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Abstract

We introduce ‘Joint Feature Distributions’, a general statistical
framework for feature based multi-image matching that explicitly
models the joint probability distributions of corresponding features
across several images. Conditioning on feature positions in some
of the images gives well-localized distributions for their correspon-
dents in the others, and hence tight likelihood regions for corre-
spondence search. We apply the framework in the simplest case
of Gaussian-like distributions over the direct sum (affine images)
and tensor product (projective images) of the image coordinates.
This produces probabilistic correspondence models that general-
ize the geometric multi-image matching constraints, roughly speak-
ing by a form of model-averaging over them. These very simple
methods predict accurate correspondence likelihood regions for any
scene geometry including planar and near-planar scenes, without ill-
conditioning or explicit model selection. Small amounts of distor-
tion and non-rigidity are also tolerated. We develop the theory for
any number of affine or projective images, explain its relationship to
matching tensors, and give results for an initial implementation.

Keywords: Joint Feature Distributions, matching constraints, multi-
image geometry, feature correspondence, statistical modelling.

1 Introduction
This paper introduces a natural statistical framework for
multi-image feature correspondence,Joint Feature Distri-
butions (JFD’s), and uses them to “probabilize” the entire
range of affine and projective geometric matching constraints
[12, 15, 2, 3, 5, 7, 21, 20]. JFD’s are simply joint probability
distributions over the positions of corresponding features in
m > 1 different images, used as a summary of some pop-
ulation of interesting correspondences (all valid ones, those
near a particular surface or object, background ones...). Con-
ditioning on some of the features gives tight probabilistic cor-
respondence search regions for the remaining ones. Although
we will choose parametric forms that reproduce and general-
ize the standard matching constraints, JFD’s are in essence
descriptive statistical models rather than normative geomet-
ric ones: they aim to summarize the observed behaviour of
the given training correspondences, not to rigidly constrain
them to an ideal predefined geometry. We believe that JFD’s
will become the standard method for many correspondence
search problems. Their benefits over matching constraints
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include: more precise search focusing; built-in handling of
noise and distortion (small non-rigidities, lens distortion...);
and globally stable estimation, even for geometries that are
degenerate for classical matching constraints. The projec-
tive two image model is perhaps the most useful. It general-
izes the epipolar constraint, but instead of searching along the
full length of epipolar lines, it searches ellipses (Gaussians)
whose centre, axis, length and width are determined by the
point being matched, its epipolar line, the range of disparities
seen in the training data, and the noise level. JFD’s stably
and accurately adapt to any scene geometry from deep 3D
through to coplanar: as the depth range of the training data
decreases, the search ellipses progressively shorten until ulti-
mately the model becomes essentially homographic. There
is no ill-conditioning for near-coplanar scenes, no need to
choose between epipolar and homographic correspondence
models, and no under- or over-estimation of the plausible cor-
respondence regions. In contrast, epipolar models typically
search entire (and perhaps inaccurate) epipolar lines, wasting
effort and greatly increasing the probability of false corre-
spondences.

The idea of using JFD’s for image correspondence is very
natural and obvious in retrospect. As far as we know it has
not appeared before, but there are many related threads in
the literature. JFD’s react against explicit model selection
for matching constraints [9, 10, 17] by incorporating the well-
known statistical rule that you can only predict events simi-
lar to the ones you trained on — extrapolating a full epipo-
lar geometry from near-coplanar data is unstable, but irrel-
evant for predicting near-coplanar correspondences,c.f. e.g.
[13]. JFD’s have analogies with Bayesian model averaging
[18] but are much simpler and more direct. Plane+parallax
[11, 14, 8, 23, 1, 22] offers stabler geometric parametrizations
than matching tensors for near-planar scenes. These could no
doubt be “probabilized” in much the same way as we do here.

Another aspect of this work is a new theoretical framework
for studying multi-image geometry and especially matching
constraints, based on the notion of thetensor joint image.
We will use some isolated results from this, but the full de-
velopment had to be omitted for lack of space.
§2 sketches the general principles of JFD matching,§3 de-

velops some tools, then we focus on Gaussian-like JFD mod-
els for affine (§4) and perspective (§5) camera geometries.§6
briefly discusses the implementation and some preliminary
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Figure 1: The basic principle of JFD feature correspondence.

experiments and§7 concludes.
Notation: We assume familiarity with affine and projective

matching constraints at the level of,e.g. [6], and the ability to
think tensorially at need [21, 20]. Slanted fonts denote inho-
mogeneousx, yand homogeneousx , y image vectors, upright
fonts inhomogeneousx,y and homogeneousx, y 3D ones.P
denotes3 × 4 image projection matrices,p() probability dis-
tributions,[ · ]× 3×3 cross product matrices ([ x ]× y = x∧y ),
〈−〉x expectation over the distribution ofx.

