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Abstract include: more precise search focusing; built-in handling of
ZQoise and distortion (small non-rigidities, lens distortion...);

We introduce ‘Joint Feature Distributions’, a general statistic 2 nd globally stable estimation. even for geometries that are
framework for feature based multi-image matching that explicitly 9 y ’ 9

models the joint probability distributions of corresponding featuregegener_ate for Classm_:al matching constraints. The projec-
across several images. Conditioning on feature positions in sofhé two image model is perhaps the most useful. It general-
of the images gives well-localized distributions for their corresporiZ€s the epipolar constraint, but instead of searching along the
dents in the others, and hence tight likelihood regions for corréull length of epipolar lines, it searches ellipses (Gaussians)
spondence search. We apply the framework in the simplest cagbose centre, axis, length and width are determined by the
of Gaussian-like distributions over the direct sum (affine imagegjoint being matched, its epipolar line, the range of disparities
and tensor product (projective images) of the image coordinategeen in the training data, and the noise level. JFD’s stably
This produces _probat_)i!istic corresp_ondence models that generghg accurately adapt to any scene geometry from deep 3D
ize the geometric multi-image matching constraints, roughly Speaﬂh‘rough to coplanar: as the depth range of the training data

ing by a form of model-averaging over them. These very simplgo  aases, the search ellipses progressively shorten until ulti-
methods predict accurate correspondence likelihood regions for g

n - .
scene geometry including planar and near-planar scenes, Withoutﬂételyuthe rg_(:_del_ bec;omes essenltlally homographic. T(;n?[re
conditioning or explicit model selection. Small amounts of distor'S NO Ml-conditioning for near-coplanar scenes, no need to

tion and non-rigidity are also tolerated. We develop the theory f&N00S€e between epipolar and homographic correspondence
any number of affine or projective images, explain its relationship {®0dels, and no under- or over-estimation of the plausible cor-
matching tensors, and give results for an initial implementation. respondence regions. In contrast, epipolar models typically
Keywords: Joint Feature Distributions, matching constraints, multisearch entire (and perhaps inaccurate) epipolar lines, wasting
image geometry, feature correspondence, statistical modelling. €ffort and greatly increasing the probability of false corre-
spondences.
1 Introduction The idea of using JFD’s for image correspondence is very
natural and obvious in retrospect. As far as we know it has
This paper introduces a natural statistical framework fafot appeared before, but there are many related threads in
multi-image feature correspondendaint Feature Distri-  the literature. JFD’s react against explicit model selection
butions (JFD’s), and uses them to “probabilize” the entirefor matching constraints [9, 10, 17] by incorporating the well-
range of affine and projective geometric matching constrairgown statistical rule that you can only predict events simi-
[12,15,2,3,5,7,21,20]. JFD’s are simply joint probabilityar to the ones you trained on — extrapolating a full epipo-
distributions over the positions of corresponding features jar geometry from near-coplanar data is unstable, but irrel-
m > 1 different images, used as a summary of some popvant for predicting near-coplanar correspondencése.g
ulation of interesting correspondences (all valid ones, thope3]. JFD’s have analogies with Bayesian model averaging
near a particular surface or object, background ones...). Cqng] but are much simpler and more direct. Plane+parallax
ditioning on some of the features gives tight probabilistic cof411, 14, 8, 23, 1, 22] offers stabler geometric parametrizations
respondence search regions for the remaining ones. Althougiin matching tensors for near-planar scenes. These could no
we will choose parametric forms that reproduce and genergbubt be “probabilized” in much the same way as we do here.
ize the standard matching constraints, JFD’s are in essenc@nother aspect of this work is a new theoretical framework
descriptive statistical models rather than normative geomegy studying multi-image geometry and especially matching
ric ones: they aim to summarize the observed behaviour @nstraints, based on the notion of tiemsor joint image.
the given training correspondences, not to rigidly constraije will use some isolated results from this, but the full de-
them to an ideal predefined geometry. We believe that JFR;g|opment had to be omitted for lack of space.

will become the standard method for many correspondence;; syetches the general principles of JFD matchiBgle-
search problems. Their benefits over matching constrair\v‘glopS some tools, then we focus on Gaussian-like JFD mod-

To appear in ICCV'OL. [23 Apr 2001] els for affine §4) and perspective$) camera geometrie$6
This work was supported by European Union FET project VIBES. briefly discusses the implementation and some preliminary




