaussian noise, see figure 5.
The torus has a Gaussian profile, which makes the object
band-limited. We choose the width of the torus σ = 2.0
voxel. Since the grey values of the test object are bounded,
0 ≤ f(x, y, z) ≤ 1, we use the following definition for the
signal-to-noise ratio

SNR = 20 log10

(
max(f) − min(f)

σn

)
dB

= −20 log10(σn)dB

(10)

where σn is the standard deviation of the noise.
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Figure 2: A comparison of the traditional (GST) and the
curvature corrected (PGST) confidence estimation. The av-
erage confidence estimation is depicted as a function of the
radius of the torus at different different SNR. The error-bars
indicate the standard deviation.

The results of the confidence and curvature estimation
on the torus image are depicted in resp. figure 2 and 3. The
average and the standard deviation for each point in these
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Figure 3: Average curvature estimation on the torus-image
for different SNR. The error-bars indicate the standard de-
viation.

figures is taken over 12 measurements. For both the gradi-
ent regularisation and for the local averaging of the structure
tensor a Gaussian window was used. We applied a gradient
smoothing σg = 1.0 and a tensor smoothing σT = 4.0
for all measurements. The scale of the tensor smoothing is
chosen such that an optimal SNR for the measurement is
achieved. More details about the selection of the scale for
the tensor smoothing are given in the discussion at the end
of the paper.

In figure 2 we see that at 10 and 20 dB, the curvature
corrected method yields a significant improvement in the
confidence estimation. At 3 dB, however, there is no sig-
nificant improvement, which means that there is not enough
signal energy for a confident fit of the model. As a conse-
quence, the curvature estimation at 3 dB is not reliable. The
curvature estimation at 10 dB has an average relative error
of 12%.

Note that Cline,gst ≤ Cline,pgst for all radii. This can
be explained by the fact that adding an extra parameter to
the model, always results in a better fit. The increasing of
the bias in the curvature estimation for decreasing SNR, is
explained in appendix A.

5 Application

For the automatic detection of channels in 3-D migrated
seismic reflection data, we model channels as curvilinear
structures meandering in 3-D space. The seismic volume
containing a channel that we are going to analyze is visual-
ized by 2-D cross-sections in figure 6 and 7. The xy-axes
are spatial and the z-axis spans the amplitude of the reflec-

3



tion of an acoustic wavelet as a function of the travel time
from the surface. The z-axis can be inverted to depth if the
velocity of the acoustic wave is known at each depth.

The meandering nature of channels suggests that the cur-
vature corrected model gives a more accurate description
of a channel than the traditional straight model. Therefore
we expect that the curvature corrected confidence estima-
tion yields a significantly higher value than the traditional
confidence estimation.

As a preprocessing step, we create an attribute volume
by computing the standard deviation within a window of
(wx = wy = 5, wz = 9) voxels, for each voxel in the seis-
mic volume. A cross-section of this volume, corresponding
to figure 7 (a), is depicted in figure 10. We performed the
confidence estimation on the attribute volume, with both the
GST and the PGST method. We applied a gradient smooth-
ing σg = 1.0 and a tensor smoothing σT = 3.5 for all
measurements.
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Figure 4: Cumulative distribution of the confidence estima-
tion of selected parts of the seismic volume.

To analyze the result, we defined three regions in the
seismic volume. One that contains all data points that have
manually labeled ’channel’. The second one consist of
points from region with no seismic events, and represents
the noise in the data. The last regions contains a straight
sedimentary structure. For all three regions we created the
cumulative distribution of the confidence estimate, which
are displayed in figure 4.

6 Discussion and conclusions

Inspection of figure 4 leads to several conclusions. As al-
ready found in the test results the PGST confidence estimate
always yields a higher value than the GST confidence esti-

mate. We convenience denote the confidence improvement
as

∆C = Cline,pgst − Cline,gst. (11)

The significance of ∆C along the channel depends on the
noise.

We assume that the noise has the same distribution for
position in the volume. The improvement ∆Cn = 0.03 in
the noise region gives an estimation of the improvement due
to noise (SNR = −∞). However, the value of ∆Cn is not
constant for all Cline values. Consider a straight line with
SNR = ∞, then ∆C = 0 thus ∆Cn = 0. In the ”straight
structure” region, the curvature correction improves the fit
by giving a better description of the noise. Therefore we
have ∆Cn = 0.01 at Cline = 0.55. We can now conclude
that the noise contribution to ∆C = 0.05 in the channel
region ∆Cn < 0.01, and the improvement is therefore due
to a better description of the meandering structure of the
channel.

Segmentation of channels requires information from
larger scales, because on On the scale we used for the ten-
sor smoothing there is often not enough information to do a
confident channel segmentation. Therefore it is necessary
to include larger scale information. Increasing the local
estimation-window size isotropically decreases the SNR.
The signal of a linear structure in a 3-D isotropic window in-
crease linearly with the radius R of the window. The noise
increases with R3/2, assuming uncorrelated normally dis-
tributed white noise. The solution is to increased the scale
only along the channel. This can be done by steering an
adaptive window using the estimated orientation and curva-
ture.
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Appendix A

From figure 3 it is clear that noise introduces a bias in the
curvature κ estimation; the estimated curvature is smaller
than the actual curvature. This can be explained by examin-
ing κ10, κ20.

κ10 =
w2fufv wfvfw − w2f2

v wfufw

w2f2
u w2f2

v − (w2fufv)2
(12)

κ20 =
w2fufv wfufw − w2f2

u wfvfw

w2f2
u w2f2

v − (w2fufv)2
(13)

κ =
√

κ2
10 + κ2

20 (14)

The terms w2f2
i , i = u, v increase when noise is added,

while the other terms do not change. Since the increasing
terms appear quadratic in the denominator and linear in the
nominator, the curvature estimation becomes smaller when
noise is added. The sign of κ10, κ20 is lost in eq.14.

Appendix B

(a) (b)

(c) (d)

Figure 5: A slice through the center of the torus-image (a),
with Gaussian noise added to SNR 20 dB (b), 10 dB (c), 3
dB (d).

Figure 6: A cross-section of the seismic volume: t-axis plot-
ted along the center-line of the channel.
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Figure 7: Slices of the seismic volume: (a) xy-slice, (b) yt-
slice, centered in the x-direction.

Figure 8: The same as figure 7 (a) with the channel region
outlined in white and the straight sedimental structure out-
lined in black.

Figure 9: A xy-slice of the seismic volume with the noise
region outlined in white.

Figure 10: xy-slice through the 3-D attribute volume, cor-
responding the figure 7 (a).
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