2 Joint Feature Distributions
We can model them noisy image projectionsxi | i=1...m of a
fixed 3D featuref as probability distributionspi(xi | f) cen-
tred onf ’s true projections, with widths determined by the
relevant noise levels. More generally, the joint distribution
p(x1, ..., xm | f) is typically well-localized, and for indepen-
dent noise factors as

∏
i pi(xi | f). If f now varies across

some population of 3D features with distributionp(f), the
Joint Feature Distribution (JFD) of the resulting popula-
tion of image features is:

p(x1, ..., xm) ≡
∫

p(x1, ..., xm | f)p(f)df (1)

For broad priors p(f), the one-image marginals
p(xi) ≡ ∫

p(x1, ..., xm) dx1...dxi−1dxi+1...dxm =∫
pi(xi | f)p(f)df are typically broad and uninforma-

tive. But the ‘sharpness’ of the original image projections
pi(xi | f) is not entirely lost:The JFDp(x1, ..., xm) remains
highly correlated and still encodes most of the precise
location information. In particular, theConditional Feature
Distributions (CFD’s) like

p(x1 | x2, ..., xm) ≡ p(x1,x2,...,xm)
p(x2,...,xm)

(2)

encode precise inter-image dependencies that are efficient
tools for correspondence search. Fig.1 illustrates the princi-
ple for two 1D projective imagesx, y of a 1D scene. The JFD

p(x, y) encodes a strong probabilistic dependency between
x andy whose “backbone” is the underlying geometric cor-
respondence (here a 1D homography). The marginalsp(x),
p(y) are broad and uninformative, but given a particular fea-
turex, the CFDp(y | x) (the normalized cross-section through
p(x, y) at x) is sharply peaked at the correspondingy value.
We can use this to predict tight probabilistic search regions
for y givenx, and vice versa.

The abstract JFD framework has rich analogies with, and
generalizes, conventional multi-image geometry — see ta-
ble 1. It applies to any correspondence relationship that
can be modelled probabilistically, regardless of feature type,
parametrization, number of images, rigidity or distortion. But
it is most useful when (suitable parametric forms can be cho-
sen so that) the estimated JFD’s have strong correlations that
provide accurate search focusing. The link with geometry
is strongest for correspondences governed by matching con-
straints. Then, as in fig.1, the matching geometry forms the
“backbone” of the JFDp(x, y) and fixes the locations of the
CFD’s p(y | x), while the image noise determines the cross-
section of the JFD and the widths of the CFD’s. The 3D fea-
ture populationp(f) or its image marginalsp(x),p(y) deter-
mine the height of the JFD along its backbone, but have little
direct influence on the CFD shapes.

As with matching constraints, JFD’s are image-based mod-
els originally derived from 3D quantities (here the 3D fea-
ture priorp(f) and the projection modelspi(xi | f), there the
camera matricesPi), but typically estimated from observed
image correspondences. The familiar three stage estimation
process [4] still applies: (i) build a large set of possible corre-
spondences,e.g. by feature detection followed by correlation
matching; (ii ) hypothesize well-supported candidate models,
e.g. using a robust clusterer such as RANSAC; (iii ) robustly
fit parametric model(s) to the most interesting candidate(s).
The fitted models are parametric probability distributions for
both JFD’s (explicitly) and matching constraints (we actually
fit a geometry-based probabilistic noise model). The cluster-
ing stage ensures reliable fitting by rejecting false matches
and ‘uninteresting’ true ones,e.g. features on moving ob-
jects when we are fitting the background, or non-coplanar
features when we are fitting a plane. Good clustering is even
more critical for JFD’s than for matching constraints owing
to their polymorphism: they are designed to summarize a
user-defined class of observations not to enforce a predefined
structure, so it is much less clear what constitutes an outlier.
The obvious approach is to use self-consistency, finding clus-
ters too dense to be probable under broader members of the
parametric distribution familyc.f. e.g. [4, 18]. We will not
go into these difficult grouping issues here, but we expect
JFD’s to be effective correspondence models for many natural
grouping classes such as points on compact moving objects.