XA /Joint Feature Distribution ~ p(X,Y) p(X,y) encodes a strong probabilistic dependency between
matching geometry gives “backbone” X andy whose “backbone” is the underlying geometric cor-
exact projections of 3D features, respondence (here a .1D hom(.)graphy).. The margm@d$.
Xyt population p(f) p(y) are broad and uninformative, but given a particular fea-

i S turex, the CFDp(y| x) (the normalized cross-section through
¥ projection distributions P(X.Y| f) ' 1,(x y) atx) is sharply peaked at the correspondjngalue.
; ¥ j noise gives JFD cross-—section We can use this to predict tight probabilistic search regions
C% S S ;'?3‘-.---;-- for y givenx, and vice versa.
P The abstract JFD framework has rich analogies with, and
: P ; generalizes, conventional multi-image geometry — see ta-
5 — i >y ble 1. It applies to any correspondence relationship that
p(y) _/;/\E\f—//f\broad marginals  can pe modelled probabilistically, regardless of feature type,
Py % ) i CONditionaéS Pyl X)QiV;]a parametrization, number of images, rigidity or distortion. But
Y « eoniShondence search it is most useful when (suitable parametric forms can be cho-
~ sen so that) the estimated JFD’s have strong correlations that
. L provide accurate search focusing. The link with geometry
Figure 1: The basic principle of JFD feature corresponden(fg.strongest for correspondences governed by matching con-
straints. Then, as in fig.1, the matching geometry forms the

experiments an§l7 concludes. N . . .
Notation: We assume familiarity with affine and projective backbone” of the JFIb(x, y) and fixes the locations of the

matching constraints at the level efg [6], and the ability to CFD’s p(y| x), while the image noise determines the cross-

think tensorially at need [21, 20]. Slanted fonts denote inh ection of the JFD and the widths of the CFD's. The 3D fea-

mogeneous,yand homogeneous ymage vectors, upright % By Bt b ETE A0S TEAPRA L P CERE,
fonts inhomogeneous, y and homogeneousy 3D onesP : '9 9! » but have |

denotes3 x 4 image projection matriceg,() probability dis- direct influence on the CFD shapes.

p(x)

tributions,| -], 3x 3 cross product matriceX ], y = xAy), As yvi_th matching constraints, JFD's are image-based mod-

(—), expectation over the distribution &f els originally derived from 3D quantities (here the 3D fea-
ture priorp(f) and the projection modets; (x; | f), there the

2 Joint Feature Distributions camera matriceB;), but typically estimated from observed

o o image correspondences. The familiar three stage estimation
We can model then noisy image projections; | ;—;...,, of a process [4] still applies:i) build a large set of possible corre-
fixed 3D featuref as probability distributiong; (x; | f) cen- - spondences.g by feature detection followed by correlation
tred onf’s true projections, with widths determined by thematching; i) hypothesize well-supported candidate models,
relevant noise levels. More generally, the joint distributiog_g using a robust clusterer such as RANSAI@) fobustly
p(X1, ..., Xm | ) is typically well-localized, and for indepen- fjt parametric model(s) to the most interesting candidate(s).
dent noise factors af[, pi(x;[f). If f now varies across Tne fitted models are parametric probability distributions for
some population of 3D features with distributigitf), the poth JFD's (explicitly) and matching constraints (we actually
Joint Feature Distribution (JFD) of the resulting popula- fit 3 geometry-based probabilistic noise model). The cluster-
tion of image features is: ing stage ensures reliable fitting by rejecting false matches
_ and ‘uninteresting’ true one%.g features on moving ob-
Pt sy Xom) = /p(xl’ - Xm [ H)pEAE (D) jects when we are fitting the background, or non-coplanar
For broad priors p(f), the one-image marginalsfeatures when we are fitting a plane. Good clustering is even
p(X;)) = [ P(Xi, . Xpm) dX1.dX;_1dX;41...0%, = more critical for JFD’s than for matching constraints owing
I pi(x; | f)p(f)df are typically broad and uninforma-to their polymorphism: they are designed to summarize a
tive. But the ‘'sharpness’ of the original image projectionaser-defined class of observations not to enforce a predefined
pi(X; | f) is not entirely lostThe JFDp(x, ..., X,,) remains  structure, so it is much less clear what constitutes an outlier.
highly correlated and still encodes most of the precis€éhe obvious approach is to use self-consistency, finding clus-
location information In particular, theConditional Feature ters too dense to be probable under broader members of the
Distributions (CFD’s) like parametric distribution familg.f. e.g [4,18]. We will not
L P(X1,X2see Xem) go into these difficult grouping issues here, but we expect
P(X1 [ Xy o Xm) = FLRTEENE (2)  JFD's to be effective correspondence models for many natural

encode precise inter-image dependencies that are effici@fRUPING classes such as points on compact moving objects.