From now on we focus on deriving efficient parametric
models for JFD’s. We will only consider Gaussian-like mod-
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Entity Matching Constraint Approach Joint Distribution Approach
3D camera geometry Camera projection mapping, matrices

Pi : f → xi = Pi f
Conditional feature projection distri-
butionsp(xi | f)

Image signature of camera geometryMulti-image matching tensorsTij...k Joint Feature Distributionsp(x, ..., z)
Inter-image feature transfer Tensor based feature transferx '

Tij...k · y · ... · z
Conditional Feature Distributions
p(x | y, ..., z)

Inter-image feature correspondence Geometric matching constraints
Tij...k · x · ... · z = 0

Probability that features correspond,
p(x, ..., z), orp(x | y, ..., z)

Scene reconstruction Ray intersection, tensor-based recon-
struction

Posterior 3D feature probability
p(f | x, ..., z)

Table 1: Analogies between the joint distribution approach and multi-image matching constraints.

els, which appear to be the simplest useful parametric forms.
Gaussians can only capture linear dependencies, so to pro-
duce JFD’s that can mimic the standard matching constraints,
we will need parametrizations that make these constraints ap-
pear linear. As in matching constraint estimation, we do this
by mapping the input observations into a suitablejoint im-
age space, containing the direct sum (juxtaposition) of the
input coordinates for affine models, but their tensor (outer)
product for projective ones. For example, for projective fun-
damental matrix or epipolar JFD estimation, we map then
correspondences(x, x′) to homogeneous 9-D outer product
vectorsx ⊗x ′ ∼ (1, x, y, x′, y′, xx′, xy′, yx′, yy′)> and build
a 9 × n measurement matrixM from these. The fundamen-
tal matrix estimate uses just the smallest eigenvector ofM M>

(e.g. [6]), whereas the JFD model captures the underlying un-
certainty using an appropriately-weighted “average” over all
of the eigenvectors (in fact,(M M>)−1). Conditioning the JFD
gives compact correspondence search regions consistent with
all (not just one!) of the likely models in the average. The
JFD is loosely analogous to “model averaging” of fundamen-
tal matrices [18], but it is based directly on the input corre-
spondences, not on a blurred geometric model.

3 Scatter & Covariance

Homogeneous covariance:Before starting we introduce
some tools. We encode distributions homogeneously. Given
an uncertain affine pointx with mean̄x, covarianceV and ho-
mogeneous vectorx = ( x

1 ), its homogeneous covariance
X , homogeneous informationX−1 andχ2 valueare:

X ≡ 〈x x>〉x =
(

x̄ x̄>+V x̄
x̄> 1

)
(3)

X−1 =
(

V−1 −V−1x̄
−x̄>V−1 +x̄>V−1 x̄+1

)
(4)

χ2(x | x̄, V) ≡ (x − x̄)>V−1 (x − x̄) = x>X−1x − 1 (5)

The mean, covariance and information of the Gaussian fit
neatly into the homogeneous matricesX , X−1. Given a col-
lection of training points{xp}p=1...n, their homogeneous
scatter matrix 1

n

∑
p xp x>

p encodes their mean and covari-
ance, and hence defines an approximate Gaussian probability

model for the point population. If the points are also uncer-
tain, theirsmoothed homogeneous scatter1n

∑
p 〈xp xp〉xp

encodes the mean and covariance of the mixture distribution
generated by the sum of the individual point distributions.
Viewed as a summary of the population statistics, this double-
counts the noise and hence overestimates the covariance, but
when there are relatively few points this smoothed but biased
estimate is often preferable to the unsmoothed one because
it contains additional information about the noise level. Ei-
ther type of scatter matrix can be used when estimating JFD’s
below.

Note that these formulae require the homogeneous point
vectors to be affinely normalized (scaled so that the last co-
ordinate is 1). We assume this throughout the paper. Al-
though many formulae (notably in§5) appear projective, they
all are based on the standard “noise in pixels” image plane er-
ror model which is intrinsically affine. For a start at building
a projectively covariant error model, see [19].

Dual covariance: Some matching constraints are based on
the lines through an image point rather than the point itself.
The simplest is the homographic relationshipx ' H y . This
can be written in constraint form asu H y = 0 = v H y
whereu, v are any two independent lines throughx . For
least squares estimation we square and sum the constraints:
0 ≈ (u H y)2 + (v H y)2 = y>H> (u u> + v v>) H y . We
will view u u> + v v> as the “homogeneous scatter matrix”
of the chosen set{u, v} of lines throughx . More generally
we could use2

n

∑n
i=1 ui u>

i where{ui} is any rank 2 set of
lines throughx . These rank 2 matrices encodex as their null
vector, and each defines its own importance weighting over
the lines throughx (i.e. the constraints). To be more sys-
tematic, we fix a standard weighting procedure that defines
our notion of “the uniform distribution of lines” through any
given x . Algebraically, the most uniform way to write the
squared homography constraints is‖ [ x ]× H y‖2 ≈ 0, which
leads to the “scatter matrix”[ x ]>× [ x ]× = ‖x‖2I − x x>.
This is not projectively covariant, but we can make it so
by introducing a fixed quadric matrixQ, which we usually
take to be the identity matrix in a well-normalized projec-
tive frame. We then define thedual covarianceof x to be
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X̃ ≡ (x>Q x) Q − (Q x)(Q x)>. Or if x is uncertain with
homogeneous covarianceX = 〈x x>〉, the dual covariance is
the expectation of this:̃X ≡ trace(Q X) Q − Q X Q. For
Q = I this becomes (c.f. (3)):

X̃ =

(
1+y2+Vyy −xy−Vxy −x

−xy−Vxy 1+x2+Vxx −y

−x −y x2+y2+Vxx+Vyy

)
(6)

For nonsingularQ, X = 1
d trace(Q−1 X̃) Q−1−Q−1 X̃ Q−1, so

dualization is reversible (d is the space dimension, here2).
Our JFD models of line-through-point constraints (homogra-
phies, trifocal, quadrifocal) are all based on dual covariances.

4 The Affine JFD
We now develop a Gaussian JFD model for point features un-
der affine image projection. This is the simplest useful model,
and a good warm-up for the projective case. To keep the
projective link clear we work in affine-homogeneous coor-
dinates rather than centred inhomogeneous ones. Our JFD
model must reproduce and “probabilize” the affine matching
constraints. But these are already linear in the image coor-
dinates and Gaussians naturally model linear relationships,
so the problem is trivial. Suppose that the training data isn
correspondences inm affine imagesxip | i=1...m,p=1...n. Col-
lect the components of each correspondence into a2m + 1
component homogeneousaffine joint image vector xp ≡
(x>

1p ... x>
mp 1)>, and form these into a(2m + 1) × n affine

measurement matrixM ≡ (x1, ..., xn). Viewing our corre-
spondences as points in joint image space, their homogeneous
scatter matrix is simplyV ≡ 1

n

∑n
p=1 xp x>

p = 1
n M M>, or if

we choose to use the smoothed scatter:V ≡ 1
n

∑
p

〈
xp x>

p

〉
=

1
n

∑
p

(
xp x>

p +
(

Vp 0
0 0

))
= 1

n M M>+ 1
n

( ∑
p Vp 0
0 0

)
, where

Vp is the2m × 2m inhomogeneous joint noise covariance of
xp (for independent noise,Vp is block diagonal with2 × 2
blocks). Our affine JFD model is simply the Gaussian that
best describes this population of joint image vectors,i.e. the
Gaussian with homogeneous covarianceV and homogeneous
informationV−1.

Why does this work? - The theory of affine projection tells
us that for ideal noiseless observations,rank(M) ≤ 4, i.e.
the vectorsxp span a 3D affine space [16]. We are modelling
noisy observations, but the ideal behaviour tells us what to
expect:M typically has1 large ‘homogenization’,≤ 3 large
‘geometry’ and≥ 2m− 4 small ‘noise’ singular vectors, and
similarly for V = 1

nM M> with eigenvectors. So the JFD is
typically very ‘flat’ — broad and featureless along the ‘geom-
etry’ directions, but narrow along the remaining ‘noise’ ones.
Conditioning on an image pointx effectively freezes two of
the ‘geometry’ directions, so at most one remains, spanning
the joint epipolar line ofx in the remaining images. Even this
direction is restricted to the breadth of the training population,
so for coplanar data it will shrink to a point.

For our Gaussian JFD’s, conditioning leads to familiar
Schur-complement matrix formulae. To do the calculation,
partition(x>

1 ... x>
m)> into known componentsk and unknown

onesu, freezek at their known values inχ2(x) = x>V−1 x−1
(5), and complete the squares to find the conditional log like-
lihood of the remaining unknownsu. Let k̄, ū be the training
set means ofk, u. Partition the corresponding information
as

(
A B

B> C

)
, whereA = (V−1)kk, etc. The search region for

the unknownsu given the knownsk is defined by the CFD
p(u | k), which turns out to have mean̄u − C−1B>(k − k̄) and
covarianceC−1. (NB: Thepopulationcovariance ofu is Vuu =
(C− B>A−1B)−1, which is usually much larger). Ifk is an un-
certain measurement with covarianceD−1, the CFDp(u | k) is
broadened to mean̄u−C−1B>(A+D−BC−1B>)−1D(k− k̄) and
covariance(C−B>(A+D)−1B)−1. (UsuallyD � A so we can
drop theA’s). The prior likelihood for observing the knowns
k in the first place isχ2(k |V) = (k− k̄)> (A − BC−1B>) (k−
k̄). As usual in such calculations, there are other forms for
these expressions that may be stabler or more efficient, but
we will not go into this here.