tools for correspondence search. Fig.1 illustrates the princi-From now on we focus on deriving efficient parametric
ple for two 1D projective images y of a 1D scene. The JFD models for JFD’s. We will only consider Gaussian-like mod-



Entity Matching Constraint Approach Joint Distribution Approach

3D camera geometry Camera projection mapping, matrice<Conditional feature projection distri-
P,:f — x;,=P; f butionSp(Xi |f)

Image signature of camera geometfyMulti-image matching tensors;; ; | Joint Feature Distributions(x, ..., 2)

Inter-image feature transfer Tensor based feature transfer ~ | Conditional Feature Distributions
ngkyz p(X|y,...,Z)

Inter-image feature correspondence Geometric matching constraintsProbability that features correspond,
Tijok-X-.o2 =0 p(X,...,2), orp(x]y,...,2)

Scene reconstruction Ray intersection, tensor-based recorPosterior 3D feature probability
struction p(f|x,...,2)

Table 1: Analogies between the joint distribution approach and multi-image matching constraints.

els, which appear to be the simplest useful parametric fornmaodel for the point population. If the points are also uncer-
Gaussians can only capture linear dependencies, so to gein, theirsmoothed homogeneous scattejg Zp (Xp Xp)y

duce JFD’s that can mimic the standard matching constraingmcodes the mean and covariance of the mixture distribution
we will need parametrizations that make these constraints a@gnerated by the sum of the individual point distributions.
pear linear. As in matching constraint estimation, we do thigewed as a summary of the population statistics, this double-
by mapping the input observations into a suitajolat im-  counts the noise and hence overestimates the covariance, but
age space, containing the direct sum (juxtaposition) of th@hen there are relatively few points this smoothed but biased
input coordinates for affine models, but their tensor (outegstimate is often preferable to the unsmoothed one because
product for projective ones. For example, for projective furit contains additional information about the noise level. Ei-
damental matrix or epipolar JFD estimation, we mapsthe ther type of scatter matrix can be used when estimating JFD’s
correspondencex, x’) to homogeneous 9-D outer producthelow.

vectorsx @ x" ~ (1, z, y, ', ', xa’, ay’, ya', yy') Tand build — Note that these formulae require the homogeneous point
a9 x n measurement matrid from these. The fundamen-yeciors to be affinely normalized (scaled so that the last co-
tal matrix estimate uses just the smallest eigenvect®t®f”  , qinate is 1). We assume this throughout the paper. Al-
(e.0 [_6]), wh_ereas the JFD _model captures the underlying Ufhough many formulae (notably 5) appear projective, they
certainty using an appropriately-weighted "average” over a} are based on the standard “noise in pixels” image plane er-
of the eigenvectors (in factM M")™). Conditioning the JFD oy model which is intrinsically affine. For a start at building

gives compact correspondence search regions consistent withgiectively covariant error model, see [19].
all (not just one!) of the likely models in the average. The

JFD is loosely analogous to “model averaging” of fundamerual covariance: Some matching constraints are based on
tal matrices [18], but it is based directly on the input correthe lines through an image point rather than the point itself.

spondences, not on a blurred geometric model. The simplest is the homographic relationskipz H y. This
) can be written in constraint form asHy = 0 = vHy
3 Scatter & Covariance whereu, v are any two independent lines through For

least squares estimation we square and sum the constraints:
Homogeneous covariance:Before starting we introduce ( ~ (UHY)? + (VHY)? = y"H (uu™+vVv')Hy. We

some tools. We encode distributions homogeneously. Givgjl| view uuT 4+ vvT as the “homogeneous scatter matrix”
an uncertain affine IOOIMV)\{I'[h mearx, covariance/ and ho-  of the chosen sefu, v} of lines throughx. More generally
mogeneous vector = (), its homogeneous covariance we could usez 3" | u; ul where{u;} is any rank 2 set of

X, homogeneous informationX " andx* value are: lines throughx. These rank 2 matrices encoxl@s their null
B . T4V X vector, and each defines its own importance weighting over
X = (xx), = ( T ) ®)  the lines throughx (i.e. the constraints). To be more sys-
) vl iy tematic, we fix a standard weighting procedure that defines
X" = < KTV TV R > (4)  our notion of “the uniform distribution of lines” through any