Implementation is straightforward: form the homogeneous
scatterV from the training data, invert to get the informa-
tion V−1 (the Gaussian JFD model), partition and condition
on known observations to get search windows for their un-
known correspondents. One minor snag is thatV = M M>

becomes rank deficient (rank≤ 4) for noiseless data, so the
estimated informationV−1 becomes infinite. This is correct —
exact geometry allows infinitely accurate predictions — but
numerically inconvenient. In practice we avoid it by adding
a small diagonal regularizerdiag(ε, ..., ε, 0) to V before in-
verting. Typicallyε ∼ 10−9 : large enough to prevent loss of
numerical precision during the inversion, but not so large as
to blur the final estimates significantly. Similarly,V is rank
deficient forn ≤ 2m noisy but unsmoothed correspondences
because we do not have enough observations to estimate all
of the noise covariances. The solution is to incorporate more
noise information,e.g. using smoothed scatters.

5 The Projective JFD
Affine JFD’s are too rigid to model perspective distortion
exactly, so we now develop more flexible projective mod-
els. As before we consider only Gaussian-like models, so to
mimic the matching constraints we need to use parametriza-
tions in which these become linear. Projective matching
constraints aremultilinear in the homogeneous coordinates
of their image features, but as in “linear” matching ten-
sor estimation we can make the problem appear linear by
treating multilinear combinations as if they were indepen-
dent coordinates,i.e. by mapping the input feature vectors
to their outer (Kronecker) product tensor. For example, for
two images we can not use just the image coordinatesx =
(x, y, 1)>, x ′ = (x′, y′, 1)> or the affine joint image vector
(x, y, x′, y′, 1)>, because the projective matching constraints
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also have bilinear termsxx′, ..., yy′. Instead we need to col-
lect the components of the outer productx x ′> into a vector
(xx′, xy′, x, yx′, yy′, y, x′, y′, 1)> and use these as working
coordinates. More generally, for point features in any num-
ber of images, it turns out (proof omitted) that tensoring the
input coordinates is necessary and sufficient to linearize all of
the matching constraints linking the images, and generically
the only linear constraints on these coordinates are matching
ones. So we really have no choice: to linearize the projec-
tive matching constraints linking featuresx1, ..., xm from m
images, we have to use the3m components of theirjoint im-
age tensort = x1 ⊗ ... ⊗ xm as working coordinates. We
will view t both as a3m-component vector and as a tensor
tA...D = xA

1 · ... · xD
m (indicesA...D = 1...3). Assuming

affine normalization forx1, ..., xm, our projective JFD mod-
els are “Gaussians int-space”,p(t) ∼ e−L/2, with negative
log likelihood:

L = t>W t = WA...D A′...D′(xA
1 ...xD

m)(xA′
1 ...xD′

m ) (7)

The JFD is parametrized by thehomogeneous information
tensor W , viewed as a symmetric positive definite3m × 3m

matrix generalizing the homogeneous information. This
model has the following useful properties:

1. It naturally models uncertain matching constraints. Al-
gebraically, the simplest way to represent and combine
uncertain constraints is to use weighted sums of squared
constraint violations. For linear constraints such as the
matching constraints ont , this yields nonnegative quadratic
forms in the variables,i.e. Gaussians int .

2. If we freeze some of the variablesxi at arbitrary values,L
retains its tensored-quadratic form in the remaining ones,
with coefficients given byW contracted against the frozen
variables. So conditioning on known values for search re-
gion (CFD) prediction reduces to trivial tensor contraction
— even simpler than the affine case.

3. Conditioning down to a single image gives a standard
Gaussian expressed in homogeneous form, so predicting
its high-probability search regions is easy.

JFD estimation: Now consider how to estimate a projective
JFD W that summarizes a given set of training correspon-
dences(x1p, ..., xmp) | p=1...n. By analogy with the affine
case we treat the joint image tensorstp = x1p ⊗ ... ⊗ xmp

of the training correspondences as3m-component affine-
homogeneous vectors and build their3m × 3m homoge-
neous scatter matrixV = 1

n

∑
p tp t>p = 1

nM M> where
M = (t1, ..., tn) is the3m × n measurement matrix familiar
from linear matching tensor estimation. We then invert to get
the JFD parameter estimateW ≈ V−1. This last step is un-
fortunately only heuristic1 but it appears to work reasonably

1Our projective JFD’s are not really Gaussians because their input co-
ordinatest are restricted to a nonlinear(2m)-D subvariety of their(3m)-

well in practice, perhaps because (if we imagine the eigen-
decomposition ofV being inverted) it gets at least the noise
model int ’s block of affine coordinates and the noiseless per-
spective corrections right.