9 B o B ol given x. Algebraically, the most uniform way to write the
XXX V) = (x=X) V7 (x—X) = X XX =1 (5) gquared homography constraint§isc], H y||? ~ 0, which
The mean, covariance and information of the Gaussian litads to the “scatter matrix'x ], [x], = [[x||*/ — xx".
neatly into the homogeneous matricésX—. Given a col- This is not projectively covariant, but we can make it so
lection of training points{x,},=1..», their homogeneous by introducing a fixed quadric matrigQ, which we usually
scatter matrix %Zp X, X, encodes their mean and covaritake to be the identity matrix in a well-normalized projec-
ance, and hence defines an approximate Gaussian probabiiity frame. We then define th#ual covarianceof x to be



X = (XTOX)Q — (@x)(Qx)T. Orif x is uncertain with  For our Gaussian JFD’s, conditioning leads to familiar
homogeneous covariangé= (x x"), the dual covariance is Schur-complement matrix formulae. To do the calculation,

the expectation of thisX = trace(Q X) Q — QX Q. For partition(x; ... X;,,) " into known componentsand unknown

Q = I this becomesqf. (3)): onesu, freezek at their known values ig?(x) = X" V*x—1
) (5), and complete the squares to find the conditional log like-
S IHy"+Vyy —ay=Vay e lihood of the remaining unknowns Letk, 0 be the training
Xo= | v Vey MoV N ©)  get k,u. Partition th ding informati
x g a2y VaatVyy se rr;e%ns ok, u. Partition the corresponding information
as ( BT ) whereA = (V™), etc The search region for

For nonsingulaR, X = %traee(@*1 )N() Q- Q*l)N( Q',so the unknownsu given the known is defined by the CFD
dualization is reversibled(is the space dimension, he2® p(u|Kk), which turns out to have mean— C'B"(k — k) and
Our JFD models of line-through-point constraints (homograsovarianceC™. (NB: Thepopulationcovariance ofi is V,, =
phies, trifocal, quadrifocal) are all based on dual covariancé€ — BTA~'B)~", which is usually much larger). Kis an un-
certain measurement with covariari2e, the CFDp(u | k) is
4 The Affine JFD broadened to mean- C'BT(A+D —BC"B)'D(k—k) and

. _ covarianc§C — B"(A+D)™B)™". (UsuallyD >> A so we can
We now develop a Gaussian JFD model for point features u fop theA’s). The prior likelihood for observing the knowns

der affine image projection. This is the simplest useful mod iin the first place is2(k | V) = (k— k)™ (A — BC'B™) (k —

anc! a _gooq warm-up for the _prOJe_ctlve case. To keep Ugs. As usual in such calculations, there are other forms for
projective link clear we work in affine-homogeneous cooy se expressions that may be stabler or more efficient, but

dinates rather than centred inhomogeneous ones. Our ‘]w will not go into this here.

model must reproduce and “prababilize” the affine maiching Implementation is straightforward: form the homogeneous

constraints. But these are already linear in the image COQCatterV from the training data, invert to get the informa-

dinates and Gaussians naturally model linear relationshl%n V- (the Gaussian JFD model), partition and condition
so the problem is trivial. Suppose that the training data is on known observations to get sear;:h windows for their un-

correspondences in affine imageS(”’”:1---"%1’:1;“" Col- known correspondents. One minor snag is Mat MMT™
lect the components of each correspondence |rﬂma+_1 becomes rank deficient (rark 4) for noiseless data, so the
conponEnt hgmogeneoaﬁme ngnt Image vectorx, .~ estimated informatiol'—* becomes infinite. This is correct —
(X oo Xy )T, anq form these into azm. + .1) x n affine exact geometry allows infinitely accurate predictions — but
measurement mat_rlxl\/_l = _(X?’ o0 Xn). Vlewmg_our corre- numerically inconvenient. In practice we avoid it by adding
spondences as points in jointimage space, the|rhomogene8%§na" diagonal regularizeliag(c, ..., ¢, 0) to \V before in-

ix is i = 1lyw T— LMM", ori , :
scatter matrix is simply/ = 5 5, Xp X, Iz MM ,Tor i verting. Typicallye ~ 10~?: large enough to prevent loss of
we choose to use the smoothed scatiee - 3- (X, X;) =  numerical precision during the inversion, but not so large as
15 (xp XD+ (\gp 8)) — LMMT4+1L ( >pVp 0) where 1 l:_)IL_Jr the final estima_tes significantly. Similarly,is rank