As in the affine case, if we have uncertainties for the fea-
tures we can use them to stabilize the JFD’s noise level esti-
mates, and we do this by taking expectations over noise when
calculating the scatter. We assume independent noise so that
tensor expectations factor into single-image ones. Working
tensorially, thesmoothed scatter tensoris:

V A...D A′...D′
= 1

n

∑
p

〈
(xA

1p...x
D
mp)(x

A′
1p ...xD′

mp)
〉

= 1
n

∑
p

〈
xA
1pxA′

1p

〉
· ... ·

〈
xD

mpxD′
mp

〉
= 1

n

∑
p XAA′

1p · ... · XDD′
mp

(8)

whereXip =
〈
xip x>

ip

〉
are the homogeneous covariances of

the input features. Once again, this smoothes the JFD es-
timate at the cost of some double-counting of noise. It is
particularly useful when there aren < 3m training features
(which is common form ≥ 3). As a safeguard, we also add
a 3m × 3m diagonal regularizerdiag(ε, ..., ε, 0) to V , where
typically ε ∼ 10−8. These measures are even more neces-
sary in the projective case than in the affine one, asV is both
large (so that many measurements are required to span it) and
structurally ill-conditioned (because “perspective effects are
usually small” compared to affine ones). The ill-conditioning
is normal and causes no problems so long as we regularize
enough to prevent it from causing loss of numerical precision.

‘Epipolar’ JFD vs. linear fundamental matrix estimation:
Both methods start with the9 × n measurement matrixM of
the tensored measurements. Form the9×9 scatterV =M M>,
let V =

∑9
a=1 λa fa f>a be its eigen-decomposition, and write

the eigenvectorsfa as3× 3 “fundamental matrix candidates”
Fa. The conventional linear fundamental matrix estimate is
the smallest eigenvectorF9 of V , or equivalently the largest
of W = V−1. On test correspondencest = x ⊗ x ′, the JFD
estimateW =V−1 has unnormalized “log likelihood” penalty
function t>W t =

∑9
a=1 λ−1

a (fa t)2 =
∑9

a=1 λ−1
a |x Fa x ′|2,

i.e. “a weighted sum of possible epipolar constraints”. Sim-
ilarly, conditioning onx gives conditional log likelihood
x ′>A x ′ for x ′, whereAA′B′ =WAB A′B′ xA xB, i.e. the cor-
respondence search regions are defined by “weighted scatters
of possible epipolar lines”A =

∑9
a=1 λ−1

a (x>Fa)(x>Fa)>.
The fundamental matrix estimate amounts to truncatingW

D space — tensors of the rank-one formt = x1 ⊗ ... ⊗ xm. Gaus-
sian integrals over this restricted space are intractable, so we can not cal-
culate the normalization factor that makes the JFD into a correctly nor-
malized probability distribution. This factor is indispensable for estimating
W . For training data with scatterV on a normalized distribution family

p(t) = e−(t>W t−N(W))/2, whereN(W ) is the normalization, maximum
likelihood estimation reduces to minimizingtrace(W V )−N(W ) with re-

spect toW , with implicit solution W such thatV = dN(W)
dW . For a true

Gaussian,N(W ) = log det W − d log(2π) and hencedN
dW = W−1.
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at its largest eigenvector, giving effective penalty function
(f>9 t)2 = |x F9 x ′|2, i.e. the estimated epipolar constraint
violation. For small noise and strong data,V has just one
very small eigenvalue, so the penalty sum is entirely domi-
nated byF9 and the JFD model reduces to the fundamental
matrix one. But ifV has several small eigenvalues owing to
noisy or weak data (e.g. coplanar data makesV rank 6 with
3 “noise” eigenvalues), these all contribute significantly the
penalty sum, which becomes a kind of weighted average over
these observed “constraints” on the data, restricting the direc-
tions in which the measurements can vary and hence the size
of the “averaged epipolar” correspondence search regions.

Statistical error weighting: Although they include covari-
ances, our linear JFD methods are essentially ‘algebraic’:
they implement heuristic polynomial error models rather than
statistically weighted rational ones. We will not consider
nonlinear JFD estimation here, but a step towards statistical
weighting in the conditioning calculation greatly improves
the accuracy of the predicted search regions. For points
near the epipole, algebraic weighting produces over-broad
search regions (fig.2 top right). As above, the cost transver-
sal to epipolar lines is controlled by the JFD’s epipolar line
violation term|x F9 x ′|2, whereF9 is the fundamental ma-
trix. For x near the epipole,x>F9 ≈ 0 and |x F9 x ′|2 is
small for anyx ′. We correct for this heuristically by re-
placingAA′B′ = WAB A′B′ xA xB in the CFDx ′>A x ′ with
λ A whereλ = (WAB A′B′ V AB NA′B′

)/ trace(A N), N =
diag(1, 1, 0), andV is thex -image population scatter. The
idea is that ifW ≈ f9 f>9 as above,trace(A N) ≈ x>F9 N F>

9 x
is the norm of the epipolar line vectorx>F9 and the numerator
is the average of such norms across the training population.
Soλ reinforces the cost near the epipole without changing its
overall population average. This heuristic reweighting pro-
cedure works well in practice and we are currently trying to
formalize it.

5.1 Dual Space JFD’s

The above approach in principle allows us to produce projec-
tive JFD’s for any type of matching geometry in any number
of images, and it is indeed the preferred representation for
the practically important 2 image ‘epipolar JFD’ case. How-
ever, form > 2 images or known-coplanar scenes it uses
training correspondences very inefficiently. In the space of
joint image tensorst , the nonlineard-D image of ad-D pro-
jective subspace of 3D space containingk centres of pro-
jection turns out to span a(

(
m+d

d

)− k)-D linear subspace
(proof omitted). The above JFD model “learns” (spans) at
most one tensor dimension per training correspondence, so
just to capture the underlying geometry (let alone the noise)
we need

(
m+3

3

)−m = 8, 17, 31... training correspondences in
m = 2, 3, 4... images for general 3D geometry, or

(
m+2

2

)
=

6, 10, 15... for known-coplanar points. In comparison, lin-
ear matching tensor estimators need only8, 7, 6 correspon-

dences for 3D points and4, 4, 4 for coplanar ones. Matching
constraints are more efficient when they are tensor-valued, so
that a single matching tensor with relatively few coefficients
generates several linear constraints on each tensored image
correspondence. By mirroring these index structures we can
build correspondingly efficient JFD models, at the cost of less
image-symmetric representations and an implicit restriction
to correspondence models subjacent to the mirrored matching
constraint. For example, a JFD based on the index structure
of a two image homography constraint can be estimated from
4 correspondences rather than 6, but implicitly commits us to
quasi-planar data.

To do this, we simply need to assume a JFD whose form
is an average over constraints of the desired type. Free in-
dices arise essentially when pointsx appear dualized as[ x ]×
in the matching constraints,i.e. for “any line through the
point” style constraints. For example, 2 image homographic
constraints with matrixH and 3 image trifocal constraints
with tensorT can be written symbolically as‖ [ x ′ ]× H x‖2

and‖ [ x ′ ]× (T ·x) [ x ′′ ]× ‖2, or alternatively as
∑

i |u′
i
>H x |2

and
∑

ij |(u′
i)

>(T · x)u′′
j |2 where{u′

i}, {u′′
j } are any sets of

two (or more) independent lines throughx ′, x ′′. Expand-
ing these forms tensorially gives(HB

A HB′
A′ )XAA′

X̃ ′
BB′ and

(T BC
A T B′C′

A′ )XAA′
X̃ ′

BB′ X̃ ′′
CC′ whereX = x x> and X̃ ′ =

[ x ′ ]>× [ x ′ ]× or X̃ ′ =
∑

i u′
i u′

i, and similarly forX̃ ′′ with
x ′′, u′′

j . The squared constraints can be expressed compactly
in terms of the homogeneous covarianceX of x and the scat-
ter matricesX̃ ′, X̃ ′′ of the lines throughx ′, x ′′. We will fix
the relative weighting of the different constraints by system-
atically using the dual covariances (6) ofx ′, x ′′ for X̃ ′, X̃ ′′.
For our JFD models we take averages over constraints of
these forms,i.e. we adopt homogeneous Gaussian-like forms
with unnormalized log likelihoodsW B B′

A A′ XAA′
X̃ ′

BB′ and
W BC B′C′

A A′ XAA′
X̃ ′

BB′ X̃ ′′
CC′ , whereX and X̃ ′, X̃ ′′ are the

(noiseless) normal and dual homogeneous covariances of the
test correspondences(x , x ′, x ′′). These are still quadratic
in the tensored measurementsx ⊗ x ′(⊗x ′′), so they are
reparametrizations of the general projective JFD models de-
veloped above. They are parametrized by information tensors
W B B′

A A′ , W BC B′C′
A A′ , which can be viewed respectively as9×9

and27 × 27 homogeneous information matrices represent-
ing scatters

∑
i hi h>

i and
∑

i si s>
i over possible homography

matrices (9-component ‘vectors’hi) and trifocal tensors (27-
component ‘vectors’si). To estimate the models we again
build (regularized and possibly smoothed) scatter tensors over
training correspondences, hereV A A′