P h inh ’ . 0 0 . deficient forn < 2m noisy but unsmoothed correspondences
Vp Is the2m. x 2m Inhomogeneous joint noise covariance o ecause we do not have enough observations to estimate all

X, (for independent noise/, is block diagonal with2 x 2 ¢ yhe nojse covariances. The solution is to incorporate more
blocks). Our affine JFD model is simply the Gaussian th{,ise informatione.g using smoothed scatters.

best describes this population of joint image vectoes the

Gaussian with homogeneous covariakicand homogeneous 5 The projective JFD

informationV—".

Why does this work? - The theory of affine projection tell\ffine JFD’s are too rigid to model perspective distortion
us that for ideal noiseless observationspk(M) < 4, i.e. exactly, so we now develop more flexible projective mod-
the vector, span a 3D affine space [16]. We are modellingls. As before we consider only Gaussian-like models, so to
noisy observations, but the ideal behaviour tells us what toimic the matching constraints we need to use parametriza-
expect:M typically hasl large ‘homogenization’< 3 large tions in which these become linear. Projective matching
‘geometry’ and> 2m — 4 small ‘noise’ singular vectors, and constraints arenultilinear in the homogeneous coordinates
similarly forV = %M MT with eigenvectors. So the JFD isof their image features, but as in “linear” matching ten-
typically very ‘flat’ — broad and featureless along the ‘geomsor estimation we can make the problem appear linear by
etry’ directions, but narrow along the remaining ‘noise’ onedreating multilinear combinations as if they were indepen-
Conditioning on an image point effectively freezes two of dent coordinates,e. by mapping the input feature vectors
the ‘geometry’ directions, so at most one remains, spannit@their outer (Kronecker) product tensor. For example, for
the joint epipolar line ok in the remaining images. Even thistwo images we can not use just the image coordinates
direction is restricted to the breadth of the training populatiofiz, y,1)", x’ = (2/,%',1)" or the affine joint image vector
so for coplanar data it will shrink to a point. (x,y,2',y',1)", because the projective matching constraints



also have bilinear termsz’, ..., yy'. Instead we need to col- well in practice, perhaps because (if we imagine the eigen-
lect the components of the outer prodwot’ " into a vector decomposition o being inverted) it gets at least the noise
(za',zy’, x,yx’ ,yy',y, 2’ y',1)T and use these as workingmodel int’s block of affine coordinates and the noiseless per-
coordinates. More generally, for point features in any nunspective corrections right.

ber of images, it turns out (proof omitted) that tensoring the As in the affine case, if we have uncertainties for the fea-
input coordinates is necessary and sufficient to linearize allmfres we can use them to stabilize the JFD’s noise level esti-
the matching constraints linking the images, and genericaltyates, and we do this by taking expectations over noise when
the only linear constraints on these coordinates are matchitagculating the scatter. We assume independent noise so that
ones. So we really have no choice: to linearize the projeiensor expectations factor into single-image ones. Working
tive matching constraints linking featurgs, ..., x,,, from m  tensorially, thesmoothed scatter tensois:

images, we have to use tB& components of thejoint im-

age tensort = X; ® ... ® X, as working coordinates. We =~ VAP AP = %ZP <(Xﬁ,...Xan)(Xﬁ,/...X£;,)>

will view t both as a3™-component vector and as a tensor 1 4 oa D D

tAP = x{* - ... xP (indicesA...D = 1...3). Assuming =520 <X1pxlp> e <X7npx7np> (8)
affine normalization for, ..., X,,,, our projective JFD mod- _ 12 AN DD

els are “Gaussians ihspace”,p(t) ~ e~%/2, with negative nép Zlp o Simp

log likelihood: whereX;, = (X, x;,) are the homogeneous covariances of
/ / the input features. Once again, this smoothes the JFD es-
_ ¢T _ A D A D )
L=tWt=Wa pa.pX-Xn)X X)) (1) fimate at the cost of some double-counting of noise. It is

The JFD is parametrized by th®mogeneous information part'icullarly useful when there are < 3™ training features
tensor W, viewed as a symmetric positive definite x 3™ (which is common forn > 3). As a safeguard, we also add

matrix generalizing the homogeneous information. Th@3™ * 3™ diagonal regularizediag(e, ..., €,0) to V, where
model has the following useful properties: typically e ~ 10~%. These measures are even more neces-

1. It naturally models uncertain matching constraints. Aﬁary in the projective case than in the affine oney/as both

X . -large (so that many measurements are required to span it) and
gebraically, the simplest way to represent and combin . - u .
. Lo . structurally ill-conditioned (because “perspective effects are
uncertain constraints is to use weighted sums of square i . X e
S . . usually small” compared to affine ones). The ill-conditioning
constraint violations. For linear constraints such as the

. : . ) 1S normal and causes no problems so long as we regularize
matching constraints anthis yields nonnegative quadratic ; . . -

. . . . : enough to prevent it from causing loss of numerical precision.
forms in the variables,e. Gaussians im.

‘Epipolar’ JFD vs linear fundamental matrix estimation:

2. If we freeze some of the variablgsat arbitrary valuesL  Both methods start with the x n measurement matrix of
retains its tensored-quadratic form in the remaining one$e tensored measurements. Formdhe) scatter/ =M M,
with coefficients given by contracted against the frozen|egt v — Zgzl Ao f, £ be its eigen-decomposition, and write
variables. So Conditioning on known values for search '¢he eigenvectorg as3 x 3 “fundamental matrix candidates”
gion (CFD) prediction reduces to trivial tensor contractiof=, . The conventional linear fundamental matrix estimate is
— even simpler than the affine case. the smallest eigenvectd, of V, or equivalently the largest

rcg W = V~'. On test correspondences- x ® x’, the JFD
imateW = V= has unnormalized “log likelihood” penalty

URction "Wt = S0 At (£ 62 = S0 A X Fu X%,

i.e. “a weighted sum of possible epipolar constraints”. Sim-

JFD estimation: Now consider how to estimate a projectivelarly, conditioning onx gives conditional log likelihood

JFD W that summarizes a given set of training correspon¢ ' A x’ for x’, whereAs g = Wag 45 X2 xZ, i.e. the cor-

dences(Xip, ..., Xmp) | p=1..n- BY analogy with the affine respondence search regions are defined by “weighted scatters

case we treat the joint image tensays= xi, ® ... ® X,  of possible epipolar linesA = % AN A(XTF,)(X"F,)".

of the training correspondences a8%-component affine- The fundamental matrix estimate amounts to truncativig

homogeneous vectors and build th&if x 3™ homoge-

. 1 T 1 - D space — tensors of the rank-one fotm= x; ® ... ® Xn. Gaus-
neous scatter matri¥/’ = n Zp tp tp = ZM MT where sian integrals over this restricted space are intractable, so we can not cal-
M = (ti,...,t,) is the3™ x n measurement matrix familiar culate the normalization factor that makes the JFD into a correctly nor-
from linear matching tensor estimation. We then invert to gétalized pro_ba_lbility distri_bution. This factor is ind_ispens_ab_le f(_)r estim_ating
the JFD parameter estimat¥ ~ V. This last step is un- W. For training data with scattev¥ on a normalized distribution family

n
L . p(t) = e~ WI=N(W))/2 'whereN (W) is the normalization, maximum
fortunately only heuristicbut it appears to work reasonablyp . estimation reduces to minimizingace(W V) — N/(W) with re-

L . AN (W
10ur projective JFD's are not really Gaussians because their input cgRect toW, with implicit solution W such thatV’ = d(W ). For a true

ordinatest are restricted to a nonlineglm)-D subvariety of their(3™)-  GaussianN (W) = log det W — dlog(27) and henc% =W

3. Conditioning down to a single image gives a standa
Gaussian expressed in homogeneous form, so predict
its high-probability search regions is easy.




at its largest eigenvector, giving effective penalty functiodences for 3D points and 4, 4 for coplanar ones. Matching
(fy )2 = |x Fyx'|?, i.e. the estimated epipolar constraintconstraints are more efficient when they are tensor-valued, so
violation. For small noise and strong dat4,has just one that a single matching tensor with relatively few coefficients
very small eigenvalue, so the penalty sum is entirely domgenerates several linear constraints on each tensored image
nated byFy and the JFD model reduces to the fundamentabrrespondence. By mirroring these index structures we can
matrix one. But ifV has several small eigenvalues owing tduild correspondingly efficient JFD models, at the cost of less
noisy or weak datag(g coplanar data makeg rank 6 with image-symmetric representations and an implicit restriction
3 “noise” eigenvalues), these all contribute significantly thi correspondence models subjacent to the mirrored matching
penalty sum, which becomes a kind of weighted average ownstraint. For example, a JFD based on the index structure
these observed “constraints” on the data, restricting the diraxf-a two image homography constraint can be estimated from
tions in which the measurements can vary and hence the sfzeorrespondences rather than 6, but implicitly commits us to
of the “averaged epipolar” correspondence search regions.quasi-planar data.