B B′ = 1
n

∑
p XAA′

p X̃ ′
p BB′

and V A A′
BC B′C′ = 1

n

∑
p XAA′

p X̃ ′
p BB′ X̃ ′′

p CC′ , treat these as
9 × 9 and27 × 27 homogeneous covariance matrices, and
invert to estimate the corresponding information. To use the
models for correspondence search, we condition on known
feature positions by contracting their normal or dual covari-
ances (as appropriate) into the information tensors until we
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circle & fixate, shallow scene, reweighted circle & fixate, deep scene, reweighted
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fwds deep algebraic
fwds deep reweight

fwds shallow reweight
rot+fix deep reweight

rot+fix shallow reweight

Figure 2: Predicted search ellipses for the projective 2 image JFD, versus the true correspondences and their epipolar lines.
The scenes contain uniform random points in a sphere (deep scene) or a sphere flattened to 20% of its depth (shallow scene).
Top right: Algebraic error weighting leads to incorrect broadening of the search regions near the epipole. The other plots use
our CFD reweighting heuristic to correct this (see end of§5.0). Bottom right:For all of the geometries tested, the estimated
conditional distributions accurately reflect the true correspondence likelihoods. Here we histogram the standard errors of the
true observations under the estimated CFD’s, for forwards (top curves) and fixation (bottom curves) motions.

reach a single-image model, which is necessarily quadratic in
the remaining feature vector,i.e. a Gaussian whose likelihood
regions are simple ellipses. This approach extends to all other
matching constraint equations with free covariant indices: we
just need to use normal or dual covariances as appropriate,
and think tensorially when necessary.

6 Implementation & Experiments
We have implemented the above methods in MATLAB for
any number of images and duality structure, but here we only
show brief results for the 2 image ‘epipolar’ JFD. Recall the
algorithm: build the9×9 scatter matrixV = 1

n

∑
p tp t>p from

the tensored training correspondencestp, regularize and in-
vert to get the JFD informationW = (V +diag(ε, ..., ε, 0))−1,
and view this as a tensorWAB A′B′ . Then, for each test cor-
respondencex , form AA′B′ = WAB A′B′ xAxB and option-
ally rescale it byλ = (WAB A′B′ V ABNA′B′

)/ trace(A N)
(N = diag(1, 1, 0)) to correct the error weighting. The re-
sultingA is the conditional information forx ′ = (x′, y′, 1)>,
from which Gaussian log-likelihood search ellipses can be

found by expandingx ′>A x ′ as a quadratic and discarding
the constant term. Algebraic error weighting does produce
over-wide search ellipses for points near the epipole, so it is
advisable to include the reweighting factorλ. The reweighted
method works well in practice for all of the geometries that
we have tested, giving search ellipses aligned with the epipo-
lar lines with realistic lengths and breadths, which progres-
sively shrink to circles as the scene becomes planar.

7 Summary and Conclusions
We introduced Joint Feature Distributions (JFD’s), a general
statistical framework for image matching based on modelling
the joint probability distributions of the positions of corre-
sponding features in different images. The JFD is estimated
from a population of training correspondences, then condi-
tioned on the values of test features to produce tight likeli-
hood regions for the corresponding features in other images.
We developed relatively simple Gaussian-like JFD models for
affine and projective images, which can be viewed as proba-
bilistic “model averages” of the affine and projective multi-
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image matching constraints. The methods naturally and sta-
bly handle any scene geometry from deep 3D through to
coplanar scenes, without explicit model selection. For ex-
ample, the ‘epipolar’ JFD stably enforces an epipolar, homo-
graphic or near-homographic constraint, according to the be-
haviour of the training data.

Future work: The JFD idea is recent and we are still ac-
tively investigating its properties. There are some theoretical
loose ends, particularly in the projective case where even the
basicW ≈ V−1 estimation procedure for the “linear” model
is only heuristic. We do not yet have JFD’s with rigorous
statistical error weighting, and it is unclear whether there are
JFD analogues of matching tensor consistency relations like
det(F ) = 0. Both issues are likely to lead to nonlinear mod-
els. Practically, we need to develop robust estimators for
JFD’s. As JFD’s are less rigid than matching constraints, self-
consistency based clustering will probably be needed to iso-
late correspondence sub-populations susceptible to JFD mod-
elling. The full population model will thus be a mixture of
JFD’s. Numerically, we are developing QR and SVD based
JFD representations that should be less sensitive to rounding
errors than our current scatter / information ones.
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