Statistical error weighting: Although they include covari-  To do this, we simply need to assume a JFD whose form
ances, our linear JFD methods are essentially ‘algebrai¢s:an average over constraints of the desired type. Free in-
they implement heuristic polynomial error models rather thadices arise essentially when pointsppear dualized gsc ],
statistically weighted rational ones. We will not considein the matching constraints,e. for “any line through the
nonlinear JFD estimation here, but a step towards statistigalint” style constraints. For example, 2 image homographic
weighting in the conditioning calculation greatly improvegonstraints with matrix4 and 3 image trifocal constraints
the accuracy of the predicted search regions. For poingth tensorT can be written symbolically a| x’ ], H x||?
near the epipole, algebraic weighting produces over-broaﬁdH (X', (T-x)[x"], ||% oralternatively a§", |ul"H x|?
search regions (fig.2 top right). As above, the cost transv%{ndzij |(u)™(T - x) u3’|2 where{u/}, {u/} are any sets of
sal to epipolar lines is controlled by the JFD’s epipolar lin@yo (or more) independent lines through x”. Expand-
V|_0Iat|on term|x Fo x'|?, .Wherng is the fundamental Ma- ing these forms tensorially givediZ HE ) x A4’ )}J/BB, and
trix. For x near the epipolex™Fy ~ 0 and|x Fy x'|? is BC +B'C\vAA o1 o T v

p . L (TRY T4 )X Xpp Xoeo whereX = xx™ and X' =
small for anyx’. We correct for this heuristically by re- &= <. "4 =, . - S
placingAa g = Wag arm x4 xB in the CFDx'" Ax’ with [)/(/ ]XH[X lhor X = >, u Ui, and similarly for X" with
AAwhere\ = (Wagp 1 VAB NA'B')/trace(A N), N = X", uj. The squared constraints can be expressed compactly
diag(1,1,0), and V/ is the x-image population scatter. The!l t€rms of the homogeneous covariantef x and the scat-
idea is that ifW ~ f, f] as aboveirace(AN) ~ xFy N Fy X ter matrlicesx’,'X” _of the Ime; throughx’, x”'. .We will fix
is the norm of the epipolar line vectsf F, and the numerator the relative weighting of the different constraints by system-
is the average of such norms across the training populatigfically using the dual covariances (6) »f x” for X', X"
So ) reinforces the cost near the epipole without changing if2r our JFD models we take averages over constraints of
overall population average. This heuristic reweighting prébese formsi.e. we adopt homogeneous Gaussian-like forms
cedure works well in practice and we are currently trying toith unnormalized log likelihood$v/§ & x44 X7, ., and

formalize it. WEBGB'C xAA X1 o, Xber, Where X and X', X" are the
, (noiseless) normal and dual homogeneous covariances of the
5.1 Dual Space JFD’s test correspondencéx, x’, x””). These are still quadratic

The above approach in principle allows us to produce projetf the tensored measurements® x'(©x”), so they are
tive JFD’s for any type of matching geometry in any numbdieparametrizations of the general _prOJecn\_/e JFD models de-
of images, and it is indeed the preferred representation f¢#/0ped above. They are parametrized by information tensors
the practically important 2 image ‘epipolar JFD' case. HowW4 4/ » W% <", which can be viewed respectively@s 9

ever, form > 2 images or known-coplanar scenes it use%”d 27 x 27 homogeneous information rr_1atr|ces represent-
training correspondences very inefficiently. In the space 89 scatters _; h; hiand)_; s; s over possible homography
joint image tensors, the nonlineari-D image of ad-D pro- matrices §-component ‘vectorsl_n) and trifocal tensor(/- _
jective subspace of 3D space containingentres of pro- component ‘\_/ectorssi). Tq estimate the models we again
jection turns out to span e(m:lrd) — k)-D linear subspace build (regularized and possibly sm90thed) scattettgnsors over
(proof omitted). The above JFD model “learns” (spans) &faining correspondences, hevrg 7, = + > X4 X/ 5,

most one tensor dimensio_n per training correspondencg,aam V§é4;3fc' = %Ep x;\A/ )?Z') BB )?Z')/CC,, treat these as
just to capture the underlying geometry (let alone the noisg)x 9 and27 x 27 homogeneous covariance matrices, and
we need™;*)—m = 8,17, 31... training correspondences ininvert to estimate the corresponding information. To use the
m = 2,3,4... images for general 3D geometry, (5?’;2) = models for correspondence search, we condition on known
6,10, 15... for known-coplanar points. In comparison, lin-feature positions by contracting their normal or dual covari-
ear matching tensor estimators need ahly, 6 correspon- ances (as appropriate) into the information tensors until we
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Figure 2: Predicted search ellipses for the projective 2 image JFD, versus the true correspondences and their epipolar lines.
The scenes contain uniform random points in a sphere (deep scene) or a sphere flattened to 20% of its depth (shallow scene).
Top right: Algebraic error weighting leads to incorrect broadening of the search regions near the epipole. The other plots use
our CFD reweighting heuristic to correct this (see eng®0). Bottom right: For all of the geometries tested, the estimated
conditional distributions accurately reflect the true correspondence likelihoods. Here we histogram the standard errors of the
true observations under the estimated CFD’s, for forwards (top curves) and fixation (bottom curves) motions.

reach a single-image model, which is necessarily quadraticfound by expanding’'Ax’ as a quadratic and discarding
the remaining feature vectore. a Gaussian whose likelihoodthe constant term. Algebraic error weighting does produce
regions are simple ellipses. This approach extends to all otleefer-wide search ellipses for points near the epipole, so it is
matching constraint equations with free covariant indices: vaglvisable to include the reweighting factorThe reweighted
just need to use normal or dual covariances as appropriatethod works well in practice for all of the geometries that

and think tensorially when necessary. we have tested, giving search ellipses aligned with the epipo-
lar lines with realistic lengths and breadths, which progres-
6 Implementation & Experiments sively shrink to circles as the scene becomes planar.

We have implemented the above methods iATMAB for 7 Summary and Conclusions
any number of images and duality structure, but here we only

show brief results for the 2 image ‘epipolar’ JFD. Recall th&Ve introduced Joint Feature Distributions (JFD's), a general
algorithm: build thed x 9 scatter matriy/ = % Zp t, t; from  statistical framework for image matching based on modelling
the tensored training corresponden¢gsegularize and in- the joint probability distributions of the positions of corre-
vertto get the JFD informatioW/ = (V +diag(e, ...,€,0))™", sponding features in different images. The JFD is estimated
and view this as a tens® 45 4-p-. Then, for each test cor- from a population of training correspondences, then condi-
respondence, form Ax g = Wap 4z x*xP and option- tioned on the values of test features to produce tight likeli-
ally rescale it by = (Wap 4 g VAB NA'B')/trace(A N) hood regions for the corresponding features in other images.
(N = diag(1,1,0)) to correct the error weighting. The re-We developed relatively simple Gaussian-like JFD models for
sulting A is the conditional information fox” = (2/,¢',1)", affine and projective images, which can be viewed as proba-
from which Gaussian log-likelihood search ellipses can b#listic “model averages” of the affine and projective multi-



image matching constraints. The methods naturally and sfat] R. Kumar, P. Anandan, and K. Hanna. Direct recovery of
bly handle any scene geometry from deep 3D through to
coplanar scenes, without explicit model selection. For ex-

ample, the ‘epipolar’ JFD stably enforces an epipolar, homgt2]

graphic or near-homographic constraint, according to the be-
haviour of the training data.

Future work: The JFD idea is recent and we are still acf13]

tively investigating its properties. There are some theoretical
loose ends, particularly in the projective case where even the

basicW ~ V~* estimation procedure for the “linear” model[14]

is only heuristic. We do not yet have JFD’s with rigorous
statistical error weighting, and it is unclear whether there are
JFD analogues of matching tensor consistency relations like

det(F) = 0. Both issues are likely to lead to nonlinear mod15]

els.

Practically, we need to develop robust estimators for

JFD’s. As JFD’s are less rigid than matching constraints, self-

consistency based clustering will probably be needed to isas]
late correspondence sub-populations susceptible to JFD mod-

elling. The full population model will thus be a mixture of

JFD’s. Numerically, we are developing QR and SVD basqgﬂ
JFD representations that should be less sensitive to rounding

errors than our current scatter / information ones.